説明

立体画像表示用柱状レンズシートの製造方法

【課題】裸眼立体視にレンチキュラーレンズを用いる際に、経時的にレンズの寸法が変化して左右視差画像のクロストークが生じるのを改善した立体画像表示用柱状レンズシートを製造する方法を提供する。
【解決手段】立体画像表示用柱状レンズシートは、連続帯状の延伸フィルムである基材フィルム1上に、単位柱状レンズが配列した柱状レンズ群を、型面に柱状レンズパターン31として単位柱状レンズを成形する為の多数の凹状溝32を有し回転する円筒状の成形型30で、電離放射線硬化性樹脂液の硬化物として成型して製造する。この際、基材フィルムを構成する樹脂の分子主軸の配向方向dmと、単位柱状レンズ2の稜線方向となる凹状溝32の延在方向dqとが成す角度のうちの劣角として定義される傾斜角θが、柱状レンズパターンの全域において0°≦δ≦50°になる様にして製造する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、各種立体画像表示装置用途、特に立体視に特殊な眼鏡を必要としない裸眼立体画像表示に好適な、レンチキュラーレンズの様な単位柱状レンズを有する立体画像表示用柱状レンズシートを製造する方法に関する。中でも特に、経時的なレンズの寸法変化に起因する左右の視差画像のクロストークが生じ難い立体画像表示用レンズシートを製造する方法に関する。
【背景技術】
【0002】
近年、ディスプレイパネルの高精細化等の技術が進歩したことから、2次元画像を表示する液晶パネル等のフラットパネルディスプレイを用いて、三次元画像を表示できる様にした3Dテレビ等の立体画像表示装置が急速に広まってきている。現在普及している立体画像表示装置としては、立体画像表示方式として眼鏡を必要とするものが多いが、眼鏡を必要としない裸眼で立体画像が見られる裸眼立体画像表示装置も実用化されてきている。この、裸眼で立体視を可能とする裸眼立体視の方式の一つとしてレンチキュラーレンズを用いるレンチキュラー方式があり、各種提案されている(特許文献1、特許文献2)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平6−78342号公報
【特許文献2】特開平10−232369号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、コスト、製造の容易さ等の観点からは、レンチキュラーレンズは樹脂製のものが好ましい。ここで、ディスプレイパネルが液晶パネル(液晶表示素子)の場合で言えば、この様な樹脂製のレンチキュラーレンズを液晶パネルに組み合わせたときに、樹脂製であるが故に、レンチキュラーレンズの配列周期が、経時的に熱によって微妙に寸法変化を来たす。一方、液晶パネルは表裏の基板がガラス製である為に、樹脂に比べて寸法変化が少ない。このため、液晶パネルの画素とレンチキュラーレンズの配列方向(稜線方向とは直交方向)との相対的位置が経時的にずれることになる。しかし、立体画像を表示するには、レンチキュラーレンズは、液晶パネルの画素と高精度な位置関係で維持されていることが必要である。
【0005】
そして、液晶パネルの画素とレンチキュラーレンズの相対的位置関係に狂いが生じると、液晶パネルで表示する左用画像と右用画像とを、レンチキュラーレンズによって左目と右目に振り分ける精度が低下し、左右視差画像が混じり合う所謂クロストークが生じ、立体画像の品質が低下してしまう。
左右視差画像のクロストークの問題は画像観察者(以下、単に観察者とも言う)の観察位置の移動によっても生じ、この為、その改善策が種々提案されてきたが、レンチキュラーレンズと液晶パネルの画素との相対的位置関係が正しく維持されている事を前提とするものであり、レンズと画素との相対的位置関係を維持する方策ではなかった。
【0006】
すなわち、本発明の課題は、裸眼立体視の為にレンチキュラーレンズの様な単位柱状レンズを用いる際に、単位柱状レンズの配列周期の経時的な寸法変化、特に単位柱状レンズの配列方向の寸法変化を少なくして、左右視差画像のクロストークが経時的に発生することを改善した立体画像表示用柱状レンズシートを製造する方法を提供することである。
【課題を解決するための手段】
【0007】
本発明は、次の構成の立体画像表示用柱状レンズシートの製造方法とした。
延伸フイルムからなる基材フィルムの一方の面に、単位柱状レンズがその稜線を互いに平行に一方向に配列された柱状レンズ群を有し、前記基材フィルムを構成する樹脂の分子主軸の配向方向と前記単位柱状レンズの稜線方向とが、該基材フィルムの一方の面に平行な平面内において成す角度のうち劣角として定義される傾斜角θが、前記基材フィルムの全域において、0°≦θ≦50°である、立体画像表示用柱状レンズシートを製造する方法であって、
成形型としての型面に前記単位柱状レンズとは逆凹凸形状の単位柱状レンズ成型面が配列し前記柱状レンズ群とは逆凹凸形状の柱状レンズパターンを有する回転している円筒状の成形型に、連続帯状の延伸フィルムからなる基材フィルムを、間に電離放射線硬化性樹脂液を介して供給し、該成形型の型面に重ね合わせて前記柱状レンズパターンに該樹脂液が充填された状態で、電離放射線を照射して該樹脂液を硬化させ、次いで、該基材フィルムを離型することで、該基材フィルムと該基材フィルムの一方の面に密着形成された柱状レンズ群とからなる前記立体画像表示用柱状レンズシートを製造するときに、
型面上で、連続帯状の基材フィルムを構成する樹脂の分子主軸の配向方向と、円筒状の成形型の前記単位柱状レンズとは逆凹凸形状の単位柱状レンズ成型面に於ける稜線方向とが成す劣角の傾斜角θを、型面上の柱状レンズパターンの全域において、0°≦θ≦50°にして、製造する、立体画像表示用柱状レンズシートの製造方法。
