説明

着脱自在の触媒構造体を含む、プレート型の反応器

コンパクトな触媒反応器であって、スタック状に交互に配置された、複数の第一および第二流動チャンネルを画成する、プレートのスタック(72、74、75)を含み、ここで化学反応が起ることになる各流動チャンネルは、少なくとも一つのプレートを横切る、直通チャンネルにより画成され、このような直通チャンネル各々は、金属基板を備えた、着脱自在のガス透過性触媒構造体(80)を含んでいる。該第一流動チャンネル(76)は、該第二流動チャンネル(77)の方向とは直交する方向に配向しており、該反応器は、該スタック内の連続する第二の流動チャンネル間に、少なくとも3つの並列した第一流動チャンネル(76)を画成しており、かつ該反応器は、該第一流体が、入口から出口へと、連続して、少なくとも3つのこのような第一流動チャンネル(76)を介して流動するように、流動分流手段(80;88)を備えている。従って、この全体的な流路は、ほぼ順流であるか、向流であり得る。

【発明の詳細な説明】
【発明の詳細な説明】
【0001】
本発明は、天然ガスを、より鎖長の長い炭化水素に転化するための、化学的な方法において使用するのに適した触媒反応器、および該方法を実施するための、このような触媒反応器を備えたプラントに関するものである。
【0002】
一方法が、WO 01/51194およびWO 03/048034(アクセンタス(Accentus) plc)に記載されており、そこでは、メタンと蒸気とを反応させて、第一の触媒反応器内で、一酸化炭素と水素とを発生させ、次いで得られたこのガス混合物を、第二の触媒反応器内で、フィッシャー-トロプシュ合成を行うのに使用している。この方法の全体としての結果は、メタンをより高い分子量を持つ炭化水素に転化することであり、該炭化水素は、通常周囲条件下にて、液体またはワックスである。この方法のこれら2つの段階、即ち蒸気/メタン改質およびフィッシャー-トロプシュ合成は、異なる触媒を必要とし、また触媒反応器が、各段階について説明されている。これらの触媒反応器は、該反応が夫々吸熱および発熱反応である場合に、該反応性ガスへの、または該ガスからの熱の伝達を可能とする。これら2つの異なる段階に対するこれらの反応器は、幾分異なる条件に応じる必要がある:即ち、フィッシャー-トロプシュ合成は、通常より高い圧力下であるが、蒸気/メタン改質よりも低温にて行われ;またフィッシャー-トロプシュ反応器の伝熱チャンネルにおいては、冷媒流のみが必要とされ、一方で蒸気/メタン改質に必要とされる熱は、典型的に燃焼によって与えられ、従って適当な触媒の使用が必要となるであろう。
【0003】
本発明によれば、コンパクトな触媒反応器が提供され、この反応器は、スタック状に配置され、かつ一緒に結合している、複数の金属シートを含み、ここで該スタックは、このスタック内で、第二の流体用の複数の第二流動チャンネルと交互に配置された、第一流体用の複数の第一流動チャンネルを画成して、該第一および第二流体間の良好な熱的接触を保証しており、各流動チャンネルは、各々の隣接シート対間に画成され;内部で化学反応が起ることになる、各流動チャンネルは、該スタックを介して真直ぐに伸びており、かつ金属基板を組込んだ、着脱自在のガス透過性触媒構造体を含んでおり;また該第一流体用の入口および出口を含み、該第一流動チャンネルは、該第二流動チャンネルの方向とは直交する方向に配向しており;
該反応器は、該スタック内の連続する第二の流動チャンネル間に、少なくとも3つの並列した第一流動チャンネルを画成しており;
かつ該反応器は、該第一流体が、該入口から出口へと、連続して、少なくとも3つの第一流動チャンネルを介して流動するように、流動分流手段を備えている。
【0004】
一態様において、該流動分流手段は、該スタックの向い合う表面に結合した、ヘッダーを含む。あるいはまた、もしくは付随的に、該流動分流手段は、連続し、並列する第一流動チャンネルの末端部分間の連絡を与える、結合流動路を含み、該結合流動路は、該第二流動チャンネルの配向に対して、一般的に平行な方向の流動を与えることができる。これらの結合流動路は、孔または開口によって、あるいは結合流動セグメントを画成する手段により画成される。連続し、並列する第一流動チャンネルの末端部分間の連絡が、該結合流動路によって与えられる場合、そこには、連続する第一流動チャンネルを結合する、ヘッダーを介する如何なる流動も必要とされない。何れの場合にも、この全体としての流動パターンは、ジグザグまたは蛇行状の流れであり、これは該第二流動チャンネルにおける流れに対して、少なくとも部分的に、向流式または順流式である。これは、該第一および第二ガス流動チャンネル間の熱伝導の改善を可能とする。
