説明

真空蒸発源

【課題】有機材料の熱的劣化を軽減し、長時間にわたって安定した品質の薄膜形成が可能な真空蒸発源を提供する。
【解決手段】有機材料13を収容すると共に有機材料13を蒸発させる蒸発室14を有し、蒸発させた有機材料13を噴出する真空蒸発源11において、蒸発室14の加熱領域を深さ方向に複数に分割し、分割した加熱領域毎にヒータ21〜23を各々配置し、有機材料13の表面がある加熱領域を、当該加熱領域のヒータにより有機材料13の気化温度で加熱し、有機材料13の表面がある加熱領域より上の加熱領域を、当該加熱領域のヒータにより有機材料13の再付着温度より高い温度で加熱し、有機材料13の表面がある加熱領域より下の加熱領域を、当該加熱領域のヒータにより気化温度より低い温度で加熱する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、真空蒸着の材料を蒸発させる真空蒸発源に関する。
【背景技術】
【0002】
真空蒸着による薄膜製造装置には、その薄膜を形成する材料用の真空蒸発源が不可欠であり、例えば、真空蒸着による有機エレクトロルミネッセント(以降、有機ELと略す。)パネル製造装置には、有機材料用の真空蒸発源が不可欠である。有機ELパネル製造装置の場合、その成膜室は数個から十数個あり、それぞれの成膜室に真空蒸発源が備えられており、各成膜室で形成した薄膜を積層するプロセスとなっている。各真空蒸着源においては、有機材料を坩堝に必要量充填しておき、ある時間連続製造後、一旦製造を中断して、有機材料を供給するようにしている。
【0003】
真空蒸発源のノズル部分の構造としては、点蒸発源やリニア(線状)蒸発源等がある。又、真空蒸発源の加熱部分の構造としては、真空蒸発源を蒸発室と蒸着室に分けるが、真空蒸発源全体を加熱するもの(特許文献1;図2等参照)、真空蒸発源が蒸発室のみであり、その底部を加熱するもの(特許文献2;図1(b)等参照)、真空蒸発源を蒸発室と圧力制御室に分け、蒸発室、圧力制御室各々に互いに独立したヒータを配置し、制御するもの(特許文献3;図1等参照)等があるが、坩堝部分に充填された有機材料については、全て有機材料全体が加熱される構造となっている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−213569号公報
【特許文献2】特開2004−095275号公報
【特許文献3】特開2007−186787号公報
【特許文献4】特許第4001296号号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
有機材料は融点が低く、蒸気圧が高いものが多いため、低温で蒸発する。そのため、有機材料を真空蒸着源の材料とする場合、加熱温度は低く設定されている。例えば、有機EL素子用の有機薄膜を成膜する場合、蒸発温度は200〜400℃程度である。従って、有機材料を蒸着する場合、低加熱温度域での蒸着量の制御が必要である(特許文献4;段落0021等参照)。
【0006】
ところが、有機EL素子の製造に用いられる有機材料は、長時間にわたって、所望の蒸着量が得られる気化温度又はそれに近い温度(例えば、上述の蒸発温度200〜400℃)に維持された場合、有機材料そのものが劣化し、成膜された有機薄膜において、本来の性能が得られない場合がある。これは、有機材料(特に、温度感受性のある有機材料)は、その有機材料にとって高温域となる温度(気化温度等)に長時間曝露されると、分子構造が変化し、それに伴って、有機材料の性質が変化するためである。従って、有機材料は、温度とその暴露時間により、材料劣化の程度が異なることになり、そのため、成膜された有機薄膜において、本来の性能が得られないことがある。
【0007】
今後、発光効率に優れる燐光有機材料が有機EL素子製造の主流になると考えられているが、上述した溜め込み式の真空蒸発源では、上述した理由により、有機材料の熱的劣化が懸念され、特に、燐光有機材料においては、その問題がより顕著となると予想される。
【0008】
本発明は上記課題に鑑みなされたもので、有機材料の熱的劣化を軽減し、長時間にわたって安定した品質の薄膜形成が可能な真空蒸発源を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決する第1の発明に係る真空蒸発源は、