【発明の効果】
【0008】
本発明の製造方法によれば、単位柱状レンズの配列周期の経時的な寸法変化を小さくでき、特に加熱環境下に於ける経時変化によって、左右視差画像のクロストークが経時的に生じるのを防げる立体画像表示用柱状レンズシートを容易に製造できる。
【図面の簡単な説明】
【0009】
【図1】本発明による製造方法で得られる立体画像表示用柱状レンズシートの一例を説明する斜視図(a)と平面図(b)。
【図2】本発明による立体画像表示用柱状レンズシートを利用した立体画像表示用光学部材の一例を説明する斜視図。
【図3】本発明による立体画像表示用柱状レンズシートの製造方法を説明する説明図。
【図4】連続帯状の基材フィルムにおける流れ向MDと分子主軸の配向方向dmとの劣角の配向角γを説明する平面図。
【図5】連続帯状の基材フィルムにおける幅方向TDでの分子主軸の配向方向dmの分布を説明する平面図。
【図6】連続帯状の基材フィルムでの流れ方向MD及び幅方向TDと、枚葉シートでの長手方向dxとの関係を説明する平面図。
【発明を実施するための形態】
【0010】
以下、本発明の実施の形態を、図面を参照しながら説明する。なお、図面は概念図であり、構成要素の縮尺関係、縦横比等は誇張されていることがある。
説明は、本発明の製造方法への理解を容易にする為に、この製造方法で製造される立体画像表示用柱状レンズシートがどういうものかを先に説明し、その後で、本発明の製造方法を説明する。また、この後で、構成要素の材料について説明する。
【0011】
〔A〕立体画像表示用柱状レンズシート:
先ず、本発明により製造され得る立体画像表示用柱状レンズシートの一例を、図1(a)の斜視図、及び、図1(b)の平面図に示す。図1に例示の立体画像表示用柱状レンズシート10は、連続帯状シートとして製造した後、これから製品として切り出した長方形の枚葉シートの状態を示す。
なお、通常は、基材フィルム1の平面視(XY面)での大きさ及び形状は立体画像表示用柱状レンズシート10の大きさ及び形状に等しい。
立体画像表示用柱状レンズシート10を、図2を参照して後述する立体画像表示用光学部材20の様に、ガラス基板5と積層した場合は、基材フィルム1の大きさ及び形状は、ガラス基板5の大きさ及び形状に等しいか、その大きさよりも小さい。
【0012】
図1では、立体画像表示用柱状レンズシート10の平面(後述する基材フィルム1の一方の面1pに平行な面)がXY平面に平行で、立体画像の画像表示において、X軸方向が観察者Sが見る左右の視差画像を左右に振り分ける水平方向、Y軸方向が鉛直方向乃至は水平方向と直交方向で、立体画像表示用柱状レンズシート10の前記XY平面に対して法線nの方向をZ軸としてある。このZ軸方向を立体画像の観察者Sの方向に想定してある。
【0013】
同図に示す立体画像表示用柱状レンズシート10は、単位柱状レンズ2が基材フィルム1の一方の面1pに、その稜線2pを互いに平行に一方向da(図面ではX軸方向)に多数配列されている。単位柱状レンズ2の該一方向daでの配列周期Pは一定である。なお、配列周期Pは、隣接する単位柱状レンズ2の稜線2p間の距離である。或いは、配列周期Pは、隣接する単位柱状レンズ2間の谷部2vについて、隣接する谷部2v間の距離としても捉えることができる(不図示)。そして、多数の単位柱状レンズ2が周期的に配列したものが柱状レンズ群3を構成する。立体画像表示用柱状レンズシート10は、この柱状レンズ群3と基材フィルム1とから構成される。
【0014】
(分子主軸の配向方向dm)
分子主軸の配向は、基材フィルム1には2軸延伸フィルム等の延伸フィルムが使われており、その結果、基材フィルム1を構成する高分子の分子主軸のフィルム面内での方向が、無秩序ではなく配向している。
本発明では、使用する基材フィルム1が延伸フィルムであることから、フィルム面内において、言い換えると、基材フィルム1の一方の面1pに平行な面内に於いて、フィルムを構成する高分子の個々の分子の分子軸の方向が完全にランダムではなく、ある程度揃っていることに関係する。この為、個々の分子の分子軸の方向つまり配向方向を、該分子よりも十分大きく且つ適用するディスプレイパネルの画素よりも小さい面積内、例えば10μm四方の領域内にて、全体として平均化すると或る方向性を示す。この個々の分子の分子軸の配向方向を全体として平均化した方向が、分子主軸の配向方向dmである。図1(b)や図3に於いて符号dmで示す両矢印が、この分子主軸の配向方向である。
尚、分子主軸の配向方向dmがある程度揃うと言っても、通常は、完全に全面に亙って該配向方向dmが一方向に揃うことは無く、分子主軸の配向方向dmは図1(b)で言えば、XY平面(基材フィルム1の一方の面1pと平行な面)内の位置座標(X、Y)の函数dm(X、Y)として分布する。即ち、基材フィルム1の(一方の面1pと平行な)面内の場所によって、分子主軸の配向方向dmは、ある範囲(傾斜角θが、0°≦θ≦50°となる範囲)内で異なっている。
【0015】
(傾斜角θ)
そして、分子主軸の配向方向dmと、単位柱状レンズ2の稜線2pが延在する方向である稜線方向dp(図面ではY軸方向)との成す角度のうち小さい方の角度の劣角として定義される傾斜角θもXY平面(基材フィルム1の一方の面1pと平行な面)内の位置座標(X、Y)の函数θ(X、Y)として分布するが、基材フィルム1の全域において、0°≦θ≦50°の範囲内に収まるように設定されている。
【0016】
ところで、傾斜角θは、0°となる領域を、基材フィルム1が少なくとも有する様にするのが好ましい。
