説明

磁気ガイド制御装置

【課題】十分な剛性を有していない構造体に対し、変形による変位を抑制して、非接触による磁気ガイドを実現可能とする。
【解決手段】移動体の剛体運動に関する変位を剛体モード変位として演算する剛体モード位変換器36と、移動体またはガイドレールの弾性変形に関する変位を変形モード変位として演算する変形モード変位変換器37と、上記剛体モード変位に基づいて移動体をガイドレールに接触させずに支持するための第1の制御信号を演算する制御電圧演算器41と、上記変形モード変位に基づいて移動体またはガイドレールの弾性変形を抑制するための第2の制御信号を演算する制御電圧演算器42と、制御電圧演算器41,42の制御信号とに基づいて磁気ガイド装置の磁力を制御する制御電圧変換器51とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、例えばエレベータの乗りかごをガイドレールに沿って非接触で走行案内するための磁気ガイド装置の制御装置に関する。
【背景技術】
【0002】
一般に、エレベータの乗りかごは、昇降路内に垂直方向に設置された一対のガイドレールに支持され、巻上機に巻き掛けられたロープを介して昇降動作する。その際、負荷荷重の不均衡や乗客の移動によって生じる乗りかごの揺動は、ガイドレールによって抑制される。
【0003】
ここで、エレベータの乗りかごに用いられるガイド装置として、ガイドレールに接する車輪とサスペンションとで構成されたローラガイド、もしくは、ガイドレールに対して摺動して案内するガイドシュー等が用いられる。しかし、このような接触型のガイド装置では、ガイドレールの歪みや継ぎ目などで振動や騒音が発生し、また、ローラガイドが回転するときに騒音が発生する。このため、エレベータの快適性が損なわれるといった問題があった。
【0004】
このような問題点を解決するために、非接触で乗りかごを案内する方法が提案されている。
【0005】
すなわち、電磁石により構成された磁気ガイド装置を乗りかごに搭載し、鉄製のガイドレールに対して磁力を作用させて、乗りかごを非接触で案内する方法がある。これは、乗りかごの四隅に配置された電磁石がガイドレールを3方向から囲み、ガイドレールとガイド装置との間の空隙の大きさに応じて電磁石を励磁制御して、乗りかごをガイドレールに対して非接触に案内するものである。
【0006】
また、上記電磁石を用いた構造で問題となる制御性の低下および消費電力の増大等を解決する手段として、永久磁石を用いる方法がある。永久磁石と電磁石を併用することにより、消費電力を抑えつつ、低剛性・長ストロークで乗りかごを支持する磁気ガイド装置を実現できる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平5−178563号公報
【特許文献2】特開2001−19286号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
磁気力を応用し、ガイドレールに対して非接触で乗りかごを支持する磁気ガイド装置においては、発生する磁力によって乗りかごおよびガイドレールに所定の吸引力を作用させる。その際、磁力が大きい場合には支持体の構造部材、つまり乗りかごのかご枠やガイドレールが弾性変形して、歪みを生じさせる可能性がある。
【0009】
一般に、移動体を非接触で支持する制御系を構築する場合には、移動体およびそのガイドが剛体であることを前提として、剛体運動に対して制御を施す。すなわち、エレベータであれば、乗りかごおよびガイドレールを剛体とみなし、ロープに吊られて拘束される上下方向の併進方向以外の5つの方向の変位を抽出し、それらの変位に対して独立した制御を適用することが一般的である。なお、上記上下方向の併進方向以外の5つの方向とは、左右併進方向、前後併進方向、左右軸回りの回転方向、前後軸回りの回転方向、上下軸回りの回転方向である。
【0010】
ここで、制御対象となる構造体が十分な剛性を有しており、弾性変形による歪みがほとんどないか、無視できるほどに微小であれば問題ない。しかし、構造体の剛性が十分ではなく、磁力によって構造体が無視できない程度に変形を生じさせてしまう場合には、制御対象を剛体とみなした剛体モードの制御系では対応することができない。この場合、制御の安定性が低下するばかりではなく、変形によって支持体とガイドとが接触などを引き起こすことになる。エレベータであれば、乗りかごおよびガイドレールが構造体としてみなされるため、これらの剛性が十分でなければ、乗りかごとガイドレールとが接触することになる。
【0011】
このような問題に対しては、剛体モードの制御系のみで対応することは不可能であり、弾性変形に関する変位についても制御対象として制御系を構築する必要がある。
【0012】
そこで、本発明が解決しようとする課題は、十分な剛性を有していない構造体に対し、変形による変位を抑制して、非接触による磁気ガイドを実現可能にし、制御系の安定性を向上させると共に、構造体の変形による接触を回避することのできる磁気ガイド制御装置を提供することである。
【課題を解決するための手段】
【0013】