有機材料を収容すると共に前記有機材料を蒸発させる蒸発室を有し、蒸発させた前記有機材料を噴出する真空蒸発源において、
前記蒸発室の加熱領域を深さ方向に複数に分割し、分割した加熱領域毎にヒータを各々配置し、
前記有機材料の表面がある加熱領域を、当該加熱領域の前記ヒータにより前記有機材料の気化温度で加熱し、
前記有機材料の表面がある加熱領域より上の加熱領域を、当該加熱領域の前記ヒータにより前記有機材料の再付着温度より高い温度で加熱し、
前記有機材料の表面がある加熱領域より下の加熱領域を、当該加熱領域の前記ヒータにより前記気化温度より低い温度で加熱するか、又は、当該加熱領域の加熱を行わないことを特徴とする。
【0010】
上記課題を解決する第2の発明に係る真空蒸発源は、
有機材料を収容すると共に前記有機材料を蒸発させる蒸発室と、前記蒸発室の上方に設けられ、蒸発させた前記有機材料の圧力を調整する圧力調整室とを有し、蒸発され、圧力が調整された前記有機材料を噴出する真空蒸発源において、
前記蒸発室の加熱領域を深さ方向に複数に分割し、分割した加熱領域毎にヒータを各々配置し、
前記有機材料の表面がある加熱領域を、当該加熱領域の前記ヒータにより前記有機材料の気化温度で加熱し、
前記有機材料の表面がある加熱領域より上の加熱領域を、当該加熱領域の前記ヒータにより前記有機材料の再付着温度より高い温度又は前記圧力調整室の温度で加熱し、
前記有機材料の表面がある加熱領域より下の加熱領域を、当該加熱領域の前記ヒータにより前記気化温度より低い温度で加熱するか、又は、当該加熱領域の加熱を行わないことを特徴とする。
【0011】
上記課題を解決する第3の発明に係る真空蒸発源は、
有機材料を収容すると共に前記有機材料を蒸発させる蒸発室を有し、蒸発させた前記有機材料を噴出する真空蒸発源において、
前記蒸発室の加熱領域を深さ方向に複数に分割し、分割した加熱領域毎に各々配置したヒータと、
当該真空蒸着源から噴出される前記有機材料の蒸着量を測定する検出器と、
前記検出器の測定に基づいて、前記ヒータを制御する制御装置とを備え、
前記制御装置は、
前記検出器で測定された蒸着量の実測値と予め設定された蒸着量の目標値とを比較し、前記目標値とするための目標温度を算出する第1工程と、
前記目標温度から前記有機材料の気化温度を減算した差分が、予め規定した制限値以下の場合には、制御温度を前記目標温度に変更して、制御対象の加熱領域のヒータを制御する第2工程と、
前記差分が前記制限値を越える場合には、制御温度を現在制御している温度に固定して、制御対象の加熱領域のヒータを制御する第3工程と、
制御対象の加熱領域において、前記差分が前記制限値を越えるまで、前記第1工程及び前記第2工程を繰り返し、前記差分が前記制限値を越えると、前記第3工程を実施した後、制御対象を当該加熱領域の下の加熱領域に変更する手順を有し、
最上部の加熱領域から最下部の加熱領域まで、前記手順を順次実施すると共に、前記手順が実施されるまで、制御対象の加熱領域より下の加熱領域は、前記気化温度より低い温度で制御するか、又は、加熱しないことを特徴とする。
【0012】
上記課題を解決する第4の発明に係る真空蒸発源は、
有機材料を収容すると共に前記有機材料を蒸発させる蒸発室と、前記蒸発室の上方に設けられ、蒸発させた前記有機材料の圧力を調整する圧力調整室とを有し、蒸発され、圧力が調整された前記有機材料を噴出する真空蒸発源において、
前記蒸発室の加熱領域を深さ方向に複数に分割し、分割した加熱領域毎に各々配置したヒータと、
当該真空蒸着源から噴出される前記有機材料の蒸着量を測定する検出器と、
前記検出器の測定に基づいて、前記ヒータを制御する制御装置とを備え、
前記制御装置は、
前記検出器で測定された蒸着量の実測値と予め設定された蒸着量の目標値とを比較し、前記目標値とするための目標温度を算出する第1工程と、
前記目標温度から前記有機材料の気化温度を減算した差分が、予め規定した制限値以下の場合には、制御温度を前記目標温度に変更して、制御対象の加熱領域のヒータを制御する第2工程と、
前記差分が前記制限値を越える場合には、制御温度を、現在制御している温度又は前記圧力調整室の温度に固定して、制御対象の加熱領域のヒータを制御する第3工程と、
制御対象の加熱領域において、前記差分が前記制限値を越えるまで、前記第1工程及び前記第2工程を繰り返し、前記差分が前記制限値を越えると、前記第3工程を実施した後、制御対象を当該加熱領域の下の加熱領域に変更する手順を有し、