傾斜角θが0°である領域は、基材フィルム1の全域であるのが理想的である。従って、偏光板用のフィルムの様に分子主軸の配向方向dmを極度に均一化したフィルムを基材フィルムとして使用しても良い。但し、この様なフィルムは高度な製造技術を要し且つ極めて高価となる点で実用的とは言えない。そこで、或る程度の配向方向dm(X、Y)の不均一性が存在することによる配向方向dmの面内分布は許容することにして、少なくとも傾斜角θが0°である領域を部分的にでも有する様にするのが良い。
【0017】
また、傾斜角θが0°となる領域は、なるべく単位柱状レンズ2の配列方向daに於ける中央近傍とするのが効果的である。ここで中央近傍とは、図1(b)に示す様に、基材フィルム1の単位柱状レンズ2の配列方向daにおける両端間を距離L、前記基材フィルム1の幅方向両端部のうちの一方の端部から測った距離が、(L/2)±(L/4)を満足する領域である。
又、基材フィルム1内に該傾斜角θが0°である領域が含まれない場合は、基材フィルム1の中央近傍に於いて、傾斜角θの値が、傾斜角θの分布範囲の平均値或はそれに近い値となる様に設定すると良い。
【0018】
以上のように、傾斜角θの面内分布を設定することによって、経時での、立体画像表示用柱状レンズシート10の単位柱状レンズ2の配列方向daの寸法変化(收縮)を最小限に抑えることが出来、好ましい。
【0019】
(立体画像表示用光学部材への適用)
立体画像表示用柱状レンズシート10は、柱状レンズ群3が形成されていない側の面、或いは、柱状レンズ群3が形成されている側の面、或いはこれら両方の面に、他の光学要素を積層することができる。
例えば、立体画像表示用柱状レンズシート10は、柱状レンズ群3が形成されていない側に、ガラス基板5を密着積層して、図2で例示する立体画像表示用光学部材20として使用することができる。
【0020】
図2の立体画像表示用光学部材20は、図1で例示した立体画像表示用柱状レンズシート10に対して、更に、平板状のガラス基板5を、多数の単位柱状レンズ2からなる柱状レンズ群3を有する一方の面1pとは反対側の面、つまり、基材フィルム1の他方の面1qに粘着剤層4を介して、積層したものである。
図2の立体画像表示用光学部材20は、光線制御パターン6を、ガラス基板5の粘着剤層4に接する面とは反対側の図面下方の面に有する。この光線制御パターン6は、前記単位柱状レンズ2の配列方向である一方向da(X軸方向)において、前記単位柱状レンズ2の配列周期Pと対応した(関連付けられた)周期となっている。該光線制御パターン6は、例えば、カラーの液晶パネルにおいては、その前面ガラス基板に形成されたカラーフィルタ内のブラックマトリックスの遮光パターンが対応する。また、この遮光パターンとしての光線制御パターン6は、観察者Sの視点位置が左右方向(図面X軸方向)に僅かにずれた時に、画像表示素子で表示する左右視差画像の隣の画像が見えてしまうこと、即ち、左右視差画像のクロストークが発生し難い様にする機能も有する。
【0021】
なお、正面のみを立体視の観察可能範囲とする立体画像表示装置の場合、つまり2眼表示の場合は、レンチキュラー方式では単位柱状レンズ2の1配列周期P(言い換えると一つの単位柱状レンズ2)に対応させて、画像表示素子で表示する二次元画像の視差画像は、左目用画像と右目用画像の2つの画像で足りる。このため、2眼表示の場合は、該配列周期Pの方向に該2つの画像を交互に表示すれば、立体視可能となる。したがって、前記光線制御パターン6として左右視差画像間に遮光パターンを設ける場合は、該遮光パターンの前記一方向daにおける周期は、単位柱状レンズ2の配列周期Pの細かさが2倍の周期となる。
【0022】
以上の様な構成にて、使用した立体画像表示用柱状レンズシート10が、単位柱状レンズ2の稜線方向dpと基材フィルム1の分子主軸dmとの成す傾斜角θが規定されており、熱などの存在下に於ける経時的な単位柱状レンズ2の配列方向daの寸法変化が最小化され、左右視差画像のクロストークが経時的に生じるのを防げる寸法安定性を有するので、ガラス基板の光線制御パターン6が遮光パターンである場合に、熱などの存在下に於いて経時的に見えてくることを防げる。その結果、遮光パターンが見えることによる輝度低下を防げることになる。
【0023】
なお、立体画像表示用柱状レンズシート10の適用例として、図2で例示した立体画像表示用光学部材20では、立体画像表示用柱状レンズシート10は、その柱状レンズ群3側のレンズ面を、観察者S側に向けて配置した。しかし、図示はしないが、この逆に、基材フィルム1側、つまり他方の面1q側を、観察者S側に向けて配置することもできる。
また、立体画像表示用柱状レンズシート10は、ディスプレイパネルの背面の光源側に、光源とディスプレイパネルとの間に配置することもできる。この場合、柱状レンズ群3のレンズ面の向きは、ディスプレイパネル側(観察者S側)、あるいは光源側の何れもあり得る。
【0024】
〔B〕立体画像表示用柱状レンズシートの製造方法:
本発明による立体画像表示用柱状レンズシートの製造方法は、上記した立体画像表示用柱状レンズシート10を製造し得る方法である。以下、図3を参照しながら説明する。
【0025】
[基材フィルム]
延伸フィルムからなる基材フィルム1には、連続帯状フィルムを使用して製造する。この基材フィルム1を構成する樹脂の分子主軸の配向方向dmは、同図では、連続帯状の基材フィルム1の流れ方向MDと平行乃至は略平行として描画してある。流れ方向MD(Machine Direction)は、製造時に連続帯状の基材フィルム1が走行する方向である。また、流れ方向MDに直交する方向が幅方向TD(Transverse Direction)である。
【0026】
[成形型]