【0005】
該反応器は、平坦なプレートのスタックを含むことができ、該スタックは該プレート内の溝によって画成される、第一および第二流動チャンネルを備えている。あるいはまた、該流動チャンネルは、平坦なシートと交互にスタックされ、かつカステレーション処理されている、薄い金属シートにより画成することができ、該流動チャンネルの端部は、封止ストリップにより画成することができる。必要とされる良好な熱的接触を確保するためには、これら第一および第二ガス流動チャンネル両者の深さを、10mm〜2mmなる範囲、好ましくは6mm未満、より好ましくは2mm〜5mmなる範囲内とすることができる。該反応器のモジュールを形成するプレートの該スタックは、例えば拡散結合、ロウ付け、および高温アイソスタティックプレス操作によって、一緒に結合される。該反応器を作成する材料は、作業温度、および該反応器が暴露されるガスに依存する。例えば、蒸気改質用の反応器の場合、適当な金属は、高温用途に対しては、鉄/ニッケル/クロム合金、例えばハイネス(Haynes) HR-120またはインコネル(Inconel) 800HT(商標)または同様な材料である。
【0006】
該第一の流動チャンネルが、各プレートにおける溝によって画成される場合、これらの溝はランドによって分離されており、従ってスロットまたは孔を、各溝の端部近傍のランドによって画成して、隣接する溝間に結合流動路を画成することができる。
上記触媒構造体は、好ましくは強度を与え、かつ伝導によって該触媒構造体内の熱伝導性を高めて、ホットスポットの形成を防止するために、金属基板を持つ。典型的に、この金属基板は、活性触媒物質が配合されている、セラミック被膜で覆われている。好ましくは、この触媒構造体用の金属基板は、加熱した際に酸化アルミニウムの接着性表面被膜を形成する、スチール合金、例えばアルミニウム含有フェライト系鋼(例えば、フェクラロイ(FecralloyTM))である。この金属を空気中で加熱した場合、アルミナの接着性酸化物被膜を形成し、この酸化被膜は、更なる酸化および腐食から、該合金を保護する。該セラミック被膜がアルミナ製である場合、該被膜は、該基板表面上の該酸化被膜と結合するものと考えられる。好ましくは、各触媒構造体は、該流動チャンネルを、多数の平行な流動サブチャンネルに更に分割するように、形成されており、このような各サブチャンネル内部の表面上に、触媒物質を含む。該基板は、波形、ディンプルまたはヒダを形成することのできる、箔、金網またはフェルトシートであり得、好ましい基板は、例えば厚みが100μm未満の、薄い金属箔である。
【0007】
従って、一態様において、該触媒構造体は、波形の金属箔を備えている。この触媒構造体は、構造性ではなく、即ち該反応器の機械的な強度に対して有意に寄与するものではなく、従ってこのような触媒構造体は、該対応する反応に適した触媒と共に、各流動チャンネル内に挿入することができる。該触媒構造体は、該反応器内の該チャンネルから取外すことができ、従って該触媒が消耗した場合には、これを取り替えることができる。
該蒸気/メタン改質反応またはフィッシャー-トロプシュ合成に適した反応器を、本発明に従って構築することができる。結局、天然ガスを処理して、より鎖長の長い炭化水素を得るためのプラントには、メタンと蒸気とを反応させて、合成ガスを生成する、本発明の蒸気/メタン改質用反応器を、およびより鎖長の長い炭化水素を生成するための、本発明のフィッシャー-トロプシュ反応器を組込むことができる。この蒸気/メタン改質用反応器において、その第一および第二ガス流動チャンネル両者の深さは、好ましくは5mm未満、より好ましくは3mm未満であり、該フィッシャー-トロプシュ反応器の場合、その反応用チャンネルの深さは、好ましくは10mm未満である。
【0008】