最上部の加熱領域から最下部の加熱領域まで、前記手順を順次実施すると共に、前記手順が実施されるまで、制御対象の加熱領域より下の加熱領域は、前記気化温度より低い温度で制御するか、又は、加熱しないことを特徴とする。
【発明の効果】
【0013】
本発明によれば、有機材料の表面がある加熱領域を気化温度とし、表面より下の加熱領域を、気化温度より低い温度とするか、又は、加熱しないようにするので、有機材料の熱的劣化を軽減し、長時間にわたって安定した品質の薄膜形成が可能となる。その結果、信頼性の高い真空蒸発源を低コストで実現することができ、トラブルの未然防止による生産性の向上、製品価格の低減が見込める。
【図面の簡単な説明】
【0014】
【図1】本発明に係る真空蒸着源の実施形態の一例を示すものであり、その真空蒸着源を備えた成膜室の断面図である。
【図2】(a)は従来の真空蒸着源における温度グラフであり、(b)は図1に示した真空蒸着源における温度グラフである。
【図3】(a)〜(c)は、図1に示した真空蒸着源における有機材料の推移と温度制御とを説明する図である。
【図4】本発明に係る真空蒸着源の実施形態の他の一例を示すブロック図である。
【図5】図4に示した真空蒸着源における温度制御を説明するフローチャートである。
【発明を実施するための形態】
【0015】
本発明に係る真空蒸着源の実施形態を、図1〜図5を参照して説明する。
【0016】
(実施例1)
図1は、本発明に係る真空蒸着源の実施形態の一例を示すものであり、その真空蒸着源を備えた成膜室の断面図である。又、図2(a)は、従来の真空蒸着源における温度グラフであり、図2(b)は、図1に示した真空蒸着源における温度グラフである。図3は、図1に示した真空蒸着源における有機材料の推移と温度制御とを説明する図であり、図(a)は、運転時間の初期、(b)は、運転時間の中期、(c)は、運転時間の後期を示している。
【0017】
本実施例において、成膜室10は、真空蒸着源11と、真空ポンプ(図示省略)等により、所望の真空度まで減圧された真空チャンバ12とを有している。真空蒸着源11は、真空チャンバ12の内部に設けられている。有機ELパネル製造装置の場合、数個から十数個の成膜室を有しており、その中に、成膜室10と同様の構造の成膜室を複数設け、特性の異なる有機薄膜を積層するようにしている。
【0018】
真空蒸着源11は、その下方に、有機材料13を収容すると共に有機材料13を蒸発させる蒸発室14を有している。又、蒸発室14の上方に、蒸発させた有機材料13の圧力を調整するための圧力調整用中板15と、蒸発され、圧力が調整された有機材料13を噴出する蒸気ノズル16とが設けられた圧力調整室17を有している。
【0019】
圧力調整用中板15は、圧力調整室17の内部を上下に2分するように設けられており、又、圧力調整用中板15には、小さい径の多数の孔15aが設けられている。後述するヒータ24により圧力調整室17の温度制御を行うことと、多数の孔15aに蒸発させた有機材料13を通過させることにより、蒸発させた有機材料13の圧力を調整することになる。そして、蒸発され、圧力が調整された有機材料13が蒸気ノズル16から噴出されることになる。
【0020】
なお、図1においては、最も単純な構成の一例として、点蒸着源を図示しているが、基板幅方向に均一な蒸着量分布を得ることができるリニア蒸着源を用いてもよい。リニア蒸着源は、1つの圧力調整室を基板幅方向に長く設け、複数の蒸気ノズルを圧力調整室の上面に線状に配置した長尺のものである。リニア蒸着源の長手方向の蒸気流速分布は、圧力調整室の圧力調整用中板の孔のコンダクタンスと蒸気ノズルの径と長手方向の設置間隔により、適正化を図ることができる。このようなリニア蒸着源を用いる場合、圧力調整室の下方の数箇所に、一定間隔で蒸発室を設けた構成にすればよい。そのような構成にすると、運転を一時停止したいときに、蒸発室の温度のみを低温にすることで、蒸発量を少なくし、材料の減少を抑制でき、更に、再立ち上げ時も、熱容量の小さい蒸発室だけを再加熱することで、短時間で蒸発源を運転可能状態に復旧できる。
【0021】