本実施形態に係る磁気ガイド制御装置は、強磁性体からなるガイドレールに沿って移動する移動体を磁気力の作用により上記ガイドレールから浮上させて非接触で走行案内する磁気ガイド装置を制御する磁気ガイド制御装置において、上記ガイドレールと上記磁気ガイド装置との間の距離を検出するギャップセンサと、このギャップセンサの信号と予め設定されたギャップ基準値との差分信号をもとに上記移動体の剛体運動に関する変位を剛体モード変位として演算する第1の変位変換手段と、上記ギャップセンサの信号と予め設定されたギャップ基準値との差分信号をもとに上記移動体または上記ガイドレールの弾性変形に関する変位を変形モード変位として演算する第2の変位変換手段と、上記第1の変位変換手段によって得られた上記剛体モード変位に基づいて、上記移動体を上記ガイドレールに接触させずに支持するための第1の制御信号を演算する第1の制御信号演算手段と、上記第2の変位変換手段によって得られた上記変形モード変位に基づいて、上記移動体または上記ガイドレールの弾性変形を抑制するための第2の制御信号を演算する第2の制御信号演算手段と、上記第1の制御手段から出力される上記第1の制御信号と上記第2の制御信号演算手段から出力される上記第2の制御信号とに基づいて上記磁気ガイド装置の磁力を制御する磁力制御手段とを具備する。
【図面の簡単な説明】
【0014】
【図1】図1は第1の実施形態に係る磁気ガイド装置をエレベータの乗りかごに適用した場合の斜視図である。
【図2】図2は同実施形態における磁気ガイド装置の構成を示す斜視図である。
【図3】図3は同実施形態における磁気ガイド装置に設けられた磁石ユニットの構成を示す斜視図である。
【図4】図4は同実施形態における磁気ガイド装置の磁力制御を行うための磁気ガイド制御装置の構成を示すブロック図である。
【図5】図5は同実施形態における磁気ガイド制御装置に設けられた制御演算器の構成を示すブロック図である。
【図6】図6は同実施形態における乗りかごのかご枠の全吸引モードの変形状態を示す図である。
【図7】図7は同実施形態における乗りかごのかご枠のねじれモードの変形状態を示す図である。
【図8】図8は同実施形態における乗りかごのかご枠の歪みモードの変形状態を示す図である。
【図9】図9は同実施形態における剛体モード制御電圧演算器の構成を示すブロック図である。
【図10】図10は同実施形態における変形モード制御電圧演算器の構成を示すブロック図である。
【図11】図11は同実施形態におけるガイドレールの全吸引モードの変形状態を示す図である。
【図12】図12は同実施形態におけるガイドレールのねじれモードの変形状態を示す図である。
【図13】図13は同実施形態におけるガイドレールの歪みモードの変形状態を示す図である。
【図14】図14は第2の実施形態に係る変形モード制御電圧演算器の構成を示すブロック図である。
【図15】図15は第3の実施形態に係る変形モード制御電圧演算器の構成を示すブロック図である。
【図16】図16は第4の実施形態に係る磁気ガイド制御装置に設けられた制御演算器の構成を示すブロック図である。
【図17】図17は同実施形態における変形モード制御電圧演算器の構成を示すブロック図である。
【発明を実施するための形態】
【0015】
以下、図面を参照して実施形態を説明する。
【0016】
(第1の実施形態)
図1は第1の実施形態に係る磁気ガイド装置をエレベータの乗りかごに適用した場合の斜視図である。
【0017】
図1に示すように、エレベータの昇降路1内には、鉄製で強磁性体からなる一対のガイドレール2が立設されている。乗りかご4は、図示せぬ巻上機に巻き掛けられたロープ3によって吊り下げられている。この乗りかご4は、上記巻上機の回転駆動に伴い、ガイドレール2に沿って昇降動作する。なお、図中の4aはかごドアであり、乗りかご4が各階に着床したときに開閉動作する。4bは乗りかご4の上下左右を囲むかご枠である。
【0018】
ここで、図1において、移動体である乗りかご4の左右方向をx、前後方向をy、上下方向をzとし、かつ、それらx、y、z軸に関する回転方向をξ、θ、ψとする。
【0019】
乗りかご4のかご枠4bの上下左右の四隅の連結部に、ガイドレール2に対向させて磁気ガイド装置5がそれぞれ取り付けられている。後述するように、この磁気ガイド装置5の磁力を制御することで、乗りかご4がガイドレール2から浮上して非接触で走行することができる。
【0020】
図2は磁気ガイド装置5の構成を示す斜視図である。
【0021】
磁気ガイド装置5は、磁石ユニット6、磁石ユニット6とガイドレール2との間に形成される磁気回路中の物理量(磁石ユニット6とガイドレール2との間の間隙)を検出するための複数個(ここでは2個)のギャップセンサ7と、それらを支持している台座8とで構成されている。
【0022】
なお、磁気ガイド装置5は、図1に示したように乗りかご4のかご枠4bの上下左右の四隅の連結部に設けられており、それぞれに同様の構成である。したがって、ギャップセンサ7はかご枠4bの上下左右の四隅にそれぞれ2つあるので、計8個となる。
【0023】
図3は磁気ガイド装置5に設けられた磁石ユニット6の構成を示す斜視図である。
【0024】