成形型30には、円筒状の型を用いる。成形型30は、その型面に、単位柱状レンズ2がその稜線2pを互いに平行に一方向に配列された柱状レンズ群3とは逆凹凸形状の柱状レンズパターン31を有する。柱状レンズパターン31は、それを構成する、単位柱状レンズ2とは逆凹凸形状の単位柱状レンズ成型面32を凹状溝として多数有する。この凹状溝からなる単位柱状レンズ成型面32の稜線方向は、これから成形されて得られる単位柱状レンズ2の稜線方向dpと常に同一である。
【0027】
(稜線方向)
この凹状溝からなる単位柱状レンズ成型面32の稜線方向dpは、同図では、円筒状の成形型30の円周方向(円筒状の成形型30の回転方向に平行な方向)に平行乃至は略平行として描画してある。この稜線方向dpは、成形後の単位柱状レンズ2の稜線方向dpと同一方向である。
なお、凹状溝からなる単位柱状レンズ成型面32の稜線方向dpは、円筒状の成形型30の円周方向に対して意識的に斜めに形成することも可能である。
【0028】
(傾斜角θ)
そして、傾斜角θは、成形型30上では、連続帯状の基材フィルム1上での分子主軸の配向方向dmと、円筒状の成形型30上の凹状溝からなる単位柱状レンズ成型面32の稜線方向dpとが、該成形型30の型面に基材フィルム1が重ね合わされた状態で該型面である円周面に平行な面内において成す角度のうちの劣角となっている。
本発明では、この傾斜角θが、型面上の柱状レンズパターン31の全域において、0°≦θ≦50°となる様な、基材フィルム1と成形型30の組み合わせにして、立体画像表示用柱状レンズシート10を製造する。
【0029】
(稜線の意味と、型面上での傾斜角θの意味)
「稜線」とは厳密には山で言えば尾根が成す凸なる部分の線である。一方、凹状溝からなる単位柱状レンズ成型面32は単位柱状レンズ2とは逆凹凸形状であるから、単位柱状レンズ2で稜線2pに該当する部分は、谷底が成す凹なる部分が成す線に該当する。しかし、単位柱状レンズ2に於ける稜線2pと、成形型における凹状溝からなる単位柱状レンズ成型面32の谷底が成す線とは、常に同一方向であるので、本明細書では、これらの線を区別せず、どちらも「稜線」と呼ぶことにする。
但し、「単位柱状レンズ2」に対して、それを成形する成形型30上での逆凹凸形状の凹状溝は「単位柱状レンズ成型面32」と区別して呼称することにする。
このため、「傾斜角θ」は、本来、分子主軸の配向方向dmと「単位柱状レンズ2」の稜線方向dpとが成す劣角であるが、これを劣角Aとすると、分子主軸の配向方向dmと成形型30の「単位柱状レンズ成型面32」の稜線方向dp(厳密には上記の様にその凹状溝の谷底の成す線の方向)と成す劣角Bも常に、前記劣角Aと同一の角度となるために(例えば、これを「ズレ角δ」として区別して呼称しないで)、同じ「θ」を用いて、劣角Aと共に劣角Bも「傾斜角θ」と呼ぶことにする。
【0030】
[配向角γ]
ここで、配向角γを、図4の平面図で示す様に、連続帯状の基材フィルム1上での分子主軸の配向方向dmと、連続帯状の基材フィルム1の流れ方向MDとが成す角度のうち劣角として定義する。
一方、凹状溝からなる単位柱状レンズ成型面32の稜線方向dpが、円筒状の成形型30の円周方向に対して平行であるときは、流れ方向MDは常に成形型30の円周方向と平行であるので、単位柱状レンズ成型面32の稜線方向dpは、連続帯状の基材フィルム1の流れ方向MDと平行である。
該稜線方向dpと流れ方向MDとが平行となる条件下での製造では、分子主軸の配向方向dmと該稜線方向dpとが成す傾斜角θは、分子主軸の配向方向dmと連続帯状の基材フィルム1の流れ方向MDとが成す配向角γに等しい。
【0031】
したがって、連続帯状の基材フィルム1として、成形型30の型面上の柱状レンズパターン31の全幅にわたって且つ流れ方向MDの全長において、配向角γが0°≦γ≦50°となる樹脂フィルムが使用され、前記凹状溝からなる単位柱状レンズ成型面32の稜線方向dpが円周方向に平行な成形型30を用いて製造されるときは、分子主軸の配向方向dmと単位柱状レンズ2の稜線方向dpとが成す傾斜角θが、基材フィルム1の全域において、0°≦θ≦50°となる、立体画像表示用柱状レンズシート10が製造されることになる。
【0032】
[基材フィルムの供給と樹脂液の硬化から離型まで]
上記した傾斜角θに関すること以外は、基材フィルム1を成形型30に、間に電離放射線硬化性樹脂液を介在させる様にして供給し、該樹脂液を硬化させて、単位柱状レンズ2が多数配列した柱状レンズ群3を基材フィルム1の一方の面1pに形成するには、従来公知の2P法(フォト・ポリマー法)と同様である。
【0033】
すなわち、連続帯状の基材フィルム1は、間に電離放射線硬化性樹脂液を介して、回転している成形型30に供給し、該成形型30の円周面である型面に、基材フィルム1を走行させつつ重ね合わせる。基材フィルム1の成形型30への重ね合わせは、通常、ニップローラ(不図示)と成形型30との間に基材フィルム1を通すことによって行われる。
電離放射線硬化性樹脂液は、成形型30の型面、基材フィルム1の面、或いはこれら両方の面に塗布して、基材フィルム1を成形型30に供給する。これによって、間に該樹脂液を介して基材フィルム1が成形型30に重ね合わされ、また、該樹脂液は成形型30の型面の柱状レンズパターン31に充填された状態となる。この状態で、電離放射線を照射して該樹脂液を硬化させる。成形型30には、通常、金属製のものを用いるので、照射は基材フィルム1を透して行われる。電離放射線は通常紫外線が使用されるが、電子線、可視光線などその他の光線でも良い。また、成形型30に石英製など紫外線透過性材料を用いれば、中空とした成形型30の内側から照射しても良い。
【0034】
(成形型の温度制御)