蒸気ノズル16の上方には、基板18を搬送方向Tに搬送する搬送装置(図示省略)が設けられている。蒸気ノズル16から噴出された有機材料13の蒸気を、基板18に蒸着させる際には、基板18を連続的に搬送させながら、有機材料13の蒸気を蒸着させており、これにより、基板18の全面に有機材料13の薄膜を形成することになる。蒸気ノズル16から噴出されて、基板18へ蒸着する有機材料13の蒸着量は、蒸気ノズル16の出口付近又は基板18周辺に設置したレートセンサ19(検出器)により監視しており、レートセンサ19で検出された蒸着量をフィードバックし、後述のヒータ21〜24を制御することにより、蒸気ノズル16から噴出される有機材料13を所望の蒸着量に制御している。
【0022】
蒸発室14の周囲には、複数のヒータ21〜23が設けられており、蒸発室14が坩堝として機能している。ヒータ21〜23は各々独立したものであり、各々、温度制御器31〜33により独立して制御される。更に具体的には、蒸発室14の加熱領域は深さ方向に複数に分割されており、分割した加熱領域(深さ位置)に対応してヒータ21〜23が各々配置されている。本実施例では、一例として、蒸発室14の加熱領域を深さ方向に3つに分割し、蒸発室14の上部の加熱領域にヒータ21、その下方である中部の加熱領域にヒータ22、その下方である下部の加熱領域にヒータ23を配置している。
【0023】
又、圧力調整室17の周囲にもヒータ24が設けられており、このヒータ24は、上記ヒータ21〜23とは独立したものであり、温度制御器34によりヒータ24全体が一括して制御される。そして、ヒータ21〜24の周囲には、ヒータ21〜24からの放射熱を遮蔽する遮蔽板25を設けている。
【0024】
このようなヒータ21〜24の構成は、蒸発室14と圧力調節室17の温度制御を互いに独立させた上で、更に、蒸発室14についても、深さ方向に分割した複数の加熱領域において、各加熱領域の温度制御を互いに独立させている。
【0025】
図1には図示していないが、後述の図4に示すように、圧力調節室17を含めて、各加熱領域には温度センサ41〜44が設けられている。各温度センサ41〜44で検出した温度に基づいて、所望の目標温度となるように、各温度制御器31〜34(制御装置)により各ヒータ21〜24を制御している。
【0026】
なお、本実施例では、説明を簡単にするために、蒸発室14の加熱領域を深さ方向に3つに分割し、分割した加熱領域に対応して3つのヒータ21〜23を配置しているが、蒸発室14の加熱領域を深さ方向に更に多く分割し、分割した加熱領域に対応して更に多くのヒータを配置するようにしてもよい。
【0027】
ここで、真空蒸着源における温度制御について、図2〜図3を参照して説明する。なお、図2(a)、(b)において、運転時間の初期とは、有機材料を蒸発室(坩堝)に充填した直後の時期であり(図3(a)参照)、中期とは、有機材料の残量が半分位になった時期であり(図3(b)参照)、後期とは、有機材料の残量が少しになった時期である(図3(c)参照)。
【0028】
まず、図2(a)を参照して、従来の真空蒸着源における温度制御を説明する。従来の真空蒸着源において、蒸気ノズル及び圧力調整室の温度は、有機材料の蒸気が蒸気ノズル及び圧力調整室に再付着する再付着温度より十分に高い温度で制御され、時間経過(初期→中期→後期)に関係無く、一定である。又、蒸発室の温度は、所望の蒸着量を得るために多少変動するが、有機材料の気化温度で制御されており、時間経過、つまり、有機材料の減少に関係無く、略一定である。又、蒸発室の全ての場所(上部、中部、下部)が、同じ温度、つまり、有機材料の気化温度で制御されている。これは、蒸発室に充填された有機材料については、有機材料全体が同様に加熱される構造となっているからである。従って、運転時間の後期において、蒸発室に残っている有機材料は、気化温度に長時間曝露されることになり、その結果、分子構造が変化し、有機材料の性質が変化してしまう。
【0029】
次に、図2(b)、図3を参照して、本実施例の真空蒸着源における温度制御を説明する。本実施例の真空蒸着源11においては、図2(b)に示すように、蒸気ノズル16及び圧力調整室17の温度制御は、従来の真空蒸着源と同等であり、有機材料13の再付着温度より十分に高い温度、例えば、最適には、気化温度より20℃以上高い温度で制御される。しかしながら、蒸発室14の温度制御は、従来の真空蒸着源とは相違しており、時間経過、つまり、有機材料13の減少に伴って、有機材料13の表面がある加熱領域を気化温度(但し、所望の蒸着量を得るために多少の変動はある。)で制御するようにしている。
【0030】