磁石ユニット6は、永久磁石9a,9bと、ガイドレール2を3方向から囲む形で磁極を対向させる継鉄10a,10b,10cと、コイル11a,11b,11c,11dとからなる。コイル11a,11b,11c,11dは、その継鉄10a,10b,10cを鉄心として磁極部分の磁束を操作することのできる電磁石を構成する。
【0025】
このような構成により、ギャップセンサ7等によって検出された磁気回路中の状態量をもとにコイル11a,11b,11c,11dに励磁して、ガイドレール2と磁気ガイド装置5とを接触させることなく安定して支持することができる。
【0026】
図4は磁気ガイド装置5の磁力制御を行うための磁気ガイド制御装置21の構成を示すブロック図である。
【0027】
磁気ガイド制御装置21は、センサ部22と、制御演算器23と、ドライバ24とを備え、乗りかご4の四隅に設置された磁石ユニット8の吸引力を制御する。なお、図4では、便宜的にセンサ部22を含めて示されているが、実際にはセンサ部22は磁気ガイド装置5あるいは乗りかご4側に設けられている。
【0028】
制御演算器23は、センサ部22からの信号に基づいて乗りかご4を非接触案内させるべく各コイル11に印加する電圧を演算する。ドライバ24は、制御演算器23の出力に基づいて各コイル11に電力を供給する。
【0029】
センサ部22は、磁気ガイド装置5の磁石ユニット6とガイドレール2との間の空隙の大きさを検出するギャップセンサ7と、各コイル11に流れる電流値を検出する電流センサ25とで構成されている。
【0030】
このような構成において、磁石ユニット6とガイドレール2との間に所定のギャップ長を維持させるべく、各コイル11に励磁する電流を制御する。また、非接触で乗りかご4を支持した状態で、そのときに各コイル11に流れる電流値を積分器を介してフィードバックする。これにより、定常状態にあるときには、乗りかご4の重量および不平衡力の大きさに関わらず、永久磁石9だけの磁力で乗りかご4を支持する、いわゆる「ゼロパワー制御」が行われる。
【0031】
このゼロパワー制御によって、乗りかご4がガイドレール2に対して非接触で安定に支持される。そして、定常状態では、各コイル11に流れる電流は零に収束し、安定支持に必要となる力は永久磁石9の磁力だけで済むようになる。
【0032】
これは、乗りかご4の重量やバランスが変化した場合でも同様である。すなわち、乗りかご4に何らかの外力が加えられた場合、磁石ユニット6とガイドレール2との間の空隙を所定の大きさに調整するために、過渡的にコイル11に電流が流れる。しかし、再度安定状態になった際には、上記制御手法を用いることにより、コイル11に流れる電流は零に収束する。そして、乗りかご4に加わる荷重と、永久磁石9の磁力によって発生する吸引力とが釣り合う大きさの空隙が形成される。
【0033】
次に、制御演算器23の構成について詳しく説明する。
【0034】
図5は第1の実施形態に係る磁気ガイド制御装置21に設けられた制御演算器23の構成を示すブロック図である。
【0035】
制御演算器23は、案内制御およびゼロパワー制御を行うものであり、変位変換器34、電流変換器35、制御電圧演算器40、制御電圧変換器51から構成されている。
【0036】
変位変換器34は、各ギャップセンサ7から得られるギャップセンサ信号30と予め設定されたギャップ基準値32との差分信号をもとに各制御軸の変位を演算する。ここで、本実施形態において、この変位変換器34は、剛体モード変位変換器36および変形モード変位変換器37を有し、併進運動および回転運動からなる剛体運動に関する変位を剛体モード変位として演算すると共に、弾性変形に関する変位を変形モード変位として演算する。
【0037】
すなわち、剛体モード変位変換器36は、第1の変位変換手段として用いられる。この剛体モード変位変換器36は、ギャップセンサ信号30とギャップ基準値32との差分信号をもとにx,y,θ,ξ,ψの5つの剛体モードの変位(角度)を演算する。
【0038】
xモードは、乗りかご4の左右併進方向である。yモードは、乗りかご4の前後併進方向である。θモードは、乗りかご4のy方向周りの回転方向(ロールモード)である。ξモードは、乗りかご4のx方向周りの回転方向(ピッチモード)である。ψモードは、乗りかご4のz方向周りの回転方向(ヨーモード)である。なお、乗りかご4の上下方向の併進方向の変位を除くのは、上下方向(z方向)はロープ3にて乗りかご4を支えており、浮上には関係しないためである。
【0039】
変形モード変位変換器37は、第2の変位変換手段として用いられる。この変形モード変位変換器37は、ギャップセンサ信号30とギャップ基準値32との差分信号をもとにζ,δ,γの3つの変形モードの変位を演算する。図6乃至図8に各モードの変形状態を示す。
【0040】
ζモードは、図6に示すように、かご枠4bの四隅を±x方向に上下同相、左右逆相で伸縮して変形させる全吸引モードである。なお、図中の矢印は吸引方向(伸張方向)しか示されていないが、実際にはかご枠4bの反発力があるので、逆方向(圧縮方向)にも変形する。
【0041】
δモードは、図7に示すように、かご枠4bの四隅を±y方向に上下逆相、左右逆相に変形し、z軸回りのねじれを生じさせるねじれモードである。なお、図中の矢印とは逆の方向のねじれもある。