成形型30は、型面上での電離放射線硬化性樹脂液の硬化反応の反応熱などにより、温度上昇することが多い。成形型30の表面温度(型面の温度)が高過ぎると、離型後に室温まで冷却された立体画像表示用柱状レンズシート10との温度差及びその温度履歴によって、立体画像表示用柱状レンズシート10の寸法安定性が低下する。
このため、成型時の成形型30の型面は、23〜60℃の範囲内でなるべく一定した表面温度に制御することが好ましい。温度制御は、成形型30の内部に水等の冷却媒体を循環させて行うことができる。表面温度が、23℃未満であると、成形型30が結露し易くなり、60℃超過であると、仕上がり時に目的とする寸法に収め難くなる。
このように、成形型30は適切な温度範囲に制御することが好ましいが、この点で、電離放射線としては、紫外線よりは電子線の方が、照射源からの熱線が少なく照射源による温度上昇が低いので、好ましい。
【0035】
(柱状レンズパターンの事前寸法調整)
成形型30の型面における柱状レンズパターン31は、成形型30の型面の表面温度が特に室温超過となる場合においては、室温(23℃とする)との温度差により、型面上でのパターンに対する仕上がりパターンの伸縮を見込んで、仕上がりパターンが目的する寸法になる様に、事前に伸縮(縮伸)しておくことが、好ましい。
そこで、下記式[1]を満足するPm、Ps、及びTmの関係とする。ここで、
Pmは型面上における柱状レンズパターン31での単位柱状レンズ2に対応する単位柱状レンズ成型面32の配列周期〔μm〕である。
Pは立体画像表示用柱状レンズシート10における柱状レンズ群3での単位柱状レンズ2の配列周期〔μm〕である。
Tmは、成形型30の型面の表面温度〔℃〕である。
式1中、1.5及び0.5は強度率である。
【0036】
【数1】

【0037】
式1に従って、室温から成形型30の表面温度Tmが高くなる場合ほど、目的とする仕上がり寸法に対して、型面上の寸法(配列周期Pm)は小さ目にしておく。この際、式1の不等式の範囲内の寸法としておくことによって、より正確な仕上がり寸法が得られる。
例えば、仮に成形型30の表面温度Tmが53℃となる条件で製造するときは、
室温23℃との温度差が30℃であるので、実際の仕上がり寸法の配列周期Pに対して、型面上では0.99928倍〜0.99976倍の範囲内の寸法の配列周期Pmの柱状レンズパターン31としておくと良い。逆に言えば、0.027%〜0.072%の範囲で縮めた寸法の配列周期Pmとしておくと良い。室温との温度差が大きい場合ほど、縮める度合いを大きくすると良い。
【0038】
以上の様にして製造することで、単位柱状レンズ2の配列周期の経時的な寸法変化の少ない立体画像表示用柱状レンズシート10が容易に製造される。
【0039】
〔C〕立体画像表示用柱状レンズシートの材料:
以下、立体画像表示用柱状レンズシートの各構成要素の材料面について更に説明する。
【0040】
〔基材フィルム〕
基材フィルム1としては、透明な延伸フィルムで、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリメチルメタクリレート等のアクリル系樹脂、ポリカーボネート系樹脂、ポリプロピレン等のポリオレフィン系樹脂、ポリアミド系樹脂等の透明樹脂フィルムが挙げられる。なかでも、ポリエステル系樹脂の一種であるポリエチレンテレフタレートは代表的であり、その2軸延伸フィルムは、コスト、透明性、機械的強度等の点で好適な基材フィルムである。但し、延伸による分子配向が生じているので、本発明の様に分子主軸の配向方向dmに関する傾斜角θを規定することで、経時的なクロストーク発生を防止しつつ使用可能となる。
なお、基材フィルム1は「フィルム状」であるが、ここで「フィルム」とは、「シート」、「板」の概念も含むものであり、これらの用語は、呼称の違いのみに基づいて、互いから区別されるものではない。つまり、厚みや剛性によって区別されるものではない。例えば、基材フィルム1の厚さは、50μm〜1mm等である。
【0041】
ところで、基材フィルム1等の各種フィルムとして、2軸延伸ポリエチレンテレフタレートフィルムは代表的な延伸フィルムの一種であるが、分子主軸の配向方向dmは一般に帯状フィルムの状態において、特にその幅方向で異なるのが普通である。例えば、図5の平面図で示す様に、一般に幅方向TDの中央の配向方向dmに対して両端部にいく程、配向方向dmが傾いてくる。
【0042】
図5は、所定の幅に断裁する前の延伸フィルムを製膜直後の広幅の連続帯状フィルムでの、分子主軸の配向方向dmの幅方向TDでの分布の一例を示す。立体画像表示用柱状レンズシート10を製造するときは、この広幅の連続帯状フィルムから、1000mm幅等と所定の幅の連続帯状フィルムに断裁されたものを使用する。この断裁のとき、図5で示す様に、幅方向TDでの中央部から切り出したフィルムC1と、幅方向TDでの両端近くから切り出したフィルムC2とでは、分子主軸の配向方向dmが異なることになる。分子主軸の配向方向dmが、流れ方向MDになるべく平行なもの、言い換えれば、配向角γが0°に近いものが必要なときは、中央部から切り出したフィルムC1を使用すれば良い。
なお、2軸延伸ポリエチレンテレフタレートフィルムは、通常、逐次2軸延伸で先ず横延伸してから縦延伸して製膜されるが、横延伸の度合いに比べて後から行う縦延伸の度合いが大きいと、結果としと、縦延伸の影響が強く残り、分子主軸の配向方向dmは流れ方向MDに平行な度合いが強くなる。
【0043】
また、基材フィルム1としては、なるべく汎用的でコスト的に有利なフィルムを用いることにして、それによる、相応の分子主軸の配向方向dmの不均一性に基づく面内分布は、許容できる様に使用するのが好ましいことになる。
そこで、既に述べた様に、本発明では更に好ましくは、傾斜角θが0°でない領域を有するとしても、基材フィルム1の全域において、傾斜角θは50°以下、より好ましくは45°以下とする。つまり、傾斜角θは、0°≦θ≦50°とすることが好ましく、0°≦θ≦45°とすることがより好ましい。
