説明

空間フィルタを有するホログラフィックマスク検査システム

ホログラフィックマスク検査のための装置、方法およびリソグラフィシステムが開示される。ホログラフィックマスク検査システム(300、500、700)は、照明源(330)、空間フィルタ(350)およびイメージセンサ(380)を含む。照明源は、放射ビーム(331)でマスク(310)のターゲット部分上を照明するように構成されている。空間フィルタ350は、光学システム(390、610、710)のフーリエ変換瞳面に配置されている。空間フィルタは、マスクのターゲット部分から反射放射ビーム(311)の少なくとも一部を受ける。光学システムは、反射放射ビーム(311)の一部を参照放射ビーム(361、331)と組み合わせて(360、660、740)組み合わせ放射ビームを生成する。さらに、イメージセンサ(380)は、組み合わせ放射ビームのホログラフィックイメージを取り込むように構成されている。イメージは、1つ以上のマスク欠陥を含み得る。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願への相互参照
[0001] 本願は、2010年1月27日に出願した米国仮出願第61/298,792号の優先権を主張し、その全体を本願に参考として組み込む。
【0002】
[0002] 本発明の実施形態は、一般に、リソグラフィに関し、より詳細には、空間フィルタを有するホログラフィックマスク検査システムに関する。
【背景技術】
【0003】
[0003] リソグラフィは、集積回路(IC)、ならびに他のデバイスおよび/または構造を製造するための重要なプロセスとして広く認識されている。リソグラフィ装置は、リソグラフィ中に使用される、所望のパターンを基板上、例えば、基板のターゲット部分上に付与する機械である。リソグラフィ装置を用いたICの製造中、パターニングデバイス(マスクまたはレチクルとも呼ばれる)は、ICにおける個々の層上に形成される回路パターンを生成する。このパターンは、基板(例えば、シリコンウェーハ)上のターゲット部分(例えば、ダイの一部、または1つ以上のダイを含む)に転写することができる。通常、パターンの転写は、基板上に設けられた放射感応性材料(例えば、レジスト)層上への結像によって行われる。一般には、単一の基板が、連続的にパターニングされる隣接したターゲット部分のネットワークを含んでいる。ICの異なる層を製造することは、多くの場合、異なるレチクルを有する異なる層上に異なるパターンを結像することを要求する。
【0004】
[0004] ICの寸法が小さくなってマスクから基板に転写されるパターンが一層複雑になるにつれて、マスク上に形成されたフィーチャにおける欠陥はますます重要となってきている。結果的に、マスク上に形成されたフィーチャにおける欠陥は、基板上に形成されたパターン欠陥へと移る。マスク欠陥は、例えば、マスクブランク上のコーティングにおける欠陥、マスクショップにおけるマスクパターニングプロセス、ならびにウェーハ製造施設におけるマスクハンドリングおよび汚染欠陥などの様々な原因から生じ得る。したがって、マスクの欠陥の検査は、望ましくない粒子および汚染物質がマスクパターンの基板上への転写に影響を及ぼさないようにその粒子および汚染物質を最小限にするかまたは除去する。
【0005】
[0005] ホログラフィは、マスク欠陥を監視するために使用できる方法である。例えば、物体光を参照ビームと干渉させることによってホログラムを生成することができ、それによって、結果のフィールドを、例えば、センサアレイを有するシリコン電荷結合素子(CCD)などのイメージセンサに記録することができる。後で物体を再構成することができ、再構成された物体からの位相および振幅情報を検査して欠陥の存在を決定することができる。
【0006】
[0006] マスク上の小さい粒子(例えば、マスク欠陥)は、イメージセンサによって記録される結果のフィールドの小さい信号対雑音比という結果となり得るため、マスクのターゲット部分のホログラフィックイメージングは困難である。言い換えると、小さい粒子から反射してイメージセンサへと戻るエネルギーの量は、多くの場合、同じように反射してイメージセンサに戻る(例えば、小さい粒子を囲うマスク領域からの)背景DC信号における変動よりかなり小さい。
【0007】
[0007] マスク欠陥などの小さい粒子のホログラフィックイメージングとの別の問題は、結果のフィールドに対応するホログラフィックイメージから参照イメージを引いて2つのイメージの間の違いを決定した場合の登録エラーに関する。参照イメージと結果のイメージとの間の違いは、マスク欠陥の存在を示すことができる。しかしながら、参照イメージおよび結果のイメージが2つのイメージ間のランダムな量によってオフセットされるパターンを含む場合、これらのイメージ間の違いの残留物は、近くの粒子からの信号よりかなり大きい場合がある。
【0008】
[0008] マスク欠陥のホログラフィックモニタリングに対する上記の問題を克服するための装置、方法およびシステムが必要とされる。
【発明の概要】
【0009】
[0009] 上記を踏まえると、基板上に転写されるマスクパターンからの欠陥を最小限にするかまたは除去することをサポートする改良されたホログラフィックマスク検査システムが必要とされる。この要求を満たすために、本発明の実施形態は、空間フィルタを有するホログラフィックマスク検査システムに関する。
【0010】
[0010] 本発明の実施形態は、ホログラフィックマスク検査システムを含む。ホログラフィマスク検査システムは、放射ビームでマスクのターゲット部分上を照明するように構成された照明源を含む。ホログラフィックマスク検査システムは、光学システムの瞳面に配置された空間フィルタも含む。空間フィルタは、マスクのターゲット部分から反射放射ビームの少なくとも一部を受ける。光学システムは、反射放射ビームの一部を参照放射ビームと組み合わせて組み合わせ放射ビームを生成する。さらに、ホログラフィックマスク検査システムは、組み合わせ放射ビームのイメージを取り込むように構成されたイメージセンサを含む。
【0011】
[0011] 本発明の実施形態は、さらに、マスクの欠陥を検査する方法を含む。方法は、放射ビームでマスクのターゲット部分上を照明することと、マスクのターゲット部分からの反射放射ビームの少なくとも一部を受けることであって、反射放射ビームの一部は光学システムの瞳面に配置された空間フィルタを通過する、ことと、空間フィルタからの反射放射ビームの一部を参照放射ビームと組み合わせて組み合わせ放射ビームを生成することと、組み合わせ放射ビームに対応するイメージを検出することとを含む。
【0012】
[0012] 本発明の実施形態は、さらに、ホログラフィックマスク検査システムを有するリソグラフィシステムを含む。リソグラフィシステムは、以下の構成要素、すなわち、第1照明システムと、サポートと、基板テーブルと、投影システムと、ホログラフィックマスク検査システムとを含む。ホログラフィックマスク検査は、第2照明源と、光学システムの瞳面に配置された空間フィルタとを含む。空間フィルタは、パターニングデバイスのターゲット部分から反射放射ビームの少なくとも一部を受ける。光学システムは、反射放射ビームの一部を参照放射ビームと組み合わせて組み合わせ放射ビームを生成する。イメージセンサは、組み合わせ放射ビームに対応するイメージを検出するように構成されている。
【0013】
[0013] 本発明のさらなる特徴および利点、ならびに本発明の様々な実施形態の構造および動作を、添付の図面を参照しながら以下に詳細に説明する。本発明は、本明細書で説明する特定の実施形態に限定されないことに留意されたい。このような実施形態は、本明細書では例示のためにのみ提示されている。本明細書に含まれる教示に基づき、当業者には追加の実施形態が明白になるであろう。
【図面の簡単な説明】
【0014】
[0014] 明細書に組み込まれ、本明細書の一部を形成する添付の図面は、本発明を図示し、さらに、記述とともに本発明の実施形態の原理を説明し、当業者が本発明を作成して使用できるように役立つ。
【図1A】[0015] 図1Aは、本発明の実施形態を実施することができる、例示的反射型リソグラフィ装置の図である。
【図1B】[0016] 図1Bは、本発明の実施形態を実施することができる、例示的透過型リソグラフィ装置の図である。
【図2】[0017] 図2は、本発明の実施形態を実施することができる、例示的EUVリソグラフィ装置の図である。
【図3】[0018] 図3は、ホログラフィックマスク検査システムの一実施形態の図である。
【図4】[0019] 図4は、レチクルの上に例示的周期的レチクルパターンを有する例示的レチクルの図である。
【図5】[0020] 図5は、フーリエ変換面に空間フィルタを配置する前および後のホログラフィックマスク検査システムの光学システムにおける例示的空間フィルタとフーリエ変換面のイメージの図である。
【図6】[0021] 図6は、別のホログラフィックマスク検査システムの別の実施形態の図である。
【図7】[0022] 図7は、さらなる別のホログラフィックマスク検査システムの一実施形態の図である。
【図8】[0023] 図8は、ホログラフィックマスク検査用の方法の一実施形態の図である。
【0015】
[0024] 本発明の特徴および利点は、以下に述べる詳細な説明を図面と組み合わせて考慮することによりさらに明白になるであろう。ここで、同様の参照文字は全体を通して対応する要素を識別する。図面では、同様の参照番号は全体的に同一、機能的に類似する、および/または構造的に類似する要素を示す。要素が最初に現れた図面を、対応する参照番号の最も左側の(1つ以上の)桁で示す。
【発明を実施するための形態】
【0016】
I.概要
[0025] 本発明の実施形態は、ホログラフィックマスク検査システムに関する。本明細書は、本発明の実施形態の特徴を組み込んだ1つ以上の実施形態を開示する。開示される(1つ以上の)実施形態は、本発明を例示するにすぎない。本発明の範囲は開示される(1つ以上の)実施形態に限定されない。本発明は添付の特許請求の範囲によって定義される。
【0017】
[0026] 記載される(1つ以上の)実施形態、および「一実施形態」、「実施形態」、「例示的実施形態」などへの本明細書における言及は、記載される(1つ以上の)実施形態が特定の特徴、構造または特性を含むことができるが、それぞれの実施形態が必ずしも特定の特徴、構造または特性を含まないことを示す。さらに、そのようなフレーズは、必ずしも同じ実施形態に言及するものではない。さらに、一実施形態に関連して特定の特徴、構造または特性について記載している場合、明示的に記載されているか記載されていないかにかかわらず、そのような特徴、構造、または特性を他の実施形態との関連で実行することが当業者の知識にあることが理解される。
【0018】
[0027] 本発明の実施形態は、ホログラフィックマスク検査システムに関する。ホログラフィックマスク検査システムは、例えば、ホログラフィックイメージを生成するために使用される結果のフィールドの小さい信号対雑音比および登録エラーなどを含むがこれらに限定されない典型的なホログラフィックマスク検査システムにおける問題を解決するために使用することができる。一実施形態では、これらの問題を、ホログラフィックマスク検査システム内の光学システムのフーリエ変換面または瞳面に空間フィルタを配置することによって解決することができる。空間フィルタは、マスク欠陥から反射する光の回折パターンに関連するスペクトル成分を除去することができ、その後、結果のフィールドの信号対雑音比および登録エラーを改善することができる。
【0019】
[0028] そのような実施形態を説明する前に、本発明の実施形態を実施することができる例示的環境を示す。
【0020】
II.例示的リソグラフィ環境
A.例示的反射型および透過型リソグラフィシステム
[0029] 図1Aおよび図1Bは、それぞれリソグラフィ装置100およびリソグラフィ装置100’を概略的に示す。リソグラフィ装置100およびリソグラフィ装置100’の各々は、放射ビームB(例えば、DUVまたはEUV放射)を調整するように構成された照明システム(イルミネータ)ILと、パターニングデバイス(例えば、マスク、レチクルまたは動的パターニングデバイス)MAを支持するように構成され、かつパターニングデバイスMAを正確に位置決めするように構成された第1ポジショナPMに連結されているサポート構造(例えば、マスクテーブル)MTと、基板(例えば、レジストコートウェーハ)Wを保持するように構成され、かつ基板Wを正確に位置決めするように構成された第2ポジショナPWに連結されている基板テーブル(例えば、ウェーハテーブル)WTとを備える。リソグラフィ装置100および100’は、パターニングデバイスMAによって放射ビームBに付けられたパターンを基板Wのターゲット部分(例えば、1つ以上のダイを含む)C上に投影するように構成された投影システムPSも有する。リソグラフィ装置100では、パターニングデバイスMAおよび投影システムPSは反射型であり、リソグラフィ装置100’では、パターニングデバイスMAおよび投影システムPSは透過型である。
【0021】
[0030] 照明システムILとしては、放射Bを誘導し、整形し、または制御するために、屈折型、反射型、磁気型、電磁型、静電型、またはその他のタイプの光コンポーネント、あるいはそれらのあらゆる組合せなどのさまざまなタイプの光コンポーネントを含むことができる。
【0022】
[0031] サポート構造MTは、パターニングデバイスMAの向き、リソグラフィ装置100および100’の設計、および、パターニングデバイスMAが真空環境内で保持されているか否かなどの他の条件に応じた態様で、パターニングデバイスMAを保持する。サポート構造MTは、機械式、真空式、静電式またはその他のクランプ技術を使って、パターニングデバイスMAを保持することができる。サポート構造MTは、例えば、必要に応じて固定または可動式にすることができるフレームまたはテーブルであってもよい。サポート構造MTは、パターニングデバイスを、例えば、投影システムPSに対して所望の位置に確実に置くことができる。
【0023】
[0032] 「パターニングデバイス」MAという用語は、基板Wのターゲット部分C内にパターンを作り出すように、放射ビームBの断面にパターンを与えるために使用できるあらゆるデバイスを指していると、広く解釈されるべきである。放射ビームBに付けたパターンは、集積回路などのターゲット部分C内に作り出されるデバイス内の特定の機能層に対応してもよい。
【0024】
[0033] パターニングデバイスMAは、透過型(図1Bのリソグラフィ装置100’のように)であっても、反射型(図1Aのリソグラフィ装置100のように)であってもよい。パターニングデバイスMAの例としては、レチクル、マスク、プログラマブルミラーアレイ、およびプログラマブルLCDパネルが含まれる。マスクは、リソグラフィでは公知であり、バイナリ、レベンソン型(alternating)位相シフト、およびハーフトーン型(attenuated)位相シフトなどのマスク型、ならびに種々のハイブリッドマスク型を含む。プログラマブルミラーアレイの一例では、小型ミラーのマトリックス配列が用いられており、各小型ミラーは、入射する放射ビームを様々な方向に反射させるように、個別に傾斜させることができる。傾斜されたミラーは、ミラーマトリックスによって反射される放射ビームBにパターンを付ける。
【0025】
[0034] 「投影システム」PSという用語は、使われている露光放射にとって、あるいは液浸液の使用または真空の使用といった他の要因にとって適切な、屈折型、反射型、反射屈折型、磁気型、電磁型、および静電型光学系、またはそれらのあらゆる組合せを含むあらゆる型の投影システムを包含し得る。EUVまたは電子ビーム放射に対しては真空環境が使用されてもよい。なぜなら、他のガスは放射または電子を吸収しすぎてしまう場合があるからである。したがって、真空環境は、真空壁および真空ポンプを用いてビームパス全体に提供されてよい。
【0026】
[0035] リソグラフィ装置100および/またはリソグラフィ装置100’は、2つ(デュアルステージ)以上の基板テーブル(および/または2つ以上のマスクテーブル)WTを有する型のものであってもよい。そのような「マルチステージ」機械においては、追加の基板テーブルWTを並行して使うことができ、または予備工程を1つ以上のテーブル上で実行しつつ、別の1つ以上の基板テーブルWTを露光用に使うこともできる。
【0027】
[0036] 図1Aおよび図1Bを参照すると、イルミネータILは、放射源SOから放射ビームを受ける。例えば、放射源SOがエキシマレーザである場合、放射源SOとリソグラフィ装置100および100’は、別個の構成要素であってもよい。そのような場合には、放射源SOは、リソグラフィ装置100または100’の一部を形成しているとはみなされず、また放射ビームBは、放射源SOからイルミネータILへ、例えば、適切な誘導ミラーおよび/またはビームエキスパンダを含むビームデリバリシステムBD(図1B)を使って送られる。その他の場合においては、例えば、放射源SOが水銀ランプである場合、放射源SOは、リソグラフィ装置100および100’の一体部分とすることもできる。放射源SOおよびイルミネータILは、必要ならばビームデリバリシステムBDとともに、放射システムと呼んでもよい。
【0028】
[0037] イルミネータILは、放射ビームの角強度分布を調節するアジャスタAD(図1B)を含むことができる。一般に、イルミネータの瞳面内の強度分布の少なくとも外側および/または内側半径範囲(通常、それぞれσ-outerおよびσ-innerと呼ばれる)を調節することができる。さらに、イルミネータILは、インテグレータINおよびコンデンサCOといったさまざまな他のコンポーネント(図1B)を含むことができる。イルミネータILを使って放射ビームBを調整すれば、放射ビームの断面に所望の均一性および強度分布をもたせることができる。
【0029】
[0038] 図1Aを参照すると、放射ビームBは、サポート構造(例えば、マスクテーブル)MT上に保持されているパターニングデバイス(例えば、マスク)MA上に入射して、パターニングデバイスMAによってパターン形成される。リソグラフィ装置100では、パターニングデバイス(例えば、マスク)MAから放射ビームBが反射される。パターニングデバイス(例えば、マスク)MAから反射した後、放射ビームBは投影システムPSを通過し、投影システムPSは、基板Wのターゲット部分C上に放射ビームBの焦点をあわせる。第2ポジショナPWおよび位置センサIF2(例えば、干渉計デバイス、リニアエンコーダ、または静電容量センサ)を使って、例えば、さまざまなターゲット部分Cを放射ビームBのパス内に位置決めするように、基板テーブルWTを正確に動かすことができる。同様に、第1ポジショナPMおよび別の位置センサIF1を使い、パターニングデバイス(例えば、マスク)MAを放射ビームBのパスに対して正確に位置決めすることもできる。パターニングデバイス(例えば、マスク)MAおよび基板Wは、マスクアライメントマークM1およびM2と、基板アライメントマークP1およびP2とを使って、位置合わせされてもよい。
【0030】
[0039] 図1Bを参照すると、放射ビームBは、サポート構造(例えば、マスクテーブルMT)上に保持されているパターニングデバイス(例えば、マスクMA)上に入射して、パターニングデバイスによってパターン形成される。マスクMAを通り抜けた後、放射ビームBは投影システムPSを通過し、投影システムPSは、基板Wのターゲット部分C上に放射ビームの焦点をあわせる。第2ポジショナPWおよび位置センサIF(例えば、干渉計デバイス、リニアエンコーダ、または静電容量センサ)を使って、例えば、さまざまなターゲット部分Cを放射ビームBの経路内に位置決めするように、基板テーブルWTを正確に動かすことができる。同様に、第1ポジショナPMおよび別の位置センサ(図1Bには明示的に示されていない)を使い、例えば、マスクライブラリからマスクを機械的に取り出した後またはスキャン中に、マスクMAを放射ビームBの経路に対して正確に位置決めすることもできる。
【0031】
[0040] 通常、マスクテーブルMTの移動は、第1ポジショナPMの一部を形成するロングストロークモジュール(粗動位置決め)およびショートストロークモジュール(微動位置決め)を使って達成することができる。同様に、基板テーブルWTの移動も、第2ポジショナPWの一部を形成するロングストロークモジュールおよびショートストロークモジュールを使って達成することができる。ステッパの場合は(スキャナとは対照的に)、マスクテーブルMTは、ショートストロークアクチュエータのみに連結されてもよく、または固定されてもよい。マスクMAおよび基板Wは、マスクアライメントマークM1およびM2と、基板アライメントマークP1およびP2とを使って、位置合わせされてもよい。例示では基板アライメントマークが専用ターゲット部分を占めているが、基板アライメントマークをターゲット部分とターゲット部分との間の空間内に置くこともできる(これらは、スクライブラインアライメントマークとして公知である)。同様に、複数のダイがマスクMA上に設けられている場合、マスクアライメントマークは、ダイとダイの間に置かれてもよい。
【0032】
[0041] リソグラフィ装置100および100’は、以下のモードのうち少なくとも1つのモードで使用できる。
1.ステップモードにおいては、サポート構造(例えば、マスクテーブル)MTおよび基板テーブルWTを基本的に静止状態に保ちつつ、放射ビームBに付けられたパターン全体を一度にターゲット部分C上に投影する(すなわち、単一静的露光)。その後、基板テーブルWTは、Xおよび/またはY方向に移動され、それによって別のターゲット部分Cを露光することができる。
2.スキャンモードにおいては、サポート構造(例えば、マスクテーブル)MTおよび基板テーブルWTを同期的にスキャンする一方で、放射ビームBに付けられたパターンをターゲット部分C上に投影する(すなわち、単一動的露光)。サポート構造(例えば、マスクテーブル)MTに対する基板テーブルWTの速度および方向は、投影システムPSの(縮小)拡大率および像反転特性によって決めることができる。
3.別のモードにおいては、プログラマブルパターニングデバイスを保持した状態で、サポート構造(例えば、マスクテーブル)MTを基本的に静止状態に保ち、また基板テーブルWTを動かす、またはスキャンする一方で、放射ビームBに付けられたパターンをターゲット部分C上に投影する。パルス放射源SOが採用されており、さらにプログラマブルパターニングデバイスは、基板テーブルWTの移動後ごとに、またはスキャン中の連続する放射パルスと放射パルスとの間に、必要に応じて更新される。この動作モードは、前述の型のプログラマブルミラーアレイといったプログラマブルパターニングデバイスを利用するマスクレスリソグラフィに容易に適用することができる。
【0033】
[0042] 上述の使用モードの組合せおよび/またはバリエーション、あるいは完全に異なる使用モードもまた採用可能である。
【0034】
[0043] 本明細書において、IC製造におけるリソグラフィ装置の使用について具体的な言及がなされているが、本明細書記載のリソグラフィ装置が、集積光学システム、磁気ドメインメモリ用のガイダンスパターンおよび検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッド等の製造といった他の用途を有し得ることが理解されるべきである。当業者にとっては当然のことであるが、そのような別の用途においては、本明細書で使用される「ウェーハ」または「ダイ」という用語はすべて、それぞれより一般的な「基板」または「ターゲット部分」という用語と同義であるとみなしてよい。本明細書に記載した基板は、露光の前後を問わず、例えば、トラック(通常、基板にレジスト層を塗布し、かつ露光されたレジストを現像するツール)、メトロロジーツール、および/またはインスペクションツールで処理されてもよい。適用可能な場合には、本明細書中の開示内容を上記のような基板プロセシングツールおよびその他の基板プロセシングツールに適用してもよい。さらに基板は、例えば、多層ICを作るために複数回処理されてもよいので、本明細書で使用される基板という用語は、すでに多重処理層を包含している基板を表すものとしてもよい。
【0035】
[0044] さらなる実施形態においては、リソグラフィ装置100は、EUVリソグラフィのためのEUV放射ビームを生成するように構成された極端紫外線(EUV)源を含む。一般には、EUV源は放射システム内に構成されており(下記参照)、対応する照明システムはEUV源のEUV放射ビームを調整するように構成されている。
【0036】
B.例示的EUVリソグラフィ装置
[0045] 図2は、本発明の一実施形態による例示的EUVリソグラフィ装置200を概略的に示す。図2では、EUVリソグラフィ装置200は、放射システム42、照明光学ユニット44および投影システムPSを含む。放射システム42は、放射ビームが放電プラズマによって形成され得る放射源SOを含む。一実施形態では、EUV放射は、電磁スペクトルのEUV範囲内の放射を放出するために非常に高温のプラズマが生成される、例えば、Xeガス、Li蒸気あるいはSn蒸気などのガスまたは蒸気によって生成され得る。非常に高温のプラズマは、少なくとも部分的にイオン化されたプラズマを、例えば、放電によって生成することによって作り出すことができる。例えば、10PaのXe、Li、Sn蒸気、あるいは任意の他の適したガスまたは蒸気の分圧が、放射の効率的な生成のために必要とされることがある。放射源SOによって放出される放射は、放射源チャンバ47から、放射源チャンバ47における開口部内またはその後方に位置決めされたガスバリアまたは汚染物質トラップ49を介してコレクタチャンバ48へと進む。一実施形態では、ガスバリア49はチャネル構造を含んでもよい。
【0037】
[0046] コレクタチャンバ48は、かすめ入射コレクタによって形成され得る放射コレクタ50(集光ミラーまたはコレクタとも呼ぶ)を含む。放射コレクタ50は、上流放射コレクタ側50aおよび下流放射コレクタ側50bを有する。コレクタ50を通った放射は、格子スペクトルフィルタ51から反射してコレクタチャンバ48内のアパーチャにおける仮想光源点52に合焦することができる。放射コレクタ50は、当業者には周知である。
【0038】
[0047] 放射ビーム56は、集光チャンバ48から、法線入射リフレクタ53および54を介してレチクルまたはマスクテーブルMT上に位置決めされたレチクルまたはマスク(図示せず)上へと照明光学ユニット44内で反射する。パターン付きビーム57が形成され、これは、投影システムPSにおいて反射要素58および59を介してウェーハステージまたは基板テーブルWT上で支持された基板(図示せず)上に結像される。様々な実施形態では、照明光学ユニット44および投影システムPSは、図2に示されたものよりも多くの(または少ない)要素を含んでもよい。例えば、格子スペクトルフィルタ51は、リソグラフィ装置のタイプによって任意的に存在してもよい。さらに、一実施形態では、照明光学ユニット44および投影システムPSは、図2に示されたものよりも多くのミラーを含んでもよい。例えば、投影システムPSは、反射要素58および59に加えて1〜4個の反射要素を組み入れてもよい。図2では、参照番号180は2つのリフレクタ間の空間、例えば、リフレクタ142とリフレクタ143との間の空間を示す。
【0039】
[0048] 一実施形態では、集光ミラー50は、かすめ入射ミラーの代わりにまたはそれに加えて法線入射コレクタを含んでもよい。さらに、集光ミラー50は、リフレクタ142、143および146を有する入れ子化されたコレクタについて記述されているが、本明細書中、コレクタの一例としてさらに使用されている。
【0040】
[0049] さらに、図2に概略的に示すような格子51の代わりに、透過型光フィルタが適用されてもよい。EUVが透過する光フィルタ、ならびにUV放射があまり透過せず、またはUV放射を実質的に吸収までもする光フィルタは、当業者には周知である。したがって、「格子スペクトル純度フィルタ」は、本明細書中、格子または透過型フィルタを含む「スペクトル純度フィルタ」としてほぼ同じ意味でさらに示される。図2には示されていないが、EUV透過型光フィルタは、例えば集光ミラー50の上流に構成された追加の光学要素、あるいは照明ユニット44および/または投影システムPSにおける光EUV透過型フィルタとして含まれてもよい。
【0041】
[0050] 光学要素に対する「上流」および「下流」という用語は、それぞれ、1つ以上の追加の光学要素の「光学的上流」および「光学的下流」である1つ以上の光学要素の位置を示す。放射ビームがリソグラフィ装置200を通り抜ける光路に従って、第2光学要素より放射源SOに近い第1光学要素は第2光学要素の上流に構成され、第2光学要素は第1光学要素の下流に構成される。例えば、集光ミラー50がスペクトルフィルタ51の上流に構成されるのに対して、光学要素53はスペクトルフィルタ51の下流に構成される。
【0042】
[0051] 図2に示される全ての光学要素(および本実施形態の概略図に示されていない追加の光学要素)には、例えばSnなどの放射源SOによって生成される汚染物質が堆積しやすいことがある。これは放射コレクタ50にも当てはまり、スペクトル純度フィルタ51が存在した場合にも当てはまる。したがって、洗浄デバイスがこれらの光学要素のうちの1つ以上を洗浄するために採用されるとともに洗浄方法がそれらの光学要素に適用されてもよいが、法線入射リフレクタ53および54、ならびに反射要素58および59、または追加のミラー、格子等の他の光学要素に適用されてもよい。
【0043】
[0052] 放射コレクタ50はかすめ入射コレクタであってもよく、そのような実施形態では、コレクタ50は光軸Oに沿って位置合わせされる。放射源SOまたはその像は、光軸Oに沿って配置されてもよい。放射コレクタ50は、リフレクタ142、143および146(「シェル)」またはいくつかのWolter型リフレクタを含むWolter型リフレクタとしても公知である)を含んでもよい。リフレクタ142、143および146は、入れ子化され、光軸Oの周りで回転対称であってもよい。図2では、内側リフレクタは参照番号142で示され、中間リフレクタは参照番号143で示され、かつ外側リフレクタは参照番号146で示される。放射コレクタ50は、ある体積(すなわち(1つ以上の)外側リフレクタ146内の体積)を包囲する。通常、(1つ以上の)外側リフレクタ146内の体積は、小さな開口部が存在してもよいが、円周方向で閉じられている。
【0044】
[0053] リフレクタ142、143および146のそれぞれは、その少なくとも一部が1層の反射層または多数の反射層を表す表面を含んでよい。したがって、リフレクタ142、143および146(あるいは3つより多いリフレクタまたはシェルを有する放射コレクタの実施形態における追加のリフレクタ)は、放射源SOからEUV放射を反射および集光するように少なくとも部分的に設計され、かつリフレクタ142、143および146の少なくとも一部は、EUV放射を反射および集光するように設計されないことがある。例えば、リフレクタの裏面の少なくとも一部は、EUV放射を反射および集光するように設計されない。これらの反射層の表面上には、反射層の表面の少なくとも一部の上に設けられる保護のためまたは光フィルタとしてのキャップ層があってもよい。
【0045】
[0054] 放射コレクタ50は、放射源SOまたは放射源SOの像の付近に配置されてよい。リフレクタ142、143および146の各々は、少なくとも2つの隣接する反射面を含んでよく、放射源SOから離れたほうに位置する反射面は、放射源SOに近いほうに位置する反射面よりも、光軸Oに対して小さな角度で配置される。このようにして、かすめ入射コレクタ50は、光軸Oに沿って伝搬する(E)UV放射ビームを生成するように構成される。少なくとも2つのリフレクタは、実質的に同軸に配置され、光軸Oの周りで実質的に回転対称に延在してもよい。放射コレクタ50が、外側リフレクタ146の外面上にさらなるフィーチャ、または外側リフレクタ146の周りにさらなるフィーチャ、例えば保護ホルダやヒータなどを有してもよいことが理解されたい。
【0046】
[0055] 本明細書中に記載する実施形態において、「レンズ」および「レンズ要素」という用語は、文脈によっては、屈折、反射、磁気、電磁気、および静電型光コンポーネントを含む様々な種類の光コンポーネントのいずれか1つまたはこれらの組合せを指すことができる。
【0047】
[0056] 本明細書で使用する「放射」および「ビーム」という用語は、紫外線(UV)(例えば、365、248、193、157、または126nmの波長λを有する)、極端紫外線(EUVまたは軟X線)(例えば、5〜20nmの範囲の波長、例えば13.5nmの波長を有する)または5nm未満で働く硬X線、ならびにイオンビームや電子ビームなどの粒子ビームを含めた全てのタイプの電磁放射を包含している。一般に、約780〜3000nm(以上)の間の波長を有する放射がIR放射とみなされる。UVとは、約100〜400nmの波長を有する放射のことを指す。リソグラフィにおいて、UVは、水銀放電ランプによって生成することができる波長、すなわちG線436nm、H線405nmおよび/またはI線365nmにも当てはまる。真空UVまたはVUV(すなわち、空気によって吸収されるUV)とは、約100〜200nmの波長を有する放射のことを指す。深UV(DUV)とは、通常、126nm〜428nmの範囲の波長を有する放射のことを指し、一実施形態では、エキシマレーザがリソグラフィ装置内で使用されるDUV放射を生成することができる。当然のことながら、例えば5〜20nmの範囲内の波長を有する放射は、少なくともその一部が5〜20nmの範囲内にある特定の波長帯域を有する放射に関する。
【0048】
III.ホログラフィックマスク検査システムの実施形態
[0057] 図3は、ホログラフィックマスク検査システム300の一実施形態の図である。ホログラフィックマスク検査システム300は、ミラー320、照明源330、対物レンズ340、空間フィルタ350、ビームコンバイナ360、チューブレンズ370およびイメージセンサ380を含む。対物レンズ340、空間フィルタ350、ビームコンバイナ360およびチューブレンズ370を、本明細書中、ホログラフィックマスク検査システム300の光学システム390とも総称する。「レチクル」および「マスク」という単語は、本明細書中、交換可能に用いられる。
【0049】
[0058] フーリエ光学の分野においては、特定の光学システム(例えば、図3の光学システム390)に対しては、光学システムの瞳はあらゆる物体パターンの光フーリエ変換を表すということが周知である。物体を光学的に変換する動作において、物体におけるエネルギーの空間周波数は、瞳内の空間的位置へと変換される。変換動作の結果として、レチクルから回折されるエネルギーのかなりの部分(例えば、エネルギーの大部分)は、瞳内の特定の空間的位置にマッピングされる。
【0050】
[0059] フーリエ光学の分野においては、小さい粒子(例えば、レチクル上の欠陥)が入射エネルギーをかなり均一に全ての角度に散乱させることも周知である。結果的に、光学システム(例えば、図3の光学システム390)によって集光された粒子からのエネルギーは、光学システムの瞳にわたってかなり均一に広がる。本発明の一実施形態では、空間フィルタを光学システムの瞳面(本明細書中、光学システムのフーリエ変換面とも呼ぶ)に導入することにより、イメージを再び形成するための多量の粒子のエネルギーを残しつつイメージ背景から多量のエネルギーを取り除くことが可能である。
【0051】
[0060] 特に、図3に示すように、ホログラフィックマスク検査システム300の使い方の1つは、所定のレチクル310の1つ以上のターゲット部分のホログラムイメージを生成することである。その後、レチクル310のホログラムイメージを、参照または理想レチクルパターンの1つ以上の対応するイメージと比較してマスク欠陥の存在を決定することができる。上記の導入部分に記載したように、典型的なホログラフィックマスク検査システムは、例えば、ホログラフィックイメージを生成するために使用される結果のフィールド内の小さい信号対雑音比および登録エラーなどを含むがこれらに限定されない問題に直面する。特に、ホログラフィックマスク検査システム300の目的は、これらの問題および典型的なホログラフィックマスク検査システムにおける他の問題を解決することである。本明細書中の記載に基づいて、当業者は、ホログラフィックマスク検査システム300を用いて結果のフィールド内の小さい信号対雑音比および登録エラー以外のホログラフィック問題を解決できることを理解するであろう。
【0052】
[0061] 一実施形態では、ホログラフィックマスク検査システム300は、図1Aの反射型リソグラフィ装置、図1Bの透過型リソグラフィ装置または図2のEUVリソグラフィ装置と連動して動作するスタンドアロンシステムであってもよい。別の実施形態では、ホログラフィックマスク検査システム300は、図1Aの反射型リソグラフィ装置、図1Bの透過型リソグラフィ装置または図2のEUVリソグラフィ装置のいずれかと一体化されてもよい。例えば、図1の照明源ILが図1の反射型リソグラフィ装置と一体化された場合、照明源ILは、照明源をホログラフィックマスク検査システム300にも提供することができる。ホログラフィックマスク検査システム300(例えば、照明源330)用の照明源については、以下にさらに詳細に説明する。
【0053】
[0062] 図4は、例示的レチクル400の図であり、このレチクル410はその上に周期的レチクルパターン420を有する。分かりやすくするために、レチクル410およびその周期的パターン420を用いてホログラフィックマスク検査システム300の説明を簡単にする。本明細書中の説明に基づいて、当業者は、他のレチクルおよびレチクルパターンを本発明の実施形態とともに用いることができることを理解するであろう。これらの他のレチクルおよびレチクルパターンは、本発明の精神および範囲内にある。
【0054】
[0063] 図3に戻ると、照明源330は、放射ビーム331をミラー320に向かって放出するように構成されている。ミラー320は、放射ビーム331をレチクル310のターゲット部分上に誘導する。放射ビームの波長は、例えば、266nmを含むがこれに限定されない。当業者にとっては当然のことであるが、本発明の精神および範囲から逸脱することなく他の波長を使用することができる。
【0055】
[0064] 光学システム390は、レチクル310のターゲット部分から反射放射ビーム311の一部を受ける。一実施形態では、対物レンズ340は、反射放射ビーム311の一部を受けるように光学システム390内に構成される。本発明の一実施形態によると、空間フィルタ350は、その後、対物レンズ340から反射放射ビーム311の一部を受ける。
【0056】
[0065] 本発明の一実施形態によると、反射放射ビーム311の一部が空間フィルタ350によってフィルタリングされた後、ビームコンバイナ360は、反射放射ビーム311の一部を受ける。一実施形態では、ビームコンバイナ360は、反射放射ビーム311の一部を参照放射ビーム361と組み合わされるように構成される。本明細書中、反射放射ビーム311の一部と参照放射ビーム361との組み合わせを「組み合わせ放射ビーム」とも呼ぶ。参照放射ビーム361は、例えば、空間フィルタ350から反射放射ビーム311の一部を干渉するために使用される二次光源であってもよいがこれに限定されない。別の実施形態では、参照放射ビーム361は照明源330から生成することができ、さらに放射ビーム331と同じ種類の光であってもよい。さらなる別の実施形態では、参照放射ビーム361は、図1Aの反射型リソグラフィ装置の照明源、図1Bの透過型リソグラフィ装置または図2のEUVリソグラフィ装置の照明源から生成することができる。
【0057】
[0066] 当業者には明らかなように、反射放射ビーム311の一部と参照放射ビーム361との干渉から生成される結果のフィールドを用いてレチクル310のターゲット部分のホログラムイメージを生成することができる。本発明の一実施形態によると、組み合わせ放射ビーム(例えば、反射放射ビーム311の一部と参照放射ビーム361との干渉)は、ビームコンバイナ360からチューブレンズ370へと誘導される。
【0058】
[0067] 一実施形態では、イメージセンサ380の一部は、チューブレンズ370から組み合わせ放射ビームを受け、組み合わせ放射ビームからの結果のフィールドを記録する。イメージセンサ380は、例えば、センサアレイを有するシリコン電荷結合素子であってもよいがこれに限定されない。本明細書中の記載に基づいて、当業者にとって当然ではあるが、他の種類のイメージセンサを用いて結果のフィールドを受けかつ記録することができる。これらの他の種類のイメージセンサは、本発明の範囲および精神内にある。
【0059】
[0068] 本発明の一実施形態によると、イメージセンサ380からの記録済結果のフィールドは、レチクル310のターゲット部分のホログラムイメージを生成するために用いることができる。一実施形態では、ホログラムイメージを参照イメージと比較してマスク欠陥の存在を決定することができる。
【0060】
[0069] 図3を参照すると、光学システム390のフーリエ変換面または瞳面内の空間フィルタ350の配置は、上記の信号対雑音比および登録エラー問題を解決する。図3の光学システム390内の空間フィルタ350の配置で示すように、フーリエ変換面または瞳面は、例えば、対物レンズ340とビームコンバイナ360との間の領域に配置されてもよいがこれに限定されない。一実施形態では、空間フィルタ350は、光学システム390のフーリエ変換面に位置決めされ、それによって、反射放射ビーム311の一部に対応するイメージ内の1つ以上の空間周波数成分は、フィルタリングされるかまたはビームコンバイナ360へと透過されないように除去される。
【0061】
[0070] 図5は、例示的空間フィルタ520、図3の光学システム390のフーリエ変換面に空間フィルタ520が配置されていないフーリエ変換面のイメージ510、およびフーリエ変換面に空間フィルタ520が配置されているイメージ530の図である。イメージ510は、レチクル310のターゲット部分から反射した光の回折パターンに関連する例示的スペクトル成分を示す。光学システム390のフーリエ変換面に空間フィルタ520が配置されていない場合、スペクトル成分511を受けてイメージセンサ380によって記録することができる(例えば、スペクトル成分511は、ビームコンバイナ360が受けた反射放射ビーム311の一部に組み入れられ、ビームコンバイナ360によって参照放射ビーム361と組み合わされてチューブレンズ370を通ってイメージセンサ380へと移る)。
【0062】
[0071] 光学システムによって形成されたイメージから特定のスペクトル成分511を除去することは、イメージセンサ380によって記録された結果のフィールド内の信号対雑音比の改善に繋がることができる。これは、特定の例における最も明るいスペクトル成分511がレチクルの背景から反射したエネルギーの大部分を含む一方、レチクル上の推定上の粒子からのエネルギーがスペクトル成分511の周りに均等に分配されるからである。一実施形態では、図5の空間フィルタ520は、レチクルの背景に関連する最も強力なスペクトル成分511に関連する背景光を除去する。結果的に、図3のイメージセンサ380による光の検出は、レチクル上に存在するあらゆる粒子から散乱したほとんどのエネルギーに加えて、レチクル310のターゲット部分から反射した光のかなりの減少した量に制限される。言い換えると、本発明の一実施形態によると、空間フィルタ520は、レチクル背景に関するスペクトル成分511に関連する光がイメージセンサ380によって検出されることから防ぐ。例えば、スペクトル成分511の遮断は、図5のイメージ530に示されており、空間フィルタ520は、イメージ510からスペクトル成分511をフィルタリングする。次に、図3のビームコンバイナ360で形成される結果のフィールドの信号対雑音比は上昇し、これはイメージセンサ380の感度もあげてマスク欠陥を検出する。
【0063】
[0072] 特に、空間フィルタ520の別の利点は、マスク欠陥の検出における登録エラーに対する感度の低下である。上記したように、本発明の一実施形態によると、空間フィルタ520によって背景パターンによるスペクトル成分511を除去することによって、ホログラムイメージを、背景パターンによるスペクトル成分511を含まない結果のフィールドから生成することができる(例えば、図3の反射放射ビーム311の一部と参照放射ビーム361との干渉)。一実施形態では、レチクル310のターゲット部分のホログラムイメージを参照イメージと比較してマスク欠陥の存在を決定することができる。しかしながら、スペクトル成分511が空間フィルタ520によってフィルタリングされない場合、スペクトル成分511はレチクル310のターゲット部分のホログラムイメージの一部となり、これは参照イメージと比較した場合には1つ以上のマスク欠陥の虚偽表示を生成し得る。したがって、スペクトル成分511を除去することにより、図3の光学システム390のフーリエ変換面内の空間フィルタ520の配置は、結果のフィールド内の信号対雑音比を改善するだけではなく、マスク欠陥の検出における登録エラーに対する感度も低下させる。
【0064】
[0073] 一実施形態では、空間フィルタ520のパターンは、図3のレチクル310のターゲット部分によって作り出される所定の回折パターンに依存する。当業者には明らかであるように、レチクル310(例えば、図5のスペクトル成分511)のターゲット部分から回折される光のパターンは、レチクル310(例えば、図4の周期的レチクルパターン420)上に配置されたパターンに依存する。したがって、当業者にとっては当然ではあるが、空間フィルタ(例えば、図5の空間フィルタ520)のパターンは、レチクルの異なるターゲット部分によって回折される光に関連するスペクトル成分の様々なパターンをフィルタリングするために異なることができる。しかしながら、一実施形態では、空間フィルタ530のパターンは、レチクル上の様々なパターンに関連するスペクトル成分の様々なパターンを最適にフィルタリングするために選択することができる。
【0065】
[0074] 図6は、本発明の一実施形態による別のホログラフィックマスク検査システム600の図である。ホログラフィックマスク検査システム600は、ミラー320、照明源330、イメージセンサ380、光学システム610およびビームスプリッタ620を含む。所定のレチクル310、ミラー320、照明源330およびイメージセンサ380に関する記載は、図3のホログラフィックマスク検査システム300に対するそれぞれの記載と類似している。一実施形態では、ビームスプリッタ620は、放射ビーム331の一部をミラー320に誘導し、放射ビーム331の別の部分を光学システム610に誘導する。
【0066】
[0075] 一実施形態では、光学システム610は、対物レンズ340、空間フィルタ350、チューブレンズ630、ミラー640、チューブレンズ650およびビームコンバイナ660を含む。対物レンズ340および空間フィルタ350に関する記載は、図3のホログラフィックマスク検査システム300に対するそれぞれの記載と類似している。一実施形態では、チューブレンズ650は、空間フィルタ350から反射放射ビーム311の一部を受けて反射放射ビーム311の一部をビームコンバイナ660に透過させる。
【0067】
[0076] 本発明の一実施形態によると、ビームコンバイナ660は、反射放射ビーム311の一部を放射ビーム331と組み合わせて組み合わせ放射ビーム670(例えば、反射放射ビーム311の一部と放射ビーム331との干渉)を生成する。一実施形態では、ビームコンバイナ660は、チューブレンズ630およびミラー640を介して放射ビーム331受ける。本発明の一実施形態によると、イメージセンサ380は、ビームコンバイナ660から組み合わせ放射ビーム670を受け、ここでは、イメージセンサ380は、組み合わせ放射ビーム670からの結果のフィールドを記録する。
【0068】
[0077] 図3のホログラフィックマスク検査システム300と同様に、図6のホログラフィックマスク検査システム600は、光学システム610のフーリエ変換面に空間フィルタ350を含む。一実施形態では、光学システム610のフーリエ変換面における空間フィルタ350の配置は、反射放射ビーム311の一部に組み入れられるスペクトル成分(例えば、図5のスペクトル成分511)を除去する。これは、次いで、ビームコンバイナ660で形成された結果のフィールドの信号対雑音比を改善し、結果のフィールおよび参照イメージから生成されるホログラムイメージの比較における登録エラーを減少させる。
【0069】
[0078] 図7は、本発明の一実施形態による、さらなる別のホログラフィックマスク検査システムの図である。ホログラフィックマスク検査システム700は、照明源330、光学システム710およびイメージセンサ380を含む。所定のレチクル310、ミラー320、照明源330およびイメージセンサ380に関する記載は、図3のホログラフィックマスク検査システム300に対するそれぞれの記載と類似している。
【0070】
[0079] 一実施形態では、光学システム710は、参照ミラー720、対物レンズ730、ビームスプリッタおよびコンバイナ740、対物レンズ340、リレーレンズ750、空間フィルタ350およびチューブレンズ760を含む。対物レンズ340および空間フィルタ350に関する記載は、図3のホログラフィックマスク検査システム300に対するそれぞれの記載と類似している。一実施形態では、ビームスプリッタおよびコンバイナ740は、ミラー320から放射ビーム331を受け、放射ビームの一部を対物レンズ730に誘導し、放射ビーム331の別の部分を対物レンズ340に誘導する。対物レンズ340に誘導される放射ビーム331の一部は、レチクル310のターゲット部分に向かって誘導される。本発明の一実施形態によると、ここでは、反射ビーム311の一部は、対物レンズ340とビームスプリッタおよびコンバイナ740に戻るように誘導される。
【0071】
[0080] さらに、本発明の一実施形態によると、対物レンズ730に向かって誘導される放射ビーム331の一部は、参照ミラー720から反射して対物レンズ730とビームスプリッタおよびコンバイナ740に戻るように誘導される。一実施形態では、参照ミラー720は、空間ホログラフィックイメージを、対物レンズ340からの反射放射ビーム311の一部と対物レンズ730からの放射ビーム331との干渉の結果のフィールドから生成することができるように構成される。別の実施形態では、参照ミラー720は、調整可能な変位を有しており、放射ビーム331を様々な光路長で反射することができ、それによって、位相シフトホログラフィックイメージを組み合わせ放射ビームの結果のフィールドから生成することができる。空間および位相シフトホログラフィックイメージの生成のための方法および技術は、当業者には公知である。
【0072】
[0081] 一実施形態では、ビームスプリッタおよびコンバイナ740は、対物レンズ730からの放射ビーム331を対物レンズ730からの反射放射ブーム311の一部と組み合わせて組み合わせ放射ビーム(例えば、反射放射ビーム311と放射ビーム331との干渉)を生成するように構成される。一実施形態では、リレーレンズ750は、ビームスプリッタおよびコンバイナ740から組み合わせ放射ビームを受け、組み合わせ放射ビームを空間フィルタ350に向かって誘導する。空間フィルタ350によってフィルタリングされた後、組み合わせ放射ビームは、チューブレンズ760によって受けられ、チューブレンズは、組み合わせ放射ビームをイメージセンサ380の一部に向かって誘導する。
【0073】
[0082] 図3のホログラフィックマスク検査システム300および図6のホログラフィックマスク検査システム600と同様に、図7のホログラフィックマスク検査システム700は、光学システム710のフーリエ変換面に空間フィルタ350を含む。一実施形態では、光学システム710のフーリエ変換面における空間フィルタ350の配置は、反射放射ビーム311の一部に組み入れられるスペクトル成分(例えば、図5のスペクトル成分511)を除去する。これは、その結果、ビームスプリッタおよびコンバイナ740で形成された結果のフィールドの信号対雑音比を改善し、結果のフィールドから生成されるホログラムイメージと参照イメージとの比較における登録エラーを減少させる。
【0074】
[0083] 本明細書中の記載に基づいて、当業者にとっては当然であるが、本発明の実施形態は、図3、図6および図7のホログラフィックマスク検査システム300、600および700のそれぞれに限定されておらず、光学システム(例えば、図3、図6および図7のそれぞれの光学システム390、610および710)の様々な構成を有する他のホログラフィックマスク検査システムを実施することができる。光学システムの様々な構成を有するこれらの他のホログラフィックマスク検査システムは、本発明の範囲および精神内にある。
【0075】
[0084] 図8は、ホログラフィックマスク検査のための方法800の一実施形態の図である。方法800は、例えば、図3のホログラフィックマスク検査300、図6のホログラフィックマスク検査システム600または図7のホログラフィックマスク検査システム700を含むがこれらに限定されないものを用いて発生させることができる。ステップ810では、マスクのターゲット部分が照明される。マスクのターゲット部分は、例えば、図3、図6および図7の照明源330を含むがこれらに限定されないものによって照明されることができる。
【0076】
[0085] ステップ820では、マスクのターゲット部分からの反射放射ビームの一部が受け取られ、反射放射ビームの一部は、光学システムのフーリエ変換面に配置された空間フィルタを通り抜ける。図3〜図7に対して記載したように、空間フィルタ(例えば、空間フィルタ350)は、反射放射ビームにおける回折光に関連するスペクトル成分がフィルタリングされるかまたは(ステップ830における)組み合わせ放射ビームの一部として透過されないように除去されるように光学システムのフーリエ変換面に配置されてよい。
【0077】
[0086] ステップ830では、空間フィルタからの反射放射ビームの一部は、参照放射ビームと組み合わされて組み合わせ放射ビームを生成する。図3のビームコンバイナ360、図6のビームコンバイナ660、または図7のビームスプリッタおよびコンバイナ740を用いて、例えば、空間フィルタからの反射放射ビームの一部を参照放射ビームと組み合わせてよいが、これに限定されない。
【0078】
[0087] ステップ840では、組み合わせ放射ビームに対応するイメージは、イメージセンサによって検出される。図3に対して上記したように、イメージセンサは、センサアレイを有するシリコン電荷結合素子であってもよい。
【0079】
[0088] 要するに、ホログラフィックマスク検査システム(例えば、図3のホログラフィックマスク検査システム300、図6のホログラフィックマスク検査システム600および図7のホログラフィックマスク検査システム700)における光学システムのフーリエ変換面内の空間フィルタの配置により、マスクのターゲット部分から反射される放射ビームにおける回折光に関連するスペクトル成分を除去することができる。その結果、特に、これらのスペクトル成分を除去することに対する利点は、ホログラフィックイメージの結果のフィールドにおける信号対雑音比の改善およびマスクのターゲット部分のホログラフィックイメージを参照イメージと比較した場合における登録エラーの減少である。
【0080】
IV.結論
[0089] 発明の概要および要約の項目は、(一人以上の)発明者が想定するような本発明の1つ以上の例示的実施形態について述べることができるが、全ての例示的実施形態を述べることはできず、したがって、本発明および添付の請求の範囲をいかなる意味でも制限しないものとする。
【0081】
[0090] 本発明の実施形態は、特定の機能の実施を例示する機能的構成要素およびその関係を用いて上記に記載してきた。これらの機能的構成要素の境界は、説明の便宜性のために本明細書中に任意に画定されている。特定の機能およびその関係が適切に行われる限り、代替的な境界を画定することができる。
【0082】
[0091] 特定の実施形態の前述の説明は、本発明の全体的性質を十分に明らかにしているので、当技術分野の知識を適用することにより、過度の実験をせず、本発明の全体的な概念から逸脱することなく、このような特定の実施形態を容易に変更および/またはこれを様々な用途に適応させることができる。したがって、このような適応および変更は、本明細書に提示された教示および案内に基づき、開示された実施形態の同等物の意味および範囲に入るものとする。本明細書の表現または用語は説明のためのもので、制限するものではなく、したがって本明細書の用語または表現は、当業者には教示および案内の観点から解釈されるべきことを理解されたい。
【0083】
[0092] 本発明の幅および範囲は、上述した例示的実施形態のいずれによっても制限されず、以下の特許請求の範囲およびその同等物によってのみ定義されるものである。

【特許請求の範囲】
【請求項1】
ホログラフィックマスク検査システムであって、
放射ビームでマスクのターゲット部分上を照明するように構成された照明源と、
光学システムの瞳面に配置された空間フィルタであって、前記空間フィルタは、前記マスクの前記ターゲット部分から反射放射ビームの少なくとも一部を受け、前記光学システムは、前記反射放射ビームの前記一部を参照放射ビームと組み合わせて組み合わせ放射ビームを生成する、空間フィルタと、
前記組み合わせ放射ビームに対応するイメージを検出するように構成されたイメージセンサと
を含む、ホログラフィックマスク検査システム。
【請求項2】
ミラーをさらに含み、前記ミラーは、前記照明源からの前記放射ビームを前記マスクの前記ターゲット部分上に反射させるように構成されている、請求項1に記載のホログラフィックマスク検査システム。
【請求項3】
前記空間フィルタは、前記反射放射ビームに対応する前記イメージにおける1つ以上の空間周波数成分をフィルタリングするように構成されている、請求項1に記載のホログラフィックマスク検査システム。
【請求項4】
前記空間フィルタは、前記マスクの前記ターゲット部分によって生成される所定の回折パターンに基づくフィルタパターンを含む、請求項3に記載のホログラフィックマスク検査システム。
【請求項5】
前記光学システムは、
前記空間フィルタが前記反射放射ビームの前記一部を受ける前に前記反射放射ビームの前記一部を受けるように構成された対物レンズと、
前記空間フィルタからの前記反射放射ビームの前記一部を前記参照放射ビームと組み合わせて前記組み合わせ放射ビームを生成するように構成されたビームコンバイナであって、前記空間フィルタは、前記対物レンズと前記ビームコンバイナとの間に位置決めされている、ビームコンバイナと、
前記組み合わせ放射ビームを受け、かつ前記組み合わせ放射ビームを前記イメージセンサの一部上に誘導するように構成されたチューブレンズと
を含む、請求項1に記載のホログラフィックマスク検査システム。
【請求項6】
前記光学システムは、
前記照明源からの前記放射ビームを前記マスクの前記ターゲット部分上に反射させるように構成されたミラーと、
前記放射ビームを前記ミラーに向かって誘導し、かつ前記放射ビームに基づいて前記参照放射ビームを生成するように構成されたビームスプリッタと、
前記空間フィルタが前記反射放射ビームの前記一部を受ける前に前記反射放射ビームの前記一部を受けるように構成された対物レンズと、
前記空間フィルタからの前記反射放射ビームの前記一部を受けるように構成されたチューブレンズであって、前記空間フィルタは、前記対物レンズと前記チューブレンズとの間に位置決めされる、チューブレンズと、
前記チューブレンズからの前記反射放射ビームの前記一部を前記参照放射ビームと組み合わせて前記組み合わせ放射ビームを生成するように構成されたビームコンバイナと
を含む、請求項1に記載のホログラフィックマスク検査システム。
【請求項7】
前記光学システムは、
前記放射ビームおよび前記反射放射ビームの前記一部を受けるように構成された対物レンズと、
前記参照放射ビームを受けるように構成された参照ミラーと、
前記放射ビームを前記対物レンズおよび前記参照ミラーに向かって誘導し、かつ前記反射放射ビームの前記一部を前記参照ミラーからの前記参照放射ビームの反射と組み合わせて前記組み合わせ放射ビームを生成するように構成されたビームスプリッタおよびコンバイナと、
前記組み合わせ放射ビームを受けるリレーレンズと、
前記リレーレンズから前記組み合わせ放射ビームを受け、かつ前記組み合わせ放射ビームを前記イメージセンサの一部に誘導するように構成されたチューブレンズであって、前記空間フィルタは、前記リレーレンズと前記チューブレンズとの間に位置決めされている、チューブレンズと
を含む、請求項1に記載のホログラフィックマスク検査システム。
【請求項8】
前記イメージセンサは、センサアレイを有するシリコン電荷結合素子を含む、請求項1に記載のホログラフィックマスク検査システム。
【請求項9】
前記イメージは、前記マスク上の1つ以上のマスク欠陥に対応する情報を含む、請求項1に記載のホログラフィックマスク検査システム。
【請求項10】
放射ビームでマスクのターゲット部分上を照明することと、
光学システムの瞳面に配置された空間フィルタに前記マスクの前記ターゲット部分からの反射放射ビームの少なくとも一部を通過させることと、
前記空間フィルタからの前記反射放射ビームの前記一部を参照放射ビームと組み合わせて組み合わせ放射ビームを生成することと、
前記組み合わせ放射ビームに対応するイメージを検出することと
を含む、ホログラフィックマスク検査方法。
【請求項11】
ミラーを用いて照明源からの前記放射ビームを前記マスクの前記ターゲット部分上に反射させることをさらに含む、請求項10に記載の方法。
【請求項12】
前記反射放射ビームの前記少なくとも一部を通過させることは、前記反射放射ビームに対応する前記イメージ内の1つ以上の空間周波数成分をフィルタリングすることを含む、請求項10に記載の方法。
【請求項13】
前記1つ以上の空間周波数成分をフィルタリングすることは、前記マスクの前記ターゲット部分によって生成される所定の回折パターンに基づいて1つ以上の空間周波数成分をフィルタリングすることを含む、請求項12に記載の方法。
【請求項14】
前記イメージを検出することは、前記マスク上の1つ以上のマスク欠陥を検出することを含む、請求項10に記載の方法。
【請求項15】
リソグラフィシステムであって、
第1放射ビームを調整するように構成された第1照明システムと、
前記第1放射ビームの断面にパターンを付与してパターン付き放射ビームを形成するように構成されたパターニングデバイスを支持するように構成されたサポートと、
基板を保持するように構成された基板テーブルと、
前記パターン付き放射ビームを前記基板上に合焦させるように構成された投影システムと、
ホログラフィックマスク検査システムと
を含み、前記ホログラフィックマスク検査システムは、
第2放射ビームで前記パターニングデバイスのターゲット部分上を照明するように構成された第2照明源と、
光学システムの瞳面に配置された空間フィルタであって、前記空間フィルタは、前記パターニングデバイスの前記ターゲット部分から反射放射ビームの少なくとも一部を受け、前記光学システムは、前記反射放射ビームの前記一部を参照放射ビームと組み合わせて組み合わせ放射ビームを生成する、空間フィルタと、
前記組み合わせ放射ビームに対応するイメージを検出するように構成されたイメージセンサとを含む、リソグラフィシステム。
【請求項16】
前記ホログラフィックマスク検査システムは、ミラーをさらに含み、前記ミラーは、前記第2照明源からの前記第2放射ビームを前記パターニングデバイスの前記ターゲット部分上に反射させるように構成されている、請求項15に記載のリソグラフィシステム。
【請求項17】
前記空間フィルタは、前記反射放射ビームに対応する前記イメージにおける1つ以上の空間周波数成分をフィルタリングするように構成されている、請求項15に記載のリソグラフィシステム。
【請求項18】
前記空間フィルタは、前記パターニングデバイスの前記ターゲット部分によって生成される所定の回折パターンに基づくフィルタパターンを含む、請求項17に記載のリソグラフィシステム。
【請求項19】
前記光学システムは、
前記空間フィルタが前記反射放射ビームの前記一部を受ける前に前記反射放射ビームの前記一部を受けるように構成された対物レンズと、
前記空間フィルタからの前記反射放射ビームの前記一部を前記参照放射ビームと組み合わせて前記組み合わせ放射ビームを生成するように構成されたビームコンバイナであって、前記空間フィルタは、前記対物レンズと前記ビームコンバイナとの間に位置決めされている、ビームコンバイナと、
前記組み合わせ放射ビームを受け、かつ前記組み合わせ放射ビームを前記イメージセンサの一部上に誘導するように構成されたチューブレンズと
を含む、請求項15に記載のリソグラフィシステム。
【請求項20】
前記光学システムは、
前記第2照明源からの前記第2放射ビームを前記パターニングデバイスの前記ターゲット部分上に反射させるように構成されたミラーと、
前記第2放射ビームを前記ミラーに向かって誘導し、かつ前記第2放射ビームに基づいて前記参照放射ビームを生成するように構成されたビームスプリッタと、
前記空間フィルタが前記反射放射ビームの前記一部を受ける前に前記反射放射ビームの前記一部を受けるように構成された対物レンズと、
前記空間フィルタからの前記反射放射ビームの前記一部を受けるように構成されたチューブレンズであって、前記空間フィルタは、前記対物レンズと前記チューブレンズとの間に位置決めされる、チューブレンズと、
前記チューブレンズからの前記反射放射ビームの前記一部を前記参照放射ビームと組み合わせて前記組み合わせ放射ビームを生成するように構成されたビームコンバイナと
を含む、請求項15に記載のリソグラフィシステム。
【請求項21】
前記光学システムは、
前記第2放射ビームおよび前記反射放射ビームの前記一部を受けるように構成された対物レンズと、
前記参照放射ビームを受けるように構成された参照ミラーと、
前記放射ビームを前記対物レンズおよび前記参照ミラーに向かって誘導し、かつ前記反射放射ビームの前記一部を前記参照ミラーからの前記参照放射ビームの反射と組み合わせて前記組み合わせ放射ビームを生成するように構成されたビームスプリッタおよびコンバイナと、
前記組み合わせ放射ビームを受けるリレーレンズと、
前記リレーレンズから前記組み合わせ放射ビームを受け、かつ前記組み合わせ放射ビームを前記イメージセンサの一部に誘導するように構成されたチューブレンズであって、前記空間フィルタは、前記リレーレンズと前記チューブレンズとの間に位置決めされている、チューブレンズと
を含む、請求項15に記載のリソグラフィシステム。
【請求項22】
前記イメージセンサは、センサアレイを有するシリコン電荷結合素子を含む、請求項15に記載のリソグラフィシステム。
【請求項23】
前記イメージは、前記マスク上の1つ以上のマスク欠陥に対応する情報を含む、請求項15に記載のリソグラフィシステム。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公表番号】特表2013−518261(P2013−518261A)
【公表日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2012−550335(P2012−550335)
【出願日】平成22年11月12日(2010.11.12)
【国際出願番号】PCT/EP2010/067362
【国際公開番号】WO2011/091877
【国際公開日】平成23年8月4日(2011.8.4)
【出願人】(503195263)エーエスエムエル ホールディング エヌ.ブイ. (232)
【Fターム(参考)】