【0042】
γモードは、図8に示すように、かご枠4bの四隅を±x方向に上下逆相、左右逆相に伸縮してかご枠4bを左右対称に歪ませる歪みモードである。なお、図中の矢印とは逆の方向の歪みもある。
【0043】
また、電流変換器35は、第1の電流変換手段として用いられる剛体モード電流変換器38を有する。この剛体モード電流変換器38は、電流センサ25から得られる各コイル11の電流センサ信号31と予め設定された電流基準値33とを比較した差分信号をもとに乗りかご4の剛体運動に関する電流を剛体モード電流Δix,Δiy,Δiθ,Δiξ,Δiψとして演算する。
【0044】
制御電圧演算器40は、剛体モード制御電圧演算器41と変形モード制御電圧演算器42とで構成される。
【0045】
剛体モード制御電圧演算器41は、第1の制御信号演算手段として用いられる。この剛体モード制御電圧演算器41は、剛体モード変位変換器36によって得られた剛体モード変位Δx,Δy,Δθ,Δξ,Δψと剛体モード電流変換器38によって得られた剛体モード電流Δix,Δiy,Δiθ,Δiξ,Δiψとに基づいて剛体モード制御電圧ex,ey,eθ,eξ,eψを演算する。
【0046】
変形モード制御電圧演算器42は、第2の制御信号演算手段として用いられる。この変形モード制御電圧演算器42は、変形モード変位変換器37によって得られた変形モード変位Δζ,Δδ,Δγに基づいて変形モード制御電圧eζ,eδ,eγを演算する。
【0047】
ここで、上述した剛体モード制御電圧演算器41は、各剛体モードに関する変位情報と電流情報をもとに、乗りかご4をガイドレール2に接触させない状態で安定して支持するための剛体モード制御電圧ex,ey,eθ,eξ,eψを演算する。
【0048】
この剛体モード制御電圧演算器41は、左右モード(xモード)制御電圧演算器43、前後モード(yモード)制御電圧演算器44、ロールモード(θモード)制御電圧演算器45、ピッチモード(ξモード)制御電圧演算器46、ヨーモード(ψモード)制御電圧演算器47から構成されている。
【0049】
以下に、各モードの制御電圧演算器43〜47の構成について、xモードの制御電圧演算器43を例にして説明する。
【0050】
図9は剛体モード制御電圧演算器41におけるxモードの制御電圧演算器43の構成を示すブロック図である。なお、回転モードに関する演算器では、変位は角度、速度は角速度、加速度は角加速度に相当する。
【0051】
制御電圧演算器43は、オブザーバ(状態推定器)61と、ゲイン補償器62,63,64,65と、積分補償器66とで構成され、これらの補償器62〜66の出力信号を合成して剛体モードの制御電圧を出力する。
【0052】
オブザーバ61は、剛体モードの変位Δxおよび電流Δixから速度Vxおよび外力fxを求める。ゲイン補償器62,63,64,65は、剛体モードの変位Δx、速度Vx、電流Δix、外力fxのそれぞれに対して適当なフィードバックゲインを乗じる。
【0053】
積分補償器66は、剛体モード電流Δixと予め設定された剛体モード電流目標値Δixtとの差分を時間積分して適当なフィードバックゲインを乗じる。
【0054】
剛体モード制御電圧演算器41を構成する他の制御電圧演算器44〜47についても同様の構成である。これらの制御電圧演算器43〜47によってフィードバック制御を施すことにより、剛体モード制御電圧演算器41は、永久磁石9が形成する磁束と同方向または逆方向の磁束を各コイル11に発生させると共に、磁石ユニット6とガイドレール2との間に隙間を維持した状態でコイル電流を零に収束させるための電圧を演算することができる。
【0055】
一方、変形モード制御電圧演算器42は、各変形モードに関する変位情報をもとに、かご枠4bの変形を抑制するための制御電圧を演算する。この変形モード制御電圧演算器42は、全吸引モード(ζモード)制御電圧演算器48、ねじれモード(δモード)制御電圧演算器49、歪みモード(γモード)制御電圧演算器50から構成されている。
【0056】
ここで、各変形モードの制御電圧演算器48〜50の構成について、ζモードの制御電圧演算器48を例にして説明する。
【0057】
図10は変形モード制御電圧演算器42におけるζモードの制御電圧演算器48の構成を示すブロック図である。
【0058】
制御電圧演算器48は、ゲイン補償器73を備える。ゲイン補償器73は、変形モード変位変換器37から得られた変形モード変位Δζと予め設定された変形モード変位目標値Δζtとの差分に対して適当なフィードバックゲインを乗じる。
【0059】
変形モード制御電圧演算器42を構成する他の制御電圧演算器49,50についても同様の構成である。これらの制御電圧演算器48〜50によってフィードバック制御を施すことにより、かご枠4bの変形による変位が生じた際にそれを抑制する方向に電圧を励磁して、かご枠4bの変形を抑制することが可能となる。
【0060】
このようにして、剛体モード制御電圧演算器41によって剛体モードに関する5つの制御電圧ex,ey,eθ,eξ,eψと、変形モード制御電圧演算器42によって変形モードに関する3つの制御電圧eζ,eδ,eγが得られる。
【0061】