また、傾斜角θが0°となる領域は、なるべく中央近傍とするのが効果的である。
【0044】
傾斜角θについて以上の様にすることで、より確実に単位柱状レンズ2の配列方向daの寸法変化を小さくできるので、左右視差画像のクロストーク、及び積層するガラス基板の光線制御パターン6が遮光パターンである場合に、それが経時的に見えてくるのをより確実に防げることになる。
以上の様に、分子主軸の配向方向dmと単位柱状レンズ2の稜線方向dpとの傾斜角θを規定すると、それが如何にして単位柱状レンズ2の寸法変化の安定性に好影響しているかは現在のところ不明であるが、とにかく、該寸法変化を少なくできることが判明した。
【0045】
〔単位柱状レンズ〕
単位柱状レンズ2は、柱状のレンズであり、その主切断面の形状が円、楕円、抛物線、双曲線、正弦(波)曲線、双曲線正弦曲線、楕円函数曲線、又はサイクロイド曲線の一部など曲線からなる、代表的には所謂蒲鉾形状のレンズである。断面蒲鉾形状の単位柱状レンズ2は代表的には、レンチキュラーレンズである。なお、単位柱状レンズ2の寸法は、立体画像表示用柱状レンズシート10と組み合わせる、二次元画像を表示する画像表示素子の画素の細かさ、光線制御パターン6の配列周期、立体視を可能とする観察可能範囲の設定距離、構成材料の屈折率、2眼式や多眼式等の立体視の方式等に応じて決められる。
【0046】
なお、「主切断面」とは、基材フィルム1の一方の面1pに立てた法線n(図1(a)参照)に平行な断面のうち、単位柱状レンズ2の配列方向daにも平行な断面のことを言う。言い換えると、該法線nに平行で且つ単位柱状レンズ2の稜線方向dpに直交する断面である。なお、図1(a)に於いては、Z軸が該法線nと平行方向となっている。
【0047】
また、単位柱状レンズ2は、ガラス等の無機材料ではなく、コスト的に安価で製造も容易な点で、樹脂から構成される。ガラス等の無機材料で単位柱状レンズ2を構成すれば、寸法変化に起因する左右視差画像のクロストークは発生しない。
単位柱状レンズ2を構成する電離放射線硬化性樹脂としては、紫外線や電子線で硬化する、アクリレート系やエポキシ系等の公知の電離放射線硬化性樹脂を使用する。
電離放射線硬化性樹脂の採用により、基材フィルム1の一方の面1pに未硬化の電離放射線硬化性樹脂液を接触させ、且つ該樹脂液を成形型と前記基材フィルム1とで挟んだ状態で、電離放射線照射で樹脂を架橋硬化させる成形法によって容易に単位柱状レンズ2を形成することができる。なお、樹脂液に電離放射線硬化性樹脂を使用して電離放射線で硬化させる場合は、所謂2P法(フォトポリマー法)と呼ばれている。
2P法は、電離放射線硬化性樹脂の硬化が迅速で生産性に優れる上、なによりも、立体画像品質に直接的に影響する単位柱状レンズ2の形状を高精度に形成できる点で、熱可塑性樹脂を用いる熱成形法に比べて優れており、高精度が要求される立体視用として、好ましい。
【0048】
なお、基材フィルム1上に配列された単位柱状レンズ2同士の間の谷部2vに於いては、基材フィルム1の一方の面1pが露出していても、図1(a)の様に単位柱状レンズ2を構成する樹脂で該一方の面1pが被覆されていても良い。
【0049】
〔クロストークの測定〕
なお、左右視差画像のクロストークは、目視で行っても良いが、例えば、左目用画像に白を表示させ、右目用画像に黒を表示させることにより計測することができる。この場合、本来ならば左目の観察位置では白、右目の観察位置では黒にしか見えないが、クロストークが生じると、左目の観察位置では白に黒が混じり、右目の観察位置では黒に白が混じる。これを、カメラ等の光学装置で測定することで、数値化もできる。
【0050】
〔用途〕
本発明による立体画像表示用柱状レンズシート10の用途は、立体画像の元になる平面画像を表示する画像表示素子と共に使用されて、裸眼立体画像を表示する立体画像表示装置に使用することができる。平面画像を表示する画像表示素子としては、特に限定されるものではなく、液晶パネルなど平面画像表示を行う公知の各種画像表示素子が組み合わせの対象となり得る。
また、上記では、立体画像表示用柱状レンズシート10は、画像表示素子の前面に配置されることで該画像表示素子からの左右視差画像を観察者の左右の目に振り分ける所謂レンチキュラー方式の立体画像表示を前提に説明した。しかし、立体画像表示用柱状レンズシート10は、立体画像表示用の光学部材として、更に好ましくはその経時的な寸法安定性を活かせる立体画像表示用途であれば、その使用法は特に制限はない。また、この意味において、本発明の立体画像表示用柱状レンズシート10は、その単位柱状レンズ2がレンチキュラーレンズの様な主切断面形状が曲線のみからなる柱状レンズの他に、主切断面形状が例えば三角形などの直線を含む柱状プリズムの場合でも、寸法安定性の効果が得られる。
【0051】
尚、本発明の立体画像表示用レンズシート10を用いた画像表示素子を組み込んだ画像表示装置の用途は、立体画像を表示する用途であれば、特に限定されない。例えば、立体ディスプレイ、立体テレビジョン等である。立体ディスプレイは、携帯電話、携帯情報端末、携帯乃至は固定式遊戯機器、パーソナルコンピュータの表示部、電子看板、デジタルフォトフレーム、医療用ディスプレイ等である。
【実施例】
【0052】
以下、実施例及び比較例によって、本発明を更に説明する。
【0053】
〔実施例1〕
図1(a)の様な、単位柱状レンズ2として蒲鉾型のレンチキュラーレンズを多数周期配列した柱状レンズ群3を基材フィルム1上に有する立体画像表示用柱状レンズシート10を図3の如き装置を用いて作製した。