この型の反応器は、長さの短い拡散路を与え、結果としてその熱および物質移動速度を高めることができ、しかも化学反応速度を高めることができる。従って、このような反応器は、高い出力密度を与えることができる。各場合において、流動方向は、好ましくは少なくとも部分的に順流である。蒸気/メタン改質用の反応器の場合には、該改質チャンネルの出口においてピーク温度を持ち、またこのことは、順流関係にある流動について最も容易に達成される。該フィッシャー-トロプシュ反応器を用いる場合、該フィッシャー-トロプシュチャンネルからの出口近傍に、最も温かい冷媒を含み、かくしてワックスの堆積を抑制することが好ましく、結果的にこの場合にも順流関係にある流動が好ましい。
好ましくは、上記の流動分流手段は、上記第一の流体を、順々にせいぜい10個の第一流動チャンネル、例えば順次5個の流動チャンネルを介して流動させるようなものである。
【0009】
以下、本発明を、単なる例示により、添付図面を参照しつつ、更に、またより具体的に説明する。
本発明は、天然ガス(特にメタン)を、より鎖長の長い炭化水素に転化するための、化学的な方法に関する。この方法の第一の段階は、蒸気改質工程、即ち天然ガスと蒸気とを混合し、以下の型の反応を行わせる工程を含む:
H2O + CH4 → CO + 3 H2
この反応は、吸熱反応であり、第一ガス流動チャンネル内の、ロジウムまたはプラチナ/ロジウム触媒によって、接触反応させることができる。この反応を引起すのに必要な熱は、発熱性の易燃性ガス、例えばメタンまたは水素の燃焼によって与えることができ、また第二ガス流動チャンネル近傍における、パラジウム触媒によって接触反応させることも可能である。これら両者の場合において、該触媒は、好ましくは、該金属製基板上に、典型的には厚み100μm未満の被膜を生成している、安定化されたアルミナ支持体上にある。該燃焼反応は、大気圧下で起り得るが、該改質反応は、4〜5気圧なる範囲の圧力下で起り得る。この燃焼により発生する熱は、隣接するチャンネル同士を分離している、金属シートを介して伝達されるであろう。
【0010】
該蒸気/メタン改質により生成するガス混合物を、次にフィッシャー-トロプシュ合成を行って、より鎖長の長い炭化水素を生成するのに使用する。即ち、以下の反応:
n CO + 2n H2 → (CH2)n + n H2O
は高温、典型的には190〜280℃なる範囲の温度、例えば210℃にて、かつ高い圧力、典型的には1.8MPa〜2.1MPa (絶対値)、例えば2.0MPaにて、カリウム促進剤と共に、鉄、コバルトまたは溶融マグネタイト等の触媒の存在下で起る、発熱反応である。該フィッシャー-トロプシュ合成にとって好ましい触媒は、比表面積140-230m2/gを持つγ-アルミナ、約10-40%(該アルミナに対する質量基準)のコバルト、および該コバルトの10質量%未満の、ルテニウム、プラチナまたはガドリニウム等の促進剤で構成される被膜を含む。
図1を参照すると、この化学反応工程全体が、フロー図として示されており、そこにはプラントの構成部品が図示されている。天然ガスの供給材料5は、主成分としてのメタンと、この例では、ある割合のC2〜C11なる範囲の鎖長の長い炭化水素とで構成される。典型的には、これらより鎖長の長い炭化水素は、天然ガスの起源に依存して、10%(v/v)までの割合で存在する。このガスの供給材料5は、例えば1.0MPa(10気圧)なる圧力下にあり得る。
【0011】
該ガス圧は、バルブ8で0.6MPaに調節し、次いで該ガス5を接触的燃焼由来の高温排気ガスを用いて、熱交換器10内で、約400℃まで予備加熱し、次に固体床脱硫装置12に供給し、そこで該ガス中の硫黄含有率を。1ppm以下にまで低下させる。次いで、この脱硫した天然ガス5を、例えば流動渦流ミキサー14内で、蒸気と混合する。このガス/蒸気混合物を、接触的燃焼由来の高温排気ガスを用いて、熱交換器16内で加熱して、該ガス混合物の温度を500℃とする。該混合物は、断熱固定床予備改質装置18に入り、そこでニッケルまたはプラチナ/ロジウムを主成分とするメタン化触媒と接触する。これらの高級炭化水素は、蒸気と反応して、メタンおよびCOを生成する。
【0012】