制御電圧変換器51は、磁気ガイド装置5の磁力を制御するための磁力制御手段として用いられる。この制御電圧変換器51は、上記制御電圧ex,ey,eθ,eξ,eψ,eζ,eδ,eγをもとに各磁石ユニット6のそれぞれのコイル11を励磁するための電圧を演算し、この結果をもとにドライバ24を駆動させる。
【0062】
以上のような構成により、剛体モード制御電圧演算器41においては、乗りかご4のかご枠4bを剛体とみなした磁気ガイド制御がなされる。その際に、電流信号に対して積分フィードバックが作用するため、制御電流を0Aに収束させるゼロパワー制御が施される。これによって、乗りかご4がガイドレール2に接触することなく非接触で支持されると共に、剛体モードに対しては、磁石ユニット6における定常的な消費電力を0Wにして省電力化を実現できる。
【0063】
さらに、変形モード制御電圧演算器42においては、乗りかご4のかご枠4bの弾性変形に起因する変形を抑制する方向に磁石ユニット6が励磁される。これによって、かご枠4bの剛性が磁石ユニット6の磁力に比較して十分に高くない場合であっても、かご枠4bの変形を抑制することができる。したがって、かご枠4bの変形により磁気ガイド装置5がガイドレール2に接触する事態を回避して、常に安定した非接触ガイドを実現できる。
【0064】
なお、上記第1の実施形態では、乗りかご4のかご枠4bが変形する場合について説明したが、変形モード変位変換器37および変形モード制御電圧演算器42は、剛体モードによらない変位に対して作用するため、ガイドレール2の変形に対しても有効である。
【0065】
図11乃至図13にガイドレール2の変形例を示す。なお、図6乃至図8に示したかご枠4bの変形と同様に、図中の矢印とは逆の方向の変形もある。
【0066】
図11に示すようなガイドレール2のx方向の逆相変形は、全吸引モード(ζモード)として検出される。また、図12に示すようなガイドレール2のy方向の上下・左右逆相の曲げモードは、ねじれモード(δモード)として検出される。さらに、図13に示すようなガイドレール2のx方向の上下・左右逆相の曲げモードは、歪みモード(γモード)として検出される。
【0067】
このようにして検出されたガイドレール2の変形モードに対しても、その変形を抑制する方向に磁石ユニット6が励磁されるため、結果的にガイドレール2の変形を抑制するように磁力を作用させることになる。これにより、ガイドレール2の剛性不足に対しても効果を得ることができる。
【0068】
さらに、本制御手法によれば、磁石ユニット6とガイドレール2との相対変位を剛体条件の範囲に保つことができる。したがって、ガイドレール2の取り付け、もしくは磁気ガイド装置5の取り付けにある程度の不整および誤差があった場合であっても、磁石ユニット6とガイドレール2との相対変位を所定の範囲に補正するようにかご枠4bを変形させることで、磁気浮上時のギャップを確保することができるようになる。
【0069】
このように、変形モード変位をフィードバックすることによって、乗りかご4のかご枠4bおよびガイドレール2の剛性が低い場合であっても非接触ガイドを実現することができると共に、ガイドレール2の設置不整や磁気ガイド装置5の設置誤差に対しても対応することが可能となる。
【0070】
なお、本構成においては、剛体モードに対してはゼロパワー制御が適用される。このため、乗りかご4を剛体的に非接触支持するための定常電力は0Wとなり、変形モードの制御電流を上乗せしても消費電力化を実現できる。
【0071】
(第2の実施形態)
次に、第2の実施形態について説明する。
【0072】
上記第1の実施形態では、変形モード制御電圧演算器42において、P制御(比例制御)を用いて変形モード変位をフィードバックする構成であった(図10参照)。これに対し、第2の実施形態では、PI制御(比例積分制御)を用いて変形モード変位をフィードバックする構成としている。
【0073】
以下に、変形モード制御電圧演算器42を構成する各変形モードの制御電圧演算器48〜50のうち、ζモードの制御電圧演算器48を例にして説明する。
【0074】
図14は第2の実施形態に係る変形モード制御電圧演算器42におけるζモードの制御電圧演算器48の構成を示すブロック図である。なお、他のモードの制御電圧演算器49,50も同様の構成である。
【0075】
第2の実施形態において、制御電圧演算器48は、変形モード変位変換器37から得られた変形モード変位Δζと予め設定された変形モード変位目標値Δζtとの差分を積分する積分器71と、その積分結果に対して適当なフィードバックゲインを乗じるゲイン補償器74が設けられる。そして、ゲイン補償器73,74の出力信号を合成して変形モード制御電圧eζを生成する構成としている。
【0076】
また、変形モード制御電圧eζの出力部に、出力調整手段として用いられる出力係数80が設けられる。さらに、積分器71の入力部に積分器入力切り替え器81が設けられ、積分器71にリセット信号を入力可能な構成としている。
【0077】
このような構成によれば、積分器71により変形モード変位と変形モード変位目標値との差分を蓄積しながらフィードバック制御が行なわれるので、変形モード変位を定常的に零に収束させることができる。したがって、かご枠4bの変形およびガイドレール2の変形をさらに抑制することができ、より安定した磁気ガイドを実現できる。
【0078】
また、出力係数80は、“0〜1”の値を取る係数であり、変形モードの変位制御を調整するためにある。すなわち、出力係数80の値が“0”のときは制御電圧演算器48の出力が無効となり、変形モードの変位制御は行われない。一方、出力係数80の値が“0”よりも大きい場合には制御電圧演算器48の出力が有効となり、通常の磁気ガイド制御(剛体モードの変位制御)に変形モードの変位制御が加えられる。
【0079】
ここで、磁気ガイド装置5をガイドレール2から浮上させる際に剛体モードの変位制御と同時に変形モードの変位制御を急に行うと、両者の制御系が干渉してしまい、磁気ガイド装置5をスムーズに浮上させることができないことがある。そこで、出力係数80の値を“0”に設定しておき、磁気ガイド装置5が浮上するのに伴い、出力係数80の値を徐々に“1”に上げていく。これにより、変形モードの制御信号を剛体モードの制御信号に徐々に重畳させることができ、磁気ガイド装置5をスムーズに浮上させて安定した磁気ガイドを実現できる。
【0080】
また、積分器71はノイズまでも蓄積してしまうため、不要なときにはOFFしておくことが好ましい。そこで、磁気ガイド装置5がガイドレール2に接触している状態では積分器71の入力をゼロとし、磁気ガイド制御の起動により磁気ガイド装置5がガイドレール2から浮上して非接触状態になったら、変形モード変位を積分器71に入力させるように積分器入力切り替え器81を動作させる。これによって、積分器71の出力値がノイズで過大にならないように抑制することができる。
【0081】
また、所定時間、非接触による磁気ガイドが行っていないときに積分器71の出力値を零にリセットするためのリセット信号を設けておく。これによって、非接触状態で変形モード制御が開始されたときからの変形モード変位を適切に積分することができるようになり、安定した制御を実現することができる。
【0082】
(第3の実施形態)
次に、第3の実施形態について説明する。
【0083】
第3の実施形態では、PID制御(比例積分微分制御)を用いて変形モード変位をフィードバックする構成としている。
【0084】
以下に、変形モード制御電圧演算器42を構成する各変形モードの制御電圧演算器48〜50のうち、ζモードの制御電圧演算器48を例にして説明する。
【0085】
図15は第3の実施形態に係る変形モード制御電圧演算器42におけるζモードの制御電圧演算器48の構成を示すブロック図である。なお、上記第2の実施形態における図14の構成と同じ部分には同一符号を付して、その説明を省略するものとする。他のモードの制御電圧演算器49,50も同様の構成である。
【0086】
第3の実施形態において、制御電圧演算器48には、上記第2の実施形態の構成に加え、微分器72とゲイン補償器75が設けられ、各ゲイン補償器73,74,75の出力信号を合成して変形モード制御電圧eζを生成する構成としている。
【0087】
微分器72は、変形モード変位変換器37から得られた変形モード変位Δζと予め設定された変形モード変位目標値Δζtとの差分を時間微分する。ゲイン補償器75は、微分器72の出力に適当なフィードバックゲインを乗じる。
【0088】
このように、微分器72とゲイン補償器75をフィードバック制御に加えることで、変形モードに対する応答特性を上げることができ、変形モードをできるだけ早く抑制することが可能となる。
【0089】
(第4の実施形態)
次に、第4の実施形態について説明する。
【0090】
上記第1乃至第3の実施形態では、変形モードの制御に関して、変形モードの変位情報のみを用いてフィードバックする構成であった。これに対し、第4の実施形態では、変形モードの変位情報だけではなく、変形モードの電流情報も制御に加える構成としている。
【0091】
図16は第4の実施形態に係る磁気ガイド制御装置21に設けられた制御演算器23の構成を示すブロック図である。なお、上記第1の実施形態における図5の構成と同じ部分には同一符号を付して、その説明を省略するものとする。
【0092】
第4の実施形態において、制御演算器23に設けられた電流変換器35には、剛体モード電流変換器38の他に変形モード電流変換器39が備えられる。
【0093】
変形モード電流変換器39は、第2の電流変換手段として用いられる。この変形モード電流変換器39は、電流センサ25から得られる各コイル11の電流センサ信号31と予め設定された電流基準値33とを比較した差分信号をもとに変形モード電流Δiζ,Δiδ,Δiγを演算する。
【0094】
変形モード制御電圧演算器42は、第2の制御信号演算手段として用いられる。この変形モード制御電圧演算器42は、変形モード変位変換器37によって得られた変形モード変位Δζ,Δδ,Δγと、変形モード電流変換器39によって得られた変形モード電流Δiζ,Δiδ,Δiγとに基づいて変形モード制御電圧eζ,eδ,eγを演算する。
【0095】
このときの変形モード制御電圧演算器42の構成を図17に示す。
図17は変形モード制御電圧演算器42におけるζモードの制御電圧演算器48の構成を示すブロック図である。なお、上記第2の実施形態における図14の構成と同じ部分には同一符号を付して、その説明を省略するものとする。他のモードの制御電圧演算器49,50も同様の構成である。
【0096】
上記第3の実施形態で説明した図15のPID制御の構成に変形モード電流を導入した構成となっている。すなわち、変形モード電流Δiζに適当なフィードバックゲインを乗じるゲイン補償器76が設けられ、各ゲイン補償器73,74,75,76の出力信号を合成することで変形モード制御電圧eζを生成する構成としている。
【0097】
このような構成とすることによって、変形モード電流に対しても応答性を得ることができるようになる。したがって、変形モード電流の収束を早めて、定常状態に至るまでの応答性を向上させることができる。
【0098】
なお、上記第1の実施形態で説明した図10のP制御の構成あるいは上記第2の実施形態で説明した図14のPI制御の構成に変形モード電流を導入する構成であっても良い。ただし、制御電流を0Aに収束させるゼロパワー制御は剛体モード電流に対してのみ適用されるものであり、変形モード電流に対しては適用されない。これは、変形モード電流が乗りかご4のかご枠4bやガイドレール2の変形を抑制するための電流であるのに、それを零に収束させては意味がないからである。
【0099】
また、上述した各実施形態では、3つの変形モード(全吸引モード、ねじれモード、歪みモード)に対して変形モード制御を適用する構成について説明したが、少なくとも1つの変形モードに対して制御する構成であっても良い。
【0100】
特にエレベータでは、乗りかご4のかご枠4bの構造上、全吸引モード(ζモード)および歪みモード(γモード)は生じにくく、一方、ねじれモード(δモード)は容易に生じるという特徴がある。したがって、全変形モードではなく、ねじれモード(δモード)にのみ変形モード制御を適用し、他のモード(全吸引モード、歪みモード)を非制御としても良い。このような制御系を構築することにより、効率的にかご枠4bの変形を抑制することができると共に、制御における計算負荷を軽減することができる。
【0101】
また、磁気ガイド装置5に2つのギャップセンサ7を設置し(図2参照)、計8個のギャップセンサ7を用いて変位を検出する構成としたが、少なくとも6個のギャップセンサ7を用いて、剛体モードとして上下方向を除く5つの運動方向の変位、変形モード変位として全吸引、ねじれ、歪みの3つの変形に関する変位を検出する構成であれば良い。
【0102】
さらに、上記各実施形態では、エレベータの乗りかごに設けられた磁気ガイド装置を例にして説明したが、本発明はエレベータに限られるものではなく、磁力を利用して非接触案内を行う移動体であれば、その全てに適用可能である。
【0103】
以上述べた少なくとも1つの実施形態によれば、十分な剛性を有していない構造体に対し、変形による変位を抑制して、非接触による磁気ガイドを実現可能にし、制御系の安定性を向上させると共に、構造体の変形による接触を回避することのできる磁気ガイド制御装置を提供することができる。
【0104】
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0105】
1…昇降路、2…ガイドレール、3…ロープ、4…乗りかご、5…磁気ガイド装置、6…磁石ユニット、7…センサ、8…台座、9…永久磁石、10…継鉄、11…コイル、21…磁気ガイド制御装置、22…センサ部、23…制御演算器、24…ドライバ、25…電流センサ、30…ギャップセンサ信号、31…電流センサ信号、32…ギャップ基準値、33…電流基準値、34…変位変換器、35…電流変換器、36…剛体モード変位変換器、37…変形モード変位変換器、38…剛体モード電流変換器、39…変形モード電流変換器、40…制御電圧演算器、41…剛体モード制御電圧演算器、42…変形モード制御電圧演算器、43…左右モード制御電圧演算器、44…前後モード制御電圧演算器、45…ロールモード制御電圧演算器、46…ピッチモード制御電圧演算器、47…ヨーモード制御電圧演算器、48…全吸引モード制御電圧演算器、49…ねじれモード制御電圧演算器、50…歪みモード制御電圧演算器、51…制御電圧変換器、61…オブザーバ、62〜65…ゲイン補償器、66…積分補償器、71…積分器、72…微分器、73〜76…ゲイン補償器、80…出力係数、81…積分器入力切り替え器。

【特許請求の範囲】
【請求項1】
強磁性体からなるガイドレールに沿って移動する移動体を磁気力の作用により上記ガイドレールから浮上させて非接触で走行案内する磁気ガイド装置を制御する磁気ガイド制御装置において、
上記ガイドレールと上記磁気ガイド装置との間の距離を検出するギャップセンサと、
このギャップセンサの信号と予め設定されたギャップ基準値との差分信号をもとに上記移動体の剛体運動に関する変位を剛体モード変位として演算する第1の変位変換手段と、
上記ギャップセンサの信号と予め設定されたギャップ基準値との差分信号をもとに上記移動体または上記ガイドレールの弾性変形に関する変位を変形モード変位として演算する第2の変位変換手段と、
上記第1の変位変換手段によって得られた上記剛体モード変位に基づいて、上記移動体を上記ガイドレールに接触させずに支持するための第1の制御信号を演算する第1の制御信号演算手段と、
上記第2の変位変換手段によって得られた上記変形モード変位に基づいて、上記移動体または上記ガイドレールの弾性変形を抑制するための第2の制御信号を演算する第2の制御信号演算手段と、
上記第1の制御信号演算手段から出力される上記第1の制御信号と上記第2の制御信号演算手段から出力される上記第2の制御信号とに基づいて上記磁気ガイド装置の磁力を制御する磁力制御手段と
を具備したことを特徴とする磁気ガイド制御装置。
【請求項2】
上記第1の変位変換手段は、
上下方向を除く5つの運動方向の変位を剛体モード変位として演算し、
上記第2の変位変換手段は、
全吸引、ねじれ、歪みの3つの変形に関する変位を変形モード変位として演算することを特徴とする請求項1記載の磁気ガイド制御装置。
【請求項3】
上記第2の制御信号演算手段は、
上記変形モードの少なくも1つの変形に関し、上記第2の変位変換手段から得られた上記変形モード変位と予め設定された変位目標値との差分信号にゲインを乗じてフィードバック制御を行うことを特徴とする請求項2記載の磁気ガイド制御装置。
【請求項4】
上記第2の制御信号演算手段は、
上記変形モードの少なくも1つの変形に関し、上記第2の変位変換手段から得られた上記変形モード変位と予め設定された変位目標値との差分信号を積分するための積分手段を有し、この積分手段の出力にゲインを乗じてフィードバック制御を行うことを特徴とする請求項2記載の磁気ガイド制御装置。
【請求項5】
上記第2の制御信号演算手段は、
上記磁気ガイド装置が上記ガイドレールから浮上して非接触状態にあるときにのみ、上記積分手段を動作させることを特徴とする請求項4記載の磁気ガイド制御装置。
【請求項6】
上記第2の制御信号演算手段は、
上記磁気ガイド装置が上記ガイドレールに接触して所定の時間が経過したときに、上記積分手段を0にリセットすることを特徴とする請求項4記載の磁気ガイド制御装置。
【請求項7】
上記第2の制御信号演算手段は、
上記変形モードの少なくも1つの変形に関し、上記第2の変位変換手段から得られた上記変形モード変位と予め設定された変位目標値との差分信号を微分するための微分を有し、この微分の出力にゲインを乗じてフィードバック制御を行うことを特徴とする請求項2記載の磁気ガイド制御装置。
【請求項8】
上記磁気ガイド装置の浮上状態に応じて、上記第1の制御信号演算手段の出力に加える上記第2の制御信号演算手段の出力を調整する出力調整手段をさらに具備したことを特徴とする請求項1記載の磁気ガイド制御装置。
【請求項9】
上記磁気ガイド装置に流れる電流を検出する電流センサと、
この電流センサの信号と予め設定された電流基準値との差分信号をもとに上記移動体の剛体運動に関する電流を剛体モード電流として求める第1の電流変換手段と、
上記電流センサの信号と予め設定された電流基準値との差分信号をもとに上記移動体または上記ガイドレールの弾性変形に関する電流を変形モード電流として求める第2の電流変換手段とをさらに具備し、
上記第1の制御信号演算手段は、
上記第1の変位変換手段によって得られた上記剛体モード変位と第1の電流変換手段によって得られた上記剛体モード電流とに基づいて、上記移動体を上記ガイドレールに接触させずに支持するための第1の制御信号を演算し、
上記第2の制御信号演算手段は、
上記第2の変位変換手段によって得られた上記変形モード変位と上記第2の電流変換手段によって得られた上記変形モード電流とに基づいて、上記移動体または上記ガイドレールの弾性変形を抑制するための第2の制御信号を演算することを特徴とする請求項1記載の磁気ガイド制御装置。
【請求項10】
上記磁気ガイド装置に流れる電流を検出する電流センサと、
この電流センサの信号と予め設定された電流基準値との差分信号をもとに上記移動体の剛体運動に関する電流を剛体モード電流として求める第1の電流変換手段とをさらに具備し、
上記第1の制御信号演算手段は、
上記第1の変位変換手段によって得られた上記剛体モード変位と第1の電流変換手段によって得られた上記剛体モード電流とに基づいて、上記移動体を上記ガイドレールに接触させずに支持するための第1の制御信号を演算すると共に、上記移動体に作用する外力の有無にかかわらず、上記剛体モード電流の定常値を零に収束させることを特徴とする請求項1記載の磁気ガイド制御装置。
【請求項11】
上記移動体は、エレベータの乗りかごであり、
上記磁気ガイド装置は、上記乗りかごに設置され、上記ガイドレールから上記乗りかごを浮上させて非接触で支持するために用いられることを特徴とする請求項1乃至請求項10のいずれかに記載の磁気ガイド制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2013−49512(P2013−49512A)
【公開日】平成25年3月14日(2013.3.14)
【国際特許分類】
【出願番号】特願2011−187967(P2011−187967)
【出願日】平成23年8月30日(2011.8.30)
【出願人】(390025265)東芝エレベータ株式会社 (2,543)
【Fターム(参考)】