先ず、成形型として、図3の如く多数の単位柱状レンズ2からなる柱状レンズ群3とは逆凹凸形状の柱状レンズパターン31を型面に有する金属製のシリンダ状(円筒状)の成形型30を用意した。柱状レンズパターン31は、成形型30の円筒軸(円筒の高さ)方向の幅が900mm幅で、単位柱状レンズ2とは逆凹凸形状の凹状溝32の延在方向が、成形型30の円周方向と平行なパターンである。
【0054】
そして、円筒中心軸の周りに図3の→付き円弧の方向に回転している該成形型30に、透明なアクリル系の紫外線硬化性樹脂液を塗布し、更にその上に、連続帯状の基材フィルム1として、幅1000mmで厚み125μmの透明な帯状の2軸延伸ポリエチレンテレフタレートフィルム(PETフィルム)を供給しニップローラで成形型30に押し当てて型面に重ね合わせた状態で、高圧水銀灯からの紫外線照射によって該樹脂液を硬化させた。次いで、基材フィルム1を離型して、単位柱状レンズ2がその稜線を互いに平行に、基材フィルム1の一方の面1pに、稜線2Pが基材フィルム1のMD方向に延在しつつ各単位柱状レンズがTD方向に周期的に配列して成る柱状レンズ群3が形成された、立体画像表示用柱状レンズシート10を作製した。
【0055】
この際、連続帯状の基材フィルム1の分子主軸の配向方向dmは、該基材フィルム1を偏光軸を互い直交させたクロスニコルの状態にした2枚の偏光板の間に入れて回転させたときの透過光の状態から確認した。
得られた連続帯状の立体画像表示用柱状レンズシート10は、連続帯状の該シートの流れ方向MDに直交する幅方向TDの中央の位置に於いて、前記配向方向dmと単位柱状レンズ2の稜線方向dpとの成す傾斜角θが、幅方向TDの中央部に於ける面内での最小値が3°、幅方向TDの側端部に於ける面内での最大値が26°であった。
【0056】
なお、上記単位柱状レンズ2の形状は、主切断面形状が高さ67μm(谷部2vと稜線2pとのZ軸方向の標高差)、曲率半径500μm、F値1のレンズとなる、主切断面形状が楕円の一部から形成される蒲鉾型のレンチキュラーレンズである。また、この単位柱状レンズ2の配列方向daでの幅及び配列周期Pは500μmで、基材フィルム1の一方の面1pの全面を完全に被覆している。
【0057】
次に、この連続帯状の立体画像表示用柱状レンズシート10から、長方形形状(縦横比9:16で長手方向dxが718mm)の枚葉形状の立体画像表示用柱状レンズシート10aを切り出した。切り出しは、図6の平面図で示す様に、枚葉形状の立体画像表示用柱状レンズシート10aの長方形形状の長手方向dxが連続帯状シートの幅方向TDに平行で、かつ長手方向dxの中央が、連続帯状シートの幅方向TDの中央となる様に切り出した。枚葉形状の立体画像表示用柱状レンズシート10aに於ける単位柱状レンズ2の稜線方向dpは、基材フィルム1の長方形形状の長手方向dxに直交する方向である。
したがって、枚葉形状の立体画像表示用柱状レンズシート10aにおいても、その長手方向dxでの中央での位置において、傾斜角θも、連続帯状シートでの傾斜角θと同じ3°である。言い換えれば、枚葉形状での基材フィルム1の長手方向dxの幅Lに対して、該長方形形状の長手方向dxの両端部のうちの一方の端部から測った長さがL/2となる、長手方向dxでの幅方向中央の位置に於いて、前記配向方向dmと単位柱状レンズ2の稜線方向dpとの成す傾斜角θが3°となる。
また、該長方形形状の長手方向dxでの中央部に於ける分子主軸の配向方向dmは、基材フィルム1の長方形形状の長手方向dxに87°(=90°−3°)傾斜した略直交する方向である。
【0058】
〔実施例2〜4〕
実施例1に於いて、連続帯状の基材フィルム1の幅方向TDの中央部(枚葉化後はその基材フィルム1の長手方向dxでの幅方向中央部一方の端部からの距離がL/2となる部分)の位置での分子主軸の配向方向dmと、単位柱状レンズ2の稜線とが成す傾斜角θを、面内に於ける最小値3°及び最大値が26°に代えて、実施例2は面内に於ける最小値32°及び最大値が44°、実施例3は面内に於ける最小値41°及び最大値が45°、実施例4は面内に於ける最小値47°及び最大値が50°にした以外は、実施例1と同様にして、連続帯状シートを経て枚葉シートの立体画像表示用柱状レンズシート10aを作製した。なお、単位柱状レンズ2の稜線方向dpは基材フィルム1の長方形形状の長手方向dxに直交する方向である。
【0059】
〔比較例1〜2〕
実施例1に於いて、連続帯状の基材フィルム1の幅方向TDの中央部(枚葉化後はその基材フィルム1の長手方向dxでの幅方向中央部一方の端部からの距離がL/2となる部分)の位置での分子主軸の配向方向dmと、単位柱状レンズ2の稜線とが成す傾斜角θを、面内に於ける最小値3°及び最大値が26°に代えて、比較例1は面内に於ける最小値56°及び最大値が68°、比較例2は63°及び最大値が72°にした以外は、実施例1と同様にして、立体画像表示用柱状レンズシート10aを作製した。なお、単位柱状レンズ2の稜線方向dpは基材フィルム1の長方形形状の長手方向dxに直交する方向である。
【0060】
〔性能評価〕
性能評価は、図2で説明した様な、上記枚葉形態の立体画像表示用柱状レンズシート10aの裏側に、粘着剤層4を介してガラス基板5を積層した、立体画像表示用光学部材20によって評価した。
この為、先ず、上記枚葉形態の立体画像表示用柱状レンズシート10aの裏面側である基材フィルム1の他方の面1qに、透明なアクリル系粘着剤を用いた光学材料用粘着フィルム(パナック工業株式会社製、PD−S1)を貼り付けて、表面がセパレータフィルムで保護された、厚み25μmの粘着剤層4を積層した。
【0061】