具体的には、運転時間の初期においては、図3(a)に示すように、蒸発室14の上部まで有機材料13が充填されているので、上部の加熱領域に配置された第1ヒータ21を制御して、有機材料13の表面がある上部の加熱領域の温度を、有機材料13の気化温度で制御している。そして、有機材料13の表面がある加熱領域より下方の加熱領域(中部、下部)においては、加熱しないか、若しくは、気化温度より十分に低い温度としている。例えば、図2(b)においては、上部から下部に向かって、温度が減少する温度勾配がある。
【0031】
次に、運転時間の中期においては、図3(b)に示すように、蒸発室14内の有機材料13の減少により、蒸発室14の半分の深さ位置に有機材料13の表面位置が下がってきているので、中部の加熱領域に配置された第2ヒータ22を制御して、有機材料13の表面がある中部の加熱領域の温度を、有機材料13の気化温度で制御している。そして、有機材料13の表面がある加熱領域より上方の加熱領域(上部)においては、再付着温度より高い温度、若しくは、圧力調整室17の温度と同じ温度とし、有機材料13の表面がある加熱領域より下方の加熱領域(下部)においては、加熱しないか、若しくは、気化温度より十分に低い温度としている。例えば、図2(b)においては、上部と中部の加熱領域を同じ温度(気化温度)とし、下部の加熱領域のみ気化温度より低い温度としている。
【0032】
最後に、運転時間の後期においては、図3(c)に示すように、蒸発室14内の有機材料13の減少により、蒸発室14の底部近傍の位置に有機材料13の表面位置が下がってきているので、下部の加熱領域に配置された第3ヒータ23を制御して、有機材料13の表面がある下部の加熱領域の温度を、有機材料13の気化温度で制御している。そして、有機材料13の表面位置から上方に離れた位置の加熱領域(上部、中部)においては、再付着温度より高い温度、若しくは、圧力調整室17の温度と同じ温度としている。例えば、図2(b)においては、上部、中部及び下部の加熱領域を全て同じ温度(気化温度)としている。
【0033】
以上を整理すると、本実施例では、有機材料13の表面がある加熱領域を、当該加熱領域のヒータにより気化温度で加熱し、有機材料13の表面がある加熱領域より上の加熱領域を、当該加熱領域のヒータにより再付着温度より高い温度又は圧力調整室17の温度で加熱し、有機材料13の表面がある加熱領域より下の加熱領域を、当該加熱領域のヒータにより気化温度より低い温度で加熱するか、又は、当該加熱領域の加熱を行わないようにしている。
【0034】
このように、本実施例では、時間経過に伴って、気化温度で制御する加熱領域(ヒータ)を下方に移動しており、これにより、有機材料13の表面位置に対応したヒータを気化温度で制御するようにしている。
【0035】
このような温度制御を行うことにより、蒸発室14における蒸発面(有機材料13の表面)から下方に離れた場所の有機材料13の温度が低くなり、劣化速度を遅くすることができ、長時間の連続運転が可能となる。従って、有機材料13の熱的劣化を軽減し、長時間にわたって安定した品質の薄膜形成が可能となる。又、有機材料13の表面がある加熱領域より下方の加熱領域においては、加熱しないか、若しくは、気化温度より十分に低い温度としているので、従来よりも低電力化を図ることができる。
【0036】
気化温度、再付着温度について、代表的な有機材料であるAlq3(Tris(8-hydroxyquinolinato)aluminum(III))を例にとって説明する。Alq3の場合、気化温度は270℃以上である。又、再付着温度は、圧力調整用中板15のコンダクタンス(孔径、孔数)と蒸気ノズル16のコンダクタンス(長さ、径)によって、つまり、圧力調整室17内の圧力によって、増減するが、一般的には、気化温度より20℃以上低い250℃以下となり、この温度以下となると、再付着しやすい。従って、本実施例において、Alq3を用いる場合、圧力調整室17の温度を290℃、有機材料13の表面がある加熱領域の温度を気化温度である270℃とし、運転時間に応じて、上記温度制御を行うようにしている。
【0037】
(実施例2)
図4は、本発明に係る真空蒸着源の実施形態の他の一例であり、その温度制御を説明するブロック図であり、又、図5は、その温度制御を説明するフローチャートである。
【0038】