このガスは、低い温度にて、典型的には450℃にて、該予備改質装置18を出てくる。次いでこのガスの圧力を、これが改質装置20に入る前に、バルブ19によって、0.45MPa(絶対圧力)まで下げる。この改質装置20は、上で説明したような型のコンパクトな触媒反応器であり、プレートのスタックによって作られ、該プレートは、熱的に良好な接触状態にある、吸熱および発熱反応用の流動路を画成し、また波型の金属箔支持体上に適当な触媒を含んでいる。該改質装置20内の改質装置チャンネルは、プラチナ/ロジウム触媒を含み、また該蒸気とメタンとが反応して、一酸化炭素と水素とを生成する。この改質装置内の温度は、その入口における450℃から、その出口における約800-850℃まで増大する。ミキサ14に供給される蒸気およびガスの流量は、改質装置20に供給される混合物の蒸気:炭素モル比を、1.2〜1.6なる範囲、および好ましくは1.3〜1.5なる範囲とするような値である。該ガス5のより高級な炭化水素の含有率に依存して、該予備改質装置18に対する入口における蒸気:炭素比は、従ってこれよりも高い値でなければならない。
【0013】
改質反応器20における吸熱反応用の熱は、フィッシャー-トロプシュ合成過程由来のテールガス(tail gas) 22である、短鎖炭化水素と水素との混合物の接触的燃焼により与えられ;このテールガス22は、送風機24によって与えられる空気と結合される。この燃焼は、該改質反応器20内の隣接流動チャンネル中のパラジウム/プラチナ触媒上で起る。この燃焼ガス通路は、該改質装置ガス通路に対して順流関係にある。該触媒は、支持体としてγ-アルミナを含み、これは3:1の割合のパラジウム/プラチナ混合物で被覆されており、該混合物は、広い温度範囲に渡り有効な触媒である。この燃焼性ガス混合物を、反応器20に沿って段階的に供給して、該燃焼チャンネルの長さ全体に渡る燃焼の発生を保証することができる。
【0014】
800℃を越える温度状態にある、一酸化炭素と水素との混合物が、該改質装置20から出てくるが、これを蒸気発生式熱交換器26に通じることにより、400℃以下に冷却される。水を、ポンプ28によって、この熱交換器26に供給し、結果として、該改質工程用の蒸気を、コントロールバルブ30を介して、該ミキサ14に供給する。更に、このガス混合物を、熱交換器32内で、冷却水にて約60℃まで冷却し、こうして過剰量の水を凝縮させ、かつサイクロン33および分離容器34に通すことによって分離する。次いで、このガス混合物を、圧力約2.5倍まで、圧縮機36により圧縮し、熱交換器40で再度冷却した後、第二のサイクロン41および分離容器42に通して、凝縮した全ての水を除去する。この分離した水は、蒸気発生回路にリサイクルし、再利用する。次いで、このガスを、第二の圧縮機44内で20気圧まで圧縮する。
次に、高圧の一酸化炭素流および水素流を、触媒フィッシャー-トロプシュ反応器50に供給するが、この反応器も、上記のようなプレートのスタックで構成される、コンパクト型の触媒反応器であり、該反応混合物は、一群のチャンネルを流通し、一方で冷媒は、他の群のチャンネルを流通する。
【0015】
支配的に水と炭化水素、例えばパラフィン類からなる、フィッシャー-トロプシュ合成の反応生成物を冷却して、熱交換器54およびサイクロン分離機56に通すことにより液体を凝縮し、次いで分離チャンバー58に通し、そこで3相、即ち水、炭化水素およびテールガスを分離し、該炭化水素製品を、大気圧において安定化させる。該ガス相に残留する炭化水素および過剰量の水素ガス(フィッシャー-トロプシュのテールガス22)を集め、かつ分離する。ある割合を、圧力降下バルブ60に通して、該改質装置20(上記の如き)における接触的燃焼工程用の燃料を供給する。残りのテールガス62は、ガスタービン63に供給され、そこで発電機64を駆動する。
該ガスタービン64は、このプラントの全ての出力を発生し、余剰分を他に回すだけの生産能力を持つ。主なプラントの電力要求部品は、圧縮機36および44、並びにポンプ24および28であり、電流は、また蒸気発生のためのプロセス水を与えるための、および飲料水を提供するための真空蒸留装置を運転するのに利用することもできる。
【0016】
上で論じた式から、該蒸気改質段階が、該フィッシャー-トロプシュ合成に必要とされる量以上の水素を生成することを、理解することができるであろう。結局、該テールガス22は、かなりの量の水素、並びに低級アルカン類(即ち、C1〜C5アルカン類)を含む。しかし、このテールガス22は、またかなりの量の一酸化炭素をも含む。従って、これらのガスを、第二のこのような反応器(図示せず)に流通させることにより、第二のフィッシャー-トロプシュ合成に付して、全体的な一酸化炭素転化率を高め、かつ幾分かの、より多くの所定の生成物を得ることができる。