次いで、上記粘着剤層付きの立体画像表示用柱状レンズシート10aから、上記セパレータフィルムを剥がして、粘着剤層4を介して立体画像表示用柱状レンズシート10aを透明なガラス基板5の片面に貼り付けて、立体画像表示用光学部材20を作製した。
なお、このガラス基板5の他方の面には、周期的な光線制御パターン6が形成されており、その周期は単位柱状レンズ2の配列方向daにおいて、単位柱状レンズ2の500μmの配列周期Pと対応した周期となっており、且つ柱状単位レンズ2の稜線2pと同方向に延在した黒色パターンとなっている。なお、この光線制御パターン6は、液晶パネルの前面ガラス基板に形成されたカラーフィルタ内の遮光パターンであるブラックマトリックスである。
上記液晶パネルは、赤、緑、青のサブ画素で1画素が構成され、サブ画素の周囲にブラックマトリックスが形成される。
【0062】
上記の立体画像表示用光学部材20を、80℃の環境下に1000時間放置する信頼性試験を行い、単位柱状レンズ2の配列周期Pの変化の度合いを測定、評価した。
なお、寸法変化は、立体表示方式が2眼式の場合100ppm以下であればクロストークが問題となる様な寸法変化にはならず許容範囲内であるとされている。ただ、2眼式は原理的に観察可能範囲が正面など限定されるために主要な用途は小型表示装置になるが、小型の為に実質的に単位柱状レンズ2の配列周期Pの累積誤差は大型よりも小さく、観察可能範囲も正面など限られた方向である為に、さほど問題とはならない。テレビジョンの様な大型で多人数で見ることを前提とする場合は、10程度の多眼式を採用することが多く、10眼式の場合は、寸法変化は300ppmまで許容できるとされている。
そこで、この許容誤差を前記配列周期Pの500μmの場合に当てはめれば、100ppmは0.05μm、300ppmは0.15μmである。この為、性能評価は、安全を見て、寸法変化が0.13μm以下(260ppm以下)の場合を良好(表1中○印)、0.15μm以下の場合はやや良好(表1中△印)、0.15μm超過を不良(表1中×印)と評価した。
【0063】
【表1】

【0064】
表1のとおり、傾斜角θが3°の実施例1、及び傾斜角θが32°の実施例2、傾斜角θが41°の実施例3は、いずれも余裕を以って目標とする寸法変化以下であり良好であった。そして、傾斜角θが47°の実施例4も目標とする寸法変化以下に留まり、やや良好であった。しかし、傾斜角θが56°の比較例1、傾斜角θが63°の比較例2は、目標とする寸法変化を超過し、不良であった。
この為、各比較例では、レンチキュラー方式の立体画像表示装置に利用した時に、経時的な、左右視差画像のクロストークや光線制御パターンであるブラックマトリックの視認による輝度低下に繋がる可能性がある。しかし、各実施例では、左右視差画像のクロストークやブラックマトリックの視認による輝度低下に繋がらず、経時的に品質の高い立体画像を表示できることが期待される。
【符号の説明】
【0065】
1 基材フィルム
1p 一方の面
1q 他方の面
2 単位柱状レンズ
2p 稜線(頂部)
2v 谷部
3 柱状レンズ群
4 粘着剤層
5 ガラス基板
6 光線制御パターン
10 立体画像表示用柱状レンズシート
10a 立体画像表示用柱状レンズシート(枚葉形態)
20 立体画像表示用光学部材
30 成形型
31 柱状レンズパターン
32 凹状溝の単位柱状レンズ成型面
C1 中央部で断裁したフィルム
C2 端部で断裁したフィルム
da 一方向(=配列方向)
dm 分子主軸の配向方向
dp 稜線方向
dx 長手方向(枚葉シート時)
MD 流れ方向
L 配列方向に於ける幅
n 法線
P 配列周期
P 単位柱状レンズ成型面の配列周期
S 観察者
TD 幅方向
Tm 成形型の表面温度
θ 傾斜角(稜線方向と分子主軸dmの成す劣角)
γ 配向角(流れ方向MDと分子主軸dmの成す劣角)


【特許請求の範囲】
【請求項1】
延伸フイルムからなる基材フィルムの一方の面に、単位柱状レンズがその稜線を互いに平行に一方向に配列された柱状レンズ群を有し、前記基材フィルムを構成する樹脂の分子主軸の配向方向と前記単位柱状レンズの稜線方向とが、該基材フィルムの一方の面に平行な平面内において成す角度のうち劣角として定義される傾斜角θが、前記基材フィルムの全域において、0°≦θ≦50°である、立体画像表示用柱状レンズシートを製造する方法であって、
成形型としての型面に前記単位柱状レンズとは逆凹凸形状の単位柱状レンズ成型面が配列し前記柱状レンズ群とは逆凹凸形状の柱状レンズパターンを有する回転している円筒状の成形型に、連続帯状の延伸フィルムからなる基材フィルムを、間に電離放射線硬化性樹脂液を介して供給し、該成形型の型面に重ね合わせて前記柱状レンズパターンに該樹脂液が充填された状態で、電離放射線を照射して該樹脂液を硬化させ、次いで、該基材フィルムを離型することで、該基材フィルムと該基材フィルムの一方の面に密着形成された柱状レンズ群とからなる前記立体画像表示用柱状レンズシートを製造するときに、
型面上で、連続帯状の基材フィルムを構成する樹脂の分子主軸の配向方向と、円筒状の成形型の前記単位柱状レンズとは逆凹凸形状の単位柱状レンズ成型面に於ける稜線方向とが成す劣角の傾斜角θを、型面上の柱状レンズパターンの全域において、0°≦θ≦50°にして、製造する、立体画像表示用柱状レンズシートの製造方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−181222(P2012−181222A)
【公開日】平成24年9月20日(2012.9.20)
【国際特許分類】
【出願番号】特願2011−41977(P2011−41977)
【出願日】平成23年2月28日(2011.2.28)
【出願人】(000002897)大日本印刷株式会社 (14,506)
【Fターム(参考)】