本実施例において、ハードウェアの構成は、実施例1(図1)に示した真空蒸着源11と同等であるが、その温度制御に相違がある。従って、上述した真空蒸着源11の構成を前提にして、本実施例における温度制御を説明する。
【0039】
実施例1においては、単純に、時間経過に伴って、有機材料13の表面位置に対応した加熱領域(ヒータ)を気化温度で制御するようにしている。これに対して、本実施例では、レートセンサ19で蒸着量を測定し、測定した蒸気量に基づいて、温度制御器(制御装置)により、有機材料13の表面位置に対応した加熱領域(ヒータ)を気化温度で制御するようにしており、有機材料13の表面位置より下の加熱領域においては、下記の手順が実施されるまで、気化温度より低い温度で制御するか、又は、加熱しないようにしている。
【0040】
具体的な温度制御を、図4、図5を参照して説明する。なお、以下の説明において、T0は、有機材料13の気化温度であり、ΔTは、蒸発室14における温度上昇の制限値である。制限値ΔTは、材料によって異なるため、材料の特性に応じて、適切な値を設定する。例えば、上述したAlq3においては、ΔT=+5〜+10℃としている。
【0041】
[第1手順F1]
(1)ステップS11;レートセンサ19を用いて、予め設定された蒸着量の目標値に対する蒸着量の実測値を判定する。具体的には、レートセンサ19により実測値を測定し、目標値との比較を行う(第1工程前半)。
(2)ステップS12;目標値と実測値に基づき、予め設定された目標値とするための第1ヒータ21の目標温度Tb1を算出する(第1工程後半)。
(3)ステップS13;[Tb1−T0≦ΔT]を満たすかどうか判定し、満たす場合には、ステップS14へ進み、満たさない場合は、ステップS15へ進む。
(4)ステップS14;目標温度Tb1から気化温度T0を減算した差分が、予め規定した制限値ΔT以下の場合には、制御温度を目標温度Tb1に変更し、温度センサ41で検出する温度が目標温度Tb1となるように、第1温度制御器31を用いて、制御対象の加熱領域の第1ヒータ21への出力Mb1を制御する(第2工程)。そして、ステップS11へ戻る。
(5)ステップS15;目標温度Tb1から気化温度T0を減算した差分が、予め規定した制限値ΔTを越える場合には、制御温度を、現在制御している温度(前回求めた目標温度Tb1)、又は、圧力調整室17の温度Taに固定し、温度センサ41で検出する温度が、この温度となるように、第1温度制御器31を用いて、制御対象の加熱領域の第1ヒータ21への出力Mb1を制御する(第3工程)。そして、ステップS21、即ち、第2手順F2へ進む。
【0042】
[第2手順F2]
(1)ステップS21;レートセンサ19を用いて、予め設定された蒸着量の目標値に対する蒸着量の実測値を判定する。具体的には、レートセンサ19により実測値を測定し、目標値との比較を行う(第1工程前半)。
(2)ステップS22;目標値と実測値に基づき、予め設定された目標値とするための第2ヒータ22の目標温度Tb2を算出する(第1工程後半)。
(3)ステップS23;[Tb2−T0≦ΔT]を満たすかどうか判定し、満たす場合には、ステップS24へ進み、満たさない場合は、ステップS25へ進む。
(4)ステップS24;目標温度Tb2から気化温度T0を減算した差分が、予め規定した制限値ΔT以下の場合には、制御温度を目標温度Tb2に変更し、温度センサ42で検出する温度が目標温度Tb2となるように、第2温度制御器32を用いて、制御対象の加熱領域の第2ヒータ22への出力Mb2を制御する(第2工程)。そして、ステップS21へ戻る。
(5)ステップS25;目標温度Tb2から気化温度T0を減算した差分が、予め規定した制限値ΔTを越える場合には、制御温度を、現在制御している温度(前回求めた目標温度Tb2)、又は、圧力調整室17の温度Taに固定し、温度センサ42で検出する温度が、この温度となるように、第2温度制御器32を用いて、制御対象の加熱領域の第2ヒータ22への出力Mb2を制御する(第3工程)。そして、ステップS31、即ち、第3手順F3へ進む。
【0043】
[第3手順F3]
(1)ステップS31;レートセンサ19を用いて、予め設定された蒸着量の目標値に対する蒸着量の実測値を判定する。具体的には、レートセンサ19により実測値を測定し、目標値との比較を行う(第1工程前半)。
(2)ステップS32;目標値と実測値に基づき、予め設定された目標値とするための第3ヒータ23の目標温度Tb3を算出する(第1工程後半)。