次に、図2および3を参照すると、蒸気改質反応器20として使用するのに適した、反応器70が図示されている。該反応器70の部品を断面で、また明瞭化の目的で、部品を分離した状態で示す、図2をまず参照すると、この反応器70は、平面図では矩形のプレートのスタックで作られており、各プレートは厚み1mmであり、またステンレススチール(例えば、316Lまたはインコネル800HT)製である。平坦なプレート72は、カステレーション処理プレート74、75と共に、交互に配列され、ここで該カステレーションは、該プレートの一方の側から他方の側に、直通式のチャンネル76、77を画成するようなものである。これらのカステレーション処理プレート74および75は、交互スタック状に配列され、従って該チャンネル76、77は、該交互カステレーション処理プレート74、75内で、直交方向に配向されている。これらカステレーションの高さ(典型的には、2-10mmなる範囲にある)は、この例では4mmであり、また4mmの厚みを持つ中実端部ストリップ78が、両側に沿って設けられている。
【0017】
このスタックは、上記のように組み立てられており、また高温ロウ付けにより相互に結合され、波形の金属箔触媒担体80(そのうちに2つのみを図示した)が、該チャンネル内に挿入されており、2種の異なる反応用の触媒を担持している。次いで、適当なヘッダーを、このスタックの外側に取付けることができる。該金属箔は、好ましくはアルミニウム-含有スチール合金、例えばフェクラロイ(Fecralloy)製である。
次に、図3を参照すると、反応器70の断面図が示されており、これは上記の如きカステレーション処理プレート74の一つの平面図を示し、また該カステレーションを断面で示すように部分的に切取られており、上記蒸気/メタン改質反応は、このプレート74によって画成されるチャンネル内で起る。該燃焼反応は、適当なヘッダー(図示せず)間の、該交互配列プレート75(図3には示されていない)内のチャンネル77中で起り、この燃焼流の方向は、矢印Aで示されている。各チャンネル76内には、平面図で示された平行四辺形の触媒担持箔80があり、またこれらは該チャンネル76内の様々な位置に挿入され、該箔の端部は、相互に整列されている。このように、該箔80の端部は、ジグザグ形状を画成している。隣接チャンネル76を分離する壁の端部部分は、図3a(これは、図3の円C内の部分の拡大図を示す)においてより明確に示されているように、孔82が穿たれており、その結果箔80が存在しない端部領域において、ガスが隣接チャンネル76間を流動できるようになっている。これら端部領域により形成される三角形の中心部に近いほど、段階的に多くの孔82が存在し、結果的に露出した壁の単位長さ当たりのガス流動面積は、一定となる。
【0018】
部分-円筒状のヘッダーを、該スタックの側部に沿って取付けて、該チャンネル76へのアクセスを可能とし、該反応器70の一端において4つの隣接チャンネル76と連絡している、入口ヘッダー84が存在し、出口ヘッダー85は、該反応器70の対角線上の対向する端部部分において、4つの隣接チャンネル76と連絡しており、ブランクヘッダー86は、該スタック側面の他の部分を覆っている。該蒸気/メタン混合物の流路は、矢印Cで示されており、該入口ヘッダー84を貫通し、該4つの隣接チャンネル76に沿って(図示したように)右から左に流動し、次いで孔80を介して、次の一連の4つのチャンネル76まで流動し、更にこれらのチャンネル76を介して、(図示したように)左から右に流動し、孔80を通して最後の群のチャンネル76に入り、この最後の群のチャンネル76を通して出口ヘッダー85に至る。このように、該蒸気/メタン混合物は、反応するに連れて、全体として蒸気燃焼ガス流Aに対して順流状態にある流路に従って流動するが、個々の流動断面76は、横断面である。
【0019】
該ブランクヘッダー86を流動するガスが存在する必要は無く、従ってこれらは、図示したものとは異なる形状およびサイズを持つことができる。事実これらヘッダー86は、ブランクプレート、またはより小さな曲率を持つ、より多くの数のブランクヘッダーで置換えることができる。これらのヘッダーは、触媒-担持箔80を含むチャンネルへのアクセスを与える必要があり、従って該触媒は、それが消耗した際に交換することができる。更なる変更において、各箔80は、正方形の端部を持ち、該箔80は、その端部が、段状のジグザグ形状をなすように(例えば、このような正方形の末端を持つ箔の端部は、図3に示すような傾斜を持つ端部の中央部分に位置することができる)、各箔80の端部と対応するチャンネル76の端部との間に再度ギャップが存在するように、該孔82を介して、隣接チャンネル76間に流れが生じるように、挿入することができる。別の態様では、各別々の箔80は、段状の傾斜のある端部を持つ。
【0020】
更に別の反応器において、隣接ヘッダー86対は、2倍の幅(図3では、破線で示されている)を持つより大きなヘッダー88と置換することができ、またこの場合には、孔82に対する要件は無く、また触媒の箔80は、該チャンネル76の全長に渡って伸びていてもよい。この場合、ヘッダー88は、該ガスの方向における変動をもたらし、従って該蒸気/メタン混合物は、再度全体として上記燃焼ガス流Aに対して順流関係にある流路に従って流動する。
【0021】
次に、フィッシャー-トロプシュ反応器50を考察すると、その冷媒チャンネルには何ら触媒は必要とされず、従ってこれらチャンネルに対するアクセスを必要としない。次に図4を参照すると、該反応器50として使用するのに適した反応器90は、図2-3の反応器70と同様にして構築される。この反応器は、カステレーション処理プレートと交互に配置された平坦なプレートのスタックを含み、該カステレーションにより画成されるチャンネルの配向は、図2との関連で上記した如く、交互のカステレーション処理プレートにおいて垂直である。フィッシャー-トロプシュ反応用の該チャンネル(図4には示されていない)は、触媒-担持箔を含み、また該反応器90を貫通して、適当なヘッダー間(図示せず)に伸びており、これらチャンネルに沿った流れは、矢印Fで示されている。該冷却チャンネルは、その長さ全体に渡り分布するカステレーションを設けた厚み1mmのシートの長いストリップで作られている。図示したように、カステレーション処理ストリップを、所定の長さに裁断し、矢印Fの方向を横切る流動路91を画成するように並べて配置し、カステレーション処理ストリップの、3つの所定長さを持つもの92が、その端部に沿った端部ストリップ94を持つ矩形をなし、入口95と出口96との間に流路を与える。該入口95および該出口96に続く、カステレーション処理ストリップの端部は、正方形状に切断され、一方その他端部は、45度に切断されて、該カステレーション処理ストリップの三角形状の片97が、該流動路92間に結合を与える。
【0022】
一変形において、該端部ストリップ94様の、追加の封止ストリップが、カステレーション処理ストリップの、所定長さを持つもの92の、並列端部間にも与えられる。反応器70に関連して、該スタックは、上に説明したように組み立てられ、次いで例えば高温ロウ付けにより、一緒に結合される。
冷媒チャンネル91へのおよびこれを横切る熱移動は、上記反応器70の箔80と類似するが、触媒が配合されておらず、また着脱自在ではない、波形の箔(図示せず)を挿入することによって、増強することができる。一変形において、該流動チャンネル91を画成する該カステレーションは、該ストリップの長さに沿った真直ぐの流路に従って形成される必要はないが、湾曲したまたはジグザグの流路に従って形成され、また穿孔されていてもよい。該反応器90は、該入口95および該出口96間を通る際に、該冷媒が、該フィッシャー-トロプシュチャンネルの幅方向を3回横切って通過することを可能とするものであることを理解すべきであり、あるいはまた該冷媒は、3回を越えて通過することができる。
上記反応器70および90両者において、該触媒を含むチャンネルの1またはそれ以上は、薄いプレート内にカステレーション処理により形成する代わりに、厚い鋼製プレート内に、機械的に加工した溝により画成することも可能であることも、理解されよう。
【図面の簡単な説明】
【0023】
【図1】本発明の反応器を組込んだ、化学プラントのフロー図である。
【図2】蒸気/メタン改質に適した反応器の断面図である。
【図3】部分的に切欠き図で示した、図2の反応器の一部を示す、平面図である。
【図3a】図2の反応器の一部を、拡大して示した図である。
【図4】フィッシャー-トロプシュ合成に適した反応器の、模式的な平面図である。
【符号の説明】
【0024】
5・・・ガス;8、19・・・バルブ;10、16、26、32、40、54・・・熱交換器;12・・・脱硫装置;14・・・渦流ミキサ;18・・・予備改質装置;20・・・改質装置;22、62・・・テールガス;24・・・送風機;28・・・ポンプ;30・・・コントロールバルブ;33・・・サイクロン;34、42・・・分離容器;36・・・圧縮機;41・・・第二サイクロン;44・・・第二圧縮機;50・・・触媒フィッシャー-トロプシュ反応器;56・・・サイクロン分離機;58・・・分離チャンバー;60・・・減圧バルブ;63・・・ガスタービン;64・・・発電機;70、90・・・反応器;72・・・平坦なプレート;74、75・・・カステレーション処理プレート;76、77・・・直通チャンネル;78、94・・・端部ストリップ;80・・・触媒担体;82・・・孔;84・・・入口ヘッダー;85・・・出口ヘッダー;86・・・ブランクヘッダー;88・・・大きなヘッダー;91・・・流路; 95・・・入口;96・・・出口

【特許請求の範囲】
【請求項1】
コンパクトな触媒反応器であって、スタック状に配置され、かつ一緒に結合している、複数の金属シート(72、74、75)を含み、ここで該スタックは、このスタック内で、第二の流体用の複数の第二流動チャンネル(77)と交互に配置された、第一流体用の複数の第一流動チャンネル(76)を画成して、該第一および第二流体間の良好な熱的接触を保証しており、各流動チャンネル(76、77)は、各々の隣接シート対間に画成され;化学反応が起ることになる各流動チャンネルは、該スタックを介して真直ぐに伸びており、かつ金属基板を組込んだ、着脱自在のガス透過性触媒構造体(80)を含んでおり;また該第一流体用の入口(84)および出口(85)を含み、該第一流動チャンネル(76)は、該第二流動チャンネル(77)の方向とは直交する方向に配向しており;該反応器は、該スタック内の連続する第二の流動チャンネル(77)間に、少なくとも3つの並列した第一流動チャンネル(76)を画成しており;かつ該反応器は、該第一流体が、該入口から出口へと、連続して、少なくとも3つの第一流動チャンネル(76)を介して流動するように、流動分流手段(82;88)を備えていることを特徴とする、上記コンパクト触媒反応器。
【請求項2】
該流動分流手段が、該スタックの向い合う表面に結合した、ヘッダー(88)を含む、請求項1記載の反応器。
【請求項3】
該流動分流手段が、連続し、並列する第一流動チャンネルの末端部分間の連絡を与える、結合流動路を含み、該結合流動路が、該第二流動チャンネル(77)の配向に対して一般的に平行な方向の流動を与える、請求項1または2記載の反応器。
【請求項4】
該結合流動路を、孔または開口(82)により画成する、請求項3記載の反応器。
【請求項5】
該結合流動路を、結合流動セグメント(97)を画成する手段によって、画成する、請求項3記載の反応器。
【請求項6】
該直通チャンネルを、厚いプレートに機械加工された溝によって、画成する、上記請求項の何れか1項に記載の反応器。
【請求項7】
該直通チャンネルを、薄いプレート(74、75)に沿って伸びた、カステレーションにより形成する、請求項1〜5の何れか1項に記載の反応器。
【請求項8】
各触媒構造体(80)の各々が、該流動チャンネルを、多数の平行な流動サブチャンネルに更に分割するように、形成されており、このような各サブチャンネル内部の、表面上に触媒物質を含む、上記請求項の何れか1項に記載の反応器。
【請求項9】
メタンを含有するガス流を処理して、より鎖長の長い炭化水素を得るためのプラントであって、該プラントが、蒸気/メタン改質用の第一反応器と、フィッシャー-トロプシュ合成用の第二反応器とを含み、該各反応器が、上記請求項の何れか1項に記載の反応器を含むことを特徴とする、上記プラント。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図3a】
image rotate

【図4】
image rotate


【公表番号】特表2007−533444(P2007−533444A)
【公表日】平成19年11月22日(2007.11.22)
【国際特許分類】
【出願番号】特願2007−508955(P2007−508955)
【出願日】平成17年4月7日(2005.4.7)
【国際出願番号】PCT/GB2005/001356
【国際公開番号】WO2005/102511
【国際公開日】平成17年11月3日(2005.11.3)
【出願人】(506313567)コンパクトジーティーエル パブリック リミテッド カンパニー (13)
【Fターム(参考)】