(3)ステップS33;[Tb3−T0≦ΔT]を満たすかどうか判定し、満たす場合には、ステップS34へ進み、満たさない場合は、ステップS35へ進む。
(4)ステップS34;目標温度Tb3から気化温度T0を減算した差分が、予め規定した制限値ΔT以下の場合には、制御温度を目標温度Tb3に変更し、温度センサ43で検出する温度が目標温度Tb3となるように、第3温度制御器33を用いて、制御対象の加熱領域の第3ヒータ23への出力Mb3を制御する(第2工程)。そして、ステップS31へ戻る。
(5)ステップS35;目標温度Tb3から気化温度T0を減算した差分が、予め規定した制限値ΔTを越える場合には、制御温度を、現在制御している温度(前回求めた目標温度Tb3)、又は、圧力調整室17の温度Taに固定し、温度センサ43で検出する温度が、この温度となるように、第3温度制御器33を用いて、制御対象の加熱領域の第3ヒータ23への出力Mb3を制御する(第3工程)。そして、一連の制御を終了する。このとき、蒸発室14内の有機材料13が空になったことを通知して、成膜プロセスを停止するようにしてもよい。
【0044】
本実施例では、説明を簡単にするために、3つのヒータ21〜23に対する制御(第1手順F1〜第3手順F3)を説明しているが、蒸発室14の加熱領域を深さ方向に更に多く分割し、分割した加熱領域に対応して更に多くのヒータを配置した場合には、最上部の加熱領域(ヒータ)から最下部の加熱領域(ヒータ)まで、順次、同様の制御を行えばよい。
【0045】
以上を整理すると、本実施例において、第1手順F1、第2手順F2、第3手順F3は、制御対象の加熱領域(ヒータ、温度制御器、温度センサ)が異なるだけであり、その制御内容は、実質的には同じである。即ち、制御対象の加熱領域において、算出した目標温度から気化温度を減算した差分が制限値ΔTを越えるまで、第1工程及び第2工程を繰り返し、算出した目標温度から気化温度を減算した差分が制限値ΔTを越えると、第3工程を実施した後、制御対象を現在の加熱領域の下の加熱領域に変更する手順となっている。そして、最上部の加熱領域から最下部の加熱領域まで、上記手順を順次実施している。一方、制御対象の加熱領域より下の加熱領域においては、上記手順が実施されるまで、気化温度より低い温度で制御するか、又は、加熱しないようにしている。
【0046】
なお、圧力調整室17の温度については、実施例1と同様に、有機材料13の再付着温度より十分に高い温度(最適には、有機材料13の気化温度より20℃以上高い温度)に設定し、温度センサ44で検出する温度が、設定した温度となるように、温度制御器34を用いて、ヒータ24への出力を制御している。
【0047】
このように、本実施例では、レートセンサ19による蒸着量の実測値を監視し、実測値に基づいて、目標値となる蒸着量が得られる目標温度を算出し、有機材料13の気化温度に対する目標温度の増加分が、予め規定した制限値を越えた場合に、気化温度で制御する加熱領域(ヒータ)を下方に移動しており、これにより、有機材料13の表面位置に対応したヒータを気化温度で制御するようにしている。
【0048】
このような温度制御を行うことにより、蒸発室14における蒸発面(有機材料13の表面)から下方に離れた場所の有機材料13の温度が低くなり、劣化速度を遅くすることができ、長時間の連続運転が可能となる。従って、有機材料13の熱的劣化を軽減し、長時間にわたって、安定した蒸着量を達成でき、安定した品質の薄膜形成が可能となる。又、有機材料13の表面がある加熱領域より下方の加熱領域においては、加熱しないか、若しくは、気化温度より十分に低い温度としているので、従来よりも低電力化を図ることができる。
【産業上の利用可能性】
【0049】
本発明は、有機材料の真空蒸着源として好適なものである。
【符号の説明】
【0050】
10 成膜室
11 真空蒸着源
12 真空チャンバ
13 有機材料
14 蒸発室
17 圧力調節室
18 基板
19 レートセンサ
21〜24 ヒータ
31〜34 温度制御器

【特許請求の範囲】
【請求項1】
有機材料を収容すると共に前記有機材料を蒸発させる蒸発室を有し、蒸発させた前記有機材料を噴出する真空蒸発源において、
前記蒸発室の加熱領域を深さ方向に複数に分割し、分割した加熱領域毎にヒータを各々配置し、
前記有機材料の表面がある加熱領域を、当該加熱領域の前記ヒータにより前記有機材料の気化温度で加熱し、
前記有機材料の表面がある加熱領域より上の加熱領域を、当該加熱領域の前記ヒータにより前記有機材料の再付着温度より高い温度で加熱し、
前記有機材料の表面がある加熱領域より下の加熱領域を、当該加熱領域の前記ヒータにより前記気化温度より低い温度で加熱するか、又は、当該加熱領域の加熱を行わないことを特徴とする真空蒸発源。
【請求項2】
有機材料を収容すると共に前記有機材料を蒸発させる蒸発室と、前記蒸発室の上方に設けられ、蒸発させた前記有機材料の圧力を調整する圧力調整室とを有し、蒸発され、圧力が調整された前記有機材料を噴出する真空蒸発源において、
前記蒸発室の加熱領域を深さ方向に複数に分割し、分割した加熱領域毎にヒータを各々配置し、
前記有機材料の表面がある加熱領域を、当該加熱領域の前記ヒータにより前記有機材料の気化温度で加熱し、
前記有機材料の表面がある加熱領域より上の加熱領域を、当該加熱領域の前記ヒータにより前記有機材料の再付着温度より高い温度又は前記圧力調整室の温度で加熱し、
前記有機材料の表面がある加熱領域より下の加熱領域を、当該加熱領域の前記ヒータにより前記気化温度より低い温度で加熱するか、又は、当該加熱領域の加熱を行わないことを特徴とする真空蒸発源。
【請求項3】
有機材料を収容すると共に前記有機材料を蒸発させる蒸発室を有し、蒸発させた前記有機材料を噴出する真空蒸発源において、
前記蒸発室の加熱領域を深さ方向に複数に分割し、分割した加熱領域毎に各々配置したヒータと、
当該真空蒸着源から噴出される前記有機材料の蒸着量を測定する検出器と、
前記検出器の測定に基づいて、前記ヒータを制御する制御装置とを備え、
前記制御装置は、
前記検出器で測定された蒸着量の実測値と予め設定された蒸着量の目標値とを比較し、前記目標値とするための目標温度を算出する第1工程と、
前記目標温度から前記有機材料の気化温度を減算した差分が、予め規定した制限値以下の場合には、制御温度を前記目標温度に変更して、制御対象の加熱領域のヒータを制御する第2工程と、
前記差分が前記制限値を越える場合には、制御温度を現在制御している温度に固定して、制御対象の加熱領域のヒータを制御する第3工程と、
制御対象の加熱領域において、前記差分が前記制限値を越えるまで、前記第1工程及び前記第2工程を繰り返し、前記差分が前記制限値を越えると、前記第3工程を実施した後、制御対象を当該加熱領域の下の加熱領域に変更する手順を有し、
最上部の加熱領域から最下部の加熱領域まで、前記手順を順次実施すると共に、前記手順が実施されるまで、制御対象の加熱領域より下の加熱領域は、前記気化温度より低い温度で制御するか、又は、加熱しないことを特徴とする真空蒸発源。
【請求項4】
有機材料を収容すると共に前記有機材料を蒸発させる蒸発室と、前記蒸発室の上方に設けられ、蒸発させた前記有機材料の圧力を調整する圧力調整室とを有し、蒸発され、圧力が調整された前記有機材料を噴出する真空蒸発源において、
前記蒸発室の加熱領域を深さ方向に複数に分割し、分割した加熱領域毎に各々配置したヒータと、
当該真空蒸着源から噴出される前記有機材料の蒸着量を測定する検出器と、
前記検出器の測定に基づいて、前記ヒータを制御する制御装置とを備え、
前記制御装置は、
前記検出器で測定された蒸着量の実測値と予め設定された蒸着量の目標値とを比較し、前記目標値とするための目標温度を算出する第1工程と、
前記目標温度から前記有機材料の気化温度を減算した差分が、予め規定した制限値以下の場合には、制御温度を前記目標温度に変更して、制御対象の加熱領域のヒータを制御する第2工程と、
前記差分が前記制限値を越える場合には、制御温度を、現在制御している温度又は前記圧力調整室の温度に固定して、制御対象の加熱領域のヒータを制御する第3工程と、
制御対象の加熱領域において、前記差分が前記制限値を越えるまで、前記第1工程及び前記第2工程を繰り返し、前記差分が前記制限値を越えると、前記第3工程を実施した後、制御対象を当該加熱領域の下の加熱領域に変更する手順を有し、
最上部の加熱領域から最下部の加熱領域まで、前記手順を順次実施すると共に、前記手順が実施されるまで、制御対象の加熱領域より下の加熱領域は、前記気化温度より低い温度で制御するか、又は、加熱しないことを特徴とする真空蒸発源。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate