説明

組織材質測定システム

【課題】環境の悪い圧延ラインにおいても、組織材質測定を確実に実施することができる組織材質測定システムを提供する。
【解決手段】組織材質測定システムは、組織材質測定装置27、組織材質情報収集手段28、プロセスデータ収集手段31、組織材質情報予測手段32、組織材質情報比較手段33を備える。組織材質測定装置27は、圧延ラインを流れる圧延製品の組織材質情報を非接触で測定する。組織材質情報収集手段28は、組織材質情報を収集する。プロセスデータ収集手段31は、圧延ラインのプロセスデータを収集する。組織材質情報予測手段32は、圧延製品の組織材質情報を所定の組織材質予測モデルによって算出する。組織材質情報比較手段33は、組織材質情報収集手段28によって収集された組織材質情報と組織材質情報予測手段32によって算出された組織材質情報とを比較する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、組織材質測定システムに関するものである。
【背景技術】
【0002】
鉄鋼材料の組織材質には、機械的性質と呼ばれる強度や延性があり、これらの機械的性質は、一般に引張り試験等の各種試験によって計測される。また、これら鉄鋼材料の機械的性質は結晶粒径等の金属組織に関係があるため、結晶粒径等の金属組織を把握することによっても上記機械的性質を算出することができる。しかし、従来の上記各種試験や結晶粒径の計測では、試験片の切り出し、研磨、顕微鏡観察等の多くの工程を必要とし、各工程において多くの手間と時間とが必要となっていた。このため、かねてより非破壊で結晶粒径を計測することが強く望まれており、最近では非破壊で結晶粒径の計測を行う方法の1つとして、超音波振動を用いた方法が提案されている。
【0003】
なお、結晶粒径の計測を非破壊で行う従来技術として、Nd−YAGレーザ等の超音波発振器から被測定材の一側表面にパルスレーザ光を照射させて、被測定材の他側表面を振動変位させるとともに、ホモダイン干渉計等の超音波検出器によって上記被測定材の他側表面に生じた振動変位を検出するものが提案されている(例えば、特許文献1参照)。なお、図10は従来の組織材質測定装置を示す構成図であり、上記従来技術を模式的に示したものである。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】日本特許第3184368号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1記載のものは、様々な測定対象を想定したものではなく、被測定材の状態によっては、結晶粒径の解析に適さない場合があった。特に、超音波検出器に対向する被測定材の他側表面に酸化皮膜が付いている場合には、超音波検出器への戻り光量が少なく、十分な結晶粒径の解析が実施できないといった問題があった。
【0006】
この発明の目的は、環境の悪い圧延ラインにおいても、組織材質測定を確実に実施することができる組織材質測定システムを提供することである。
【課題を解決するための手段】
【0007】
この発明に係る組織材質測定システムは、圧延ラインに設けられ、圧延ラインを流れる圧延製品の組織材質情報を、非接触で測定する組織材質測定装置と、組織材質測定装置によって測定された組織材質情報を収集する組織材質情報収集手段と、圧延ラインのプロセスデータを収集するプロセスデータ収集手段と、プロセスデータ収集手段によって収集されたプロセスデータに基づいて、圧延製品の組織材質情報を所定の組織材質予測モデルによって算出する組織材質情報予測手段と、組織材質情報収集手段によって収集された組織材質情報と組織材質情報予測手段によって算出された組織材質情報とを比較する組織材質情報比較手段と、を備えたものである。
【発明の効果】
【0008】
この発明に係る組織材質測定システムであれば、環境の悪い圧延ラインにおいても、組織材質測定を確実に実施することができるようになる。
【図面の簡単な説明】
【0009】
【図1】この発明の実施の形態1における組織材質測定装置を示す構成図である。
【図2】この発明の実施の形態1における組織材質測定装置を示す要部構成図である。
【図3】この発明の実施の形態1における組織材質測定装置の配置を示した図である。
【図4】この発明の実施の形態1における組織材質測定装置を示す要部構成図である。
【図5】この発明の実施の形態2における組織材質測定装置を示す要部構成図である。
【図6】この発明の実施の形態3における組織材質測定装置の配置を示した図である。
【図7】この発明の実施の形態4における圧延設備の要部を示す構成図である。
【図8】組織材質の予測モデルを示す構成図である。
【図9】この発明の実施の形態4における圧延設備の他の構成を示す図である。
【図10】従来の組織材質測定装置を示す構成図である。
【発明を実施するための形態】
【0010】
先ず、本発明の具体的構成を説明する前に、金属材料の結晶粒径を非破壊で測定する方法について説明する。金属材料の結晶粒径の測定を非破壊で行う方法には、レーリー散乱を利用する方法、超音波の伝播速度を利用する方法、及び、超音波顕微鏡を用いる方法等が提案されている。なお、各測定方法は本発明においても適宜採用されるものであるが、ここでは、代表的な超音波の結晶粒子による散乱(レーリー散乱)によって生じる減衰を利用した方法について説明する。
【0011】
超音波は、その振動形態の違いにより縦波や横波等に分類される。レーリー散乱を利用した結晶粒径の測定方法では、このうち超音波の縦波(バルク波)を用いる。なお、バルク波の減衰は、次式で表されることが知られている。
【0012】
【数1】

【0013】
ここで、p及びpは音圧、aは減衰定数、xは鋼板中の伝播距離である。
また、バルク波の周波数が「レーリー領域」である場合、上記減衰定数aは次式で表される。
【0014】
【数2】

【0015】
ここで、a及びaは係数、fは超音波周波数であり、上記の通り減衰定数aは超音波周波数fの4次関数で近似される。また、(2)式の第1項は内部摩擦による吸収減衰項、第2項はレーリー散乱項を示している。
なお、上記レーリー領域とは、結晶粒径がバルク波の波長に比べて十分に小さい領域を意味し、例えば、次式を満たす範囲とされている。
【0016】
【数3】

【0017】
ここで、dは結晶粒径、λはバルク波の波長を示している。
また、(2)式の4次の係数aは、次式を満たすことが知られている。
【0018】
【数4】

【0019】
ここで、Sは散乱定数である。即ち、係数aは結晶粒径dの3乗に比例する。
【0020】
超音波発振器で送信されるバルク波は、その波形中に、ある分布の周波数成分を含んでいるので、超音波検出器で受信した波形を周波数分析することにより、各周波数成分の減衰率を得ることができる。さらに、送受信の時間差を検出することにより鋼板内での伝播距離が判るので、各周波数成分の減衰率と伝播距離とに基づき、(2)式の各係数を導くことができる。そして、標準サンプル等で予め散乱定数Sを決めておくことにより、(4)式によって結晶粒径dを得ることができる。
【0021】
次に、本発明に係る材質測定装置をより詳細に説明するため、添付の図面に従ってこれを説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。
【0022】
実施の形態1.
図1はこの発明の実施の形態1における組織材質測定装置を示す構成図である。なお、後述の組織材質測定装置は、圧延素材(スラブ)から圧延製品(スラブから製品として完成する途中の状態も含む。以下同じ)が製造される圧延ラインに設けられ、圧延ラインを流れる上記圧延製品の組織材質を測定する。
【0023】
図1において、1は上記圧延製品(鋼板)からなる被測定材、2は圧延ラインを流れる圧延製品の下方に設けられ、圧延製品の一側表面にレーザ光を照射して、圧延製品の他側表面に超音波振動を発生させる超音波発振器(送信側レーザ)、3は圧延ラインを流れる圧延製品の上方に設けられ、圧延製品の他側表面にレーザ光を照射するとともに、圧延製品の他側表面からの反射光を受光することにより、圧延製品の他側表面に発生した超音波振動を検出する超音波検出器(受信側レーザ)、4は超音波検出器3に接続され、超音波検出器3からの検出信号を受信して、圧延製品の結晶粒径算出のために受信した検出信号を処理する信号処理手段、5は信号処理手段4の処理結果に基づいて、圧延製品の結晶粒径を算出する粒径算出手段、6は圧延ラインを流れる圧延製品の上方に設けられ、超音波検出器3から圧延製品の他側表面に照射されるレーザ光の照射位置に、レーザ光を照射して、圧延製品の他側表面の酸化皮膜を除去する表面除去装置(追加レーザ)である。
【0024】
上記超音波発振器2は、被測定材1(圧延製品)の一側表面に強力なパルス状のレーザ光を照射し、被測定材1の一側表面に超音波パルスを発生させる。なお、超音波発振器2からパルスレーザ光を発するパルスレーザとしては、例えば、Qスイッチ動作が可能なYAGレーザ等が用いられる。超音波発振器2から発せられたパルスレーザ光は、レンズ(図示せず)等によって目的のビーム径に絞られ、被測定材1の一側表面に照射される。そして、超音波発振器2から照射されたパルスレーザ光によって被測定材1の一側表面に発生した超音波パルスは、被測定材1中を伝播して被測定材1の他側表面を振動させるとともに、被測定材1中を往復して多重反射を繰り返す。
【0025】
また、上記超音波検出器3では、CW(連続波)レーザを用いることにより、上記超音波パルスによって被測定材1の他側表面に発生した超音波振動の変位を検出する。被測定材1の他側表面に発生した上記超音波振動の変位(以下、単に「振動変位」という)の検出には、例えば、フォトリフラクティブを用いた干渉計が採用される。なお、フォトリフラクティブを用いた干渉計の他にも、超音波検出器3の設置環境が悪くない場合にはファブリペロー干渉計が、被測定材1の他側表面が粗面でない場合にはマイケルソン干渉計等が適宜採用される。ここで、図2はこの発明の実施の形態1における組織材質測定装置を示す要部構成図であり、ファブリペロー干渉計を用いた場合の超音波検出器3の構成を具体的に示したものである。以下に、ファブリペロー方式の超音波検出器3によって上記振動変位を検出する場合について詳説する。
【0026】
図2において、7はCWレーザ、8はミラー、9及び10はビームスプリッタ、11はファブリペロー干渉計、12は光検出器である。上記ファブリペロー干渉計11は、一対の反射ミラー13a及び13bと、反射ミラー13a及び13b間距離を調節するアクチュエータ14と、アクチュエータ14を制御する制御機構(図示せず)とから構成される。なお、上記アクチュエータ14は、例えばピエゾ素子からなり、反射ミラー13a及び13b間距離が所望の値に正確に保たれるように制御機構により逐次操作される。
【0027】
上記構成を有する超音波検出器3では、CWレーザ7から出力されたレーザ光は、ミラー8に反射された後、ビームスプリッタ9に入射されて、被測定材1の他側表面に照射されるレーザ光と、リファレンス光としてファブリペロー干渉計11に直接入射されるレーザ光とに分岐される。被測定材1の他側表面に照射されたレーザ光は、超音波振動する被測定材1の他側表面で反射され、ファブリペロー干渉計11に入射される。ファブリペロー干渉計11では、被測定材1の他側表面で反射したレーザ光(反射光)とリファレンス光とを反射ミラー13a及び13bとにより共振させる。なお、反射ミラー13a及び13bの間隔は、反射光とリファレンス光とが共振するようにアクチュエータ14によって調整される。ファブリペロー干渉計11で共振されたレーザ光は、干渉光となってビームスプリッタ10を介して光検出器12に入射される。そして、光検出器12では、入射された干渉光に基づいて、反射光とリファレンス光との光路差によって生じる干渉波形、即ち、干渉光の強度変化を検出する。
【0028】
一方、上記表面除去装置6は、アブレーションを起こす程度の高いエネルギー密度を持ったパルスレーザを備え、被測定材1の表面にパルスレーザ光を照射することにより、被測定材1表面の酸化皮膜を除去する。なお、アブレーションとは、高いエネルギー密度を持ったレーザ光を照射する時に発生する、プラズマ発光と衝撃音とを伴った固体表面層の爆発的な剥離のことをいう。
【0029】
次に、上記超音波発振器2、超音波検出器3、表面除去装置6の設置位置について説明する。なお、図3はこの発明の実施の形態1における組織材質測定装置の配置を示した図である。図3において、超音波発振器2は、被測定材1の一側表面(底面)に所定の距離を有して設置される。そして、上記超音波発振器2は、被測定材1の一側表面に照射されるパルスレーザ光の光路が、被測定材1の一側表面に垂直な直線に対して0度以上45度以下の傾斜を持つように配置される。なお、図3では、超音波発振器2からのパルスレーザ光の光路が、被測定材1の一側表面に対して垂直となる場合について示している。
【0030】
また、超音波検出器3は、被測定材1の一側表面の反対側となる他側表面(上面)に所定の距離を有して設置される。そして、上記超音波検出器3は、CWレーザ7から発射されるレーザ光の光路が、被測定材1の他側表面に対して略垂直となるように配置されるとともに、超音波発振器2から照射されるパルスレーザ光の光路が被測定材1の一側表面と交わる点(超音波振動の音源)、及び、上記超音波振動の音源に対応する(実施例1においては上記超音波振動の音源の直上部となる)被測定材1の他側表面上の点の少なくとも何れか一方を通るように配置される。さらに、超音波検出器3は、被測定材1の他側表面からの反射光を受光可能に配置される。なお、超音波発振器2からのパルスレーザ光が超音波検出器3に直接入射されるのを防止するため、超音波発振器2から出力されるパルスレーザ光の光路の延長線上に、超音波検出器3の受光部(例えば、レンズ等)を配置しないようにしても良い。
【0031】
一方、上記表面除去装置6は、超音波検出器3がCWレーザ光を照射する方向と同じ方向から被測定材1の他側表面に対してパルスレーザ光を照射するように、被測定材1の他側表面に所定の距離を有して設置される。そして、表面除去装置6は、被測定材1に対して照射するパルスレーザ光が超音波検出器3に直接入射するのを防止するため、上記パルスレーザ光の光路が、超音波検出器3から出力されるCWレーザ光の光路に対して0度以上90度未満の所定の傾斜θを持つように配置される。
【0032】
上記構成を有する超音波発振器2、超音波検出器3、表面除去装置6では、被測定材1の組織材質の測定に際し、先ず、超音波検出器3から被測定材1の他側表面(圧延製品の上面)に照射されるCWレーザ光の照射位置に、表面除去装置6からパルスレーザ光が照射され、被測定材1の他側表面に付いた酸化皮膜が除去される。そして、被測定材1の他側表面の酸化皮膜が除去された後、超音波発振器2から被測定材1の一側表面(圧延製品の底面)に対してパルスレーザ光を照射して、被測定材1の他側表面に超音波振動を発生させる。次に、超音波検出器3から被測定材1の他側表面にCWレーザ光を照射するとともに、被測定材1の他側表面で反射したCWレーザ光の反射光を超音波検出器3によって受光することにより、被測定材1の他側表面に発生した超音波振動を上記超音波検出器3により検出する。また、超音波検出器3によって検出された検出信号は、デジタル波形記憶器(例えば、デジタルオシロスコープ)等によって取り込まれ、信号処理手段4に対して出力される。
【0033】
なお、上記過程において表面除去装置6のレーザ出力は、対象となる酸化皮膜を除去するために、所定値以上のパワーが要求される。このため、実際には表面除去装置6のレーザ出力の調整が必要となる。かかる調整においては、例えば、表面除去装置6からパルスレーザ光を被測定材1の他側表面に照射した後、超音波検出器3の出力を確認することにより、酸化皮膜の除去状態を判断する。酸化皮膜の除去が十分でないと判断した場合、即ち、十分な超音波検出器3の出力が得られていない場合には、表面除去装置6のレーザ出力を上げて被測定材1の他側表面に再度パルスレーザ光を照射し、超音波検出器3の出力確認を実施する。なお、再度の照射によっても超音波検出器3の出力が十分でないと認められる場合には、表面除去装置6のレーザ出力を徐々に上げて行きながら被測定材1の他側表面にパルスレーザ光を照射して、照射毎に超音波検出器3の出力を確認する。そして、十分且つ適正な超音波検出器3の出力を得られたところで表面除去装置6のレーザ出力の上昇を停止させる。
【0034】
次に、超音波検出器3からの検出信号を受信した信号処理手段4の動作について説明する。図4はこの発明の実施の形態1における組織材質測定装置を示す要部構成図であり、特に信号処理手段4と粒径算出手段5との構成を示したものである。図4において、信号処理手段4は、例えば、粗密波エコー抽出手段15、周波数分析手段16、周波数別減衰曲線同定手段17、多次関数フィッティング手段18から構成される。
【0035】
信号処理手段4では、先ず、超音波検出器3から入力された検出信号に基づいて、粗密波エコー抽出手段15により複数個の粗密波エコー信号を採取する。次に、周波数分析手段16により、採取した複数個の粗密波エコー信号の周波数分析を行い、被測定材1表面からの多重エコー信号のスペクトル強度の差から各周波数毎の減衰量を算出する。次に、必要であれば、拡散減衰補正、透過損失補正を行い、減衰定数の周波数特性を算出する。なお、減衰定数の周波数特性は、4次曲線等の多次関数に最小二乗法等でフィッティングさせることにより、多次関数の係数ベクトルを求める。
【0036】
そして、上記の減衰定数に4次曲線を最小二乗法等でフィッティングさせた際に得られる多次関数の係数ベクトルと、校正のための被測定材1から得られる散乱係数Sとから、各サブ組織の体積率による補正を行う前の結晶粒径の測定値dを算出する。
【0037】
なお、以下に上記処理工程を具体的に説明する。
上記超音波検出器3により第1超音波パルス、第2超音波パルス、‥‥、というような超音波パルス列が測定される。この時、各超音波パルスに含まれているエネルギーは、反射の際の損失や被測定材1中の伝播に伴う減衰によって徐々に小さくなっている。即ち、第1超音波パルス及び第2超音波パルスの部分だけを取り出して周波数解析し、それぞれのエネルギー(パワースペクトラム)を求めると、第2超音波パルスは第1超音波パルスに比べ被測定材1の板厚tの2倍分だけ伝播距離が長いため、上記(1)式に従ったエネルギーの減衰が生じる。また、第1超音波パルスのパワースペクトラムとの差として、両者間の減衰量を求めると、右上がりの曲線となる。この曲線は、上記(2)式の減衰定数aに伝播距離の差2tを乗じたものに相当する。これより、単位伝播距離での上記(2)式の各係数を最小二乗法等により求める。そして、予め標準サンプルによって求めておいた散乱定数Sと、上記の通り求めた係数の内のaとから、上記(3)式を逆算することにより、結晶粒径の測定値dを求めることができる。
【0038】
この発明の実施の形態1によれば、表面除去装置6を備えたことにより、被測定材1の他側表面についた酸化皮膜を除去することができる。即ち、上記構成の組織材質測定装置では、表面除去装置6から発生されるパルスレーザ光により被測定材1の他側表面の酸化皮膜を除去した後、超音波発振器2から被測定材1にパルスレーザ光を照射して、超音波検出器3により被測定材1に発生した超音波振動が検出される。このため、超音波検出器3からCWレーザ光が被測定材1に照射される際には被測定材1の他側表面の酸化皮膜が除去されており、超音波検出器3への戻り光量を増加させて、超音波検出器3の分解能を大幅に向上させることができる。
【0039】
また、表面除去装置6は、出力されるパルスレーザ光の光路が超音波検出器3から発射されるCWレーザ光の光路に対して0度以上90度未満の傾斜θを持つように配置されている。このため、表面除去装置6から出力されたパルスレーザ光が被測定材1に反射して直接超音波検出器3に入射されることを防止できる。また、表面除去装置6が上記配置を有するため、超音波検出器3を被測定材1に対して略垂直に設置することができ、超音波振動の検出を効率良く行うことが可能となる。なお、超音波検出器3が作動する前に表面除去装置6を作動させて酸化皮膜を除去するため、表面除去装置6からのパルスレーザ光が超音波検出器3の性能に板波発生等の悪影響を及ぼすことはない。
【0040】
また、上記材質測定装置を圧延ラインで使用する場合に、超音波検出器3及び表面除去装置6を圧延製品の上方に、超音波発振器2を圧延製品の下方に設置することにより、圧延ラインから発生する水蒸気やダスト等の落下物、圧延製品下面での滞留を避けることができ、超音波振動検出の悪影響を最小限に抑えることができる。したがって、圧延ラインにおいて圧延製品が動いている環境においても、超音波検出器3によって超音波振動の検出を効率良く且つ安全に行うことができ、結晶粒径の計測を非破壊で確実に実施することが可能となる。
【0041】
なお、実施の形態1においては、超音波発振器2を圧延ラインを流れる圧延製品の下方に、超音波検出器3及び表面除去装置6を圧延ラインを流れる圧延製品の上方に設置する場合について説明したが、組織材質測定装置を設置する環境条件によって、その配置は任意に選択することが可能である。即ち、設置環境によっては、超音波発振器2を圧延製品の上方に設置して超音波発振器2からのパルスレーザ光を圧延製品の上面に照射するとともに、超音波検出器3及び表面除去装置6を圧延製品の下方に設置して、超音波検出器3からのCWレーザ光と表面除去装置6からのパルスレーザ光とを圧延製品の底面に照射するように構成しても良い。
【0042】
実施の形態2.
図5はこの発明の実施の形態2における組織材質測定装置を示す要部構成図であり、特に超音波検出器3の構成を具体的に示したものである。図5において、超音波検出器3は、CWレーザ7、ミラー8、ビームスプリッタ9、フォトリフラクティブ素子19、光検出器12から構成される。即ち、上記超音波検出器3はフォトリフラクティブ素子19を用いたフォトリフラクティブ方式の超音波検出器であり、その他は実施の形態1と同様の構成を有している。
【0043】
かかる構成を有する超音波検出器3では、CWレーザ7から出力されたレーザ光は、ミラー8に反射された後、ビームスプリッタ9に入射されて、被測定材1の他側表面に照射されるレーザ光と、リファレンス光としてフォトリフラクティブ素子19に直接入射されるレーザ光とに分岐される。また、超音波振動する被測定材1の他側表面で反射された反射光は、ビームスプリッタ9を通過してフォトリフラクティブ素子19に入射される。フォトリフラクティブ素子19では、結晶内で反射光とリファレンス光とを干渉させ、その干渉光を検出器12に対して直接入射する。
【0044】
なお、フォトリフラクティブ素子19を干渉計に用いた場合、受信光の波長の1/8を超える表面変位は検出できないという制約がある。この制約は、特に2mm以下の薄板の測定の際に問題となる。このため、振幅が上記制約値の範囲内に収まるように超音波発振器2のレーザ出力を下げるため、表面の変位が66.5nm(波長532nm=緑色)、又は、133nm(波長1064nm=赤外)を超える場合には、超音波発振器2のレーザ出力を絞り、表面変位そのものを小さくする必要がある。或いは、超音波発振器2のレーザ出力を下げずに、スポット径を小さくすることにより、板波振動を抑制する必要がある。なお、超音波発振器2からのレーザ光は、被測定材1に到達する前に、空間中でアブレーションを起こさない程度を下限として、スポット径を小さくするものとする。
【0045】
この発明の実施の形態2によれば、フォトリフラクティブ方式の超音波検出器3を採用することにより、ファブリペロー方式の超音波検出器3を採用した場合と比較して、反射ミラー13a及び13bのような外部振動等の外乱により影響を受け易い部位や、アクチュエータ14及び制御機構等の精密な機構部を少なくすることができる。このため、振動等の外乱による影響を受け難く、且つ、環境の悪い圧延ラインにおいても長時間に渡って安定した測定が実現できる。
【0046】
特に、熱間圧延ラインでのオンライン計測を実施する場合、圧延機及び被圧延材の通過等に起因する振動や、被圧延材の温度制御のために冷却ラインから被圧延材に対して冷却水を吹き付ける際に生じる水蒸気等が発生し、その計測環境は悪い。また、熱間での被圧延材は約500度から約900度にも達し、被圧延材近傍の温度は非常に高い。したがって、フォトリフラクティブ方式の超音波検出器3を採用することにより、上記環境にも適した組織材質測定装置を提供することが可能となる。
【0047】
また、超音波発振器2からのパルスレーザ光の出力を下げずにスポット径を小さくすることにより、低周波振動の振幅が減少し、代わりに結晶粒径の計測に必要な超音波成分の振幅が増す。このため、測定精度低下の一因となる板波振動を回避でき、組織材質の測定に有効な超音波振動を検出することが可能となる。
【0048】
実施の形態3.
図6はこの発明の実施の形態3における組織材質測定装置の配置を示した図である。図6において、超音波発振器2、超音波検出器3、表面除去装置6は実施の形態1又は2と同様の構成及び配置を有している。20は圧延ラインを流れる圧延製品(被測定材1)の上方に設けられ、表面除去装置6から被測定材1の他側表面に照射されるパルスレーザ光の照射位置及びその照射位置近傍に、窒素ガス等の不活性ガスを吹き付けて、酸化皮膜が除去された被測定材1の他側表面が新たに酸化することを防止するガス噴出装置である。
【0049】
かかる構成を有する組織材質測定装置では、表面除去装置6から被測定材1の他側表面にパルスレーザ光が照射されて酸化皮膜が除去された後、酸化皮膜が除去された部分に向けてガス噴出装置20から不活性ガスが噴出される。その他の構成及び動作は、実施の形態1及び2と同様である。
【0050】
この発明の実施の形態3によれば、被測定材1の他側表面から酸化皮膜が除去された状態をある程度の時間持続することができるため、超音波検出器3の感度を向上させて、より確実な結晶粒径の測定が可能となる。
【0051】
実施の形態4.
この実施の形態に係る組織材質測定装置は、実施の形態1又は2において、表面除去装置の測定点を、圧延製品の検査ラインにおける機械的性質或いは組織材質情報の測定目標点と一致するように、トラッキング情報等を用いて決定するようにしたものである。図7及び図8を用いて、以下にその構成を説明する。
【0052】
図7はこの発明の実施の形態4における圧延設備の要部を示す構成図、図8は組織材質の予測モデルを示す構成図である。図7において、圧延機21を出たストリップ22は、ランアウトテーブル23で冷却された後、巻取機で巻き取られてコイル24となる。その後、コイル24は、検査ラインに運搬され、その一部が切り取られて試験片に加工される。なお、検査ラインでは、機械的性質実測手段25により、上記試験片の引張り強さや降伏応力等の機械的性質が実測される。また、顕微鏡観察等に基づく組織材質情報実測手段26により、フェライト粒径やフェライト・パーライト・ベイナイト等の各相体積率といった、上記試験片の組織材質情報が実測される。
【0053】
組織材質測定装置27は、圧延機21出側及び巻取機前に設置されており、組織材質情報収集手段28により、上記組織材質測定装置27で測定された結晶粒径等の組織材質情報が収集される。組織材質情報収集手段28によって収集された組織材質測定装置27からの指示値と、組織材質情報実測手段26による実測値とは、第1組織材質情報比較手段29によって比較される。そして、第1組織材質情報比較手段29の比較結果が組織材質情報収集手段28に反映され、組織材質測定装置27の校正や精度確認に用いられる。また、第1組織材質情報比較手段29の比較結果は、組織材質測定装置27が結晶粒径を算出する際の同定手法のチューニングパラメータの精度向上にも用いられる。
【0054】
一方、圧延機21から得られる荷重や速度データ、圧延機21の前後に設置された温度計30から得られる温度データといったプロセスデータは、プロセスデータ収集手段31によって収集される。測定されたプロセスデータは、検査ラインにおける機械的性質或いは組織材質情報の測定目標点、及び時刻と関連付けられ、データベースとして、例えば、図示しないデータ記憶手段に格納される。そして、圧延時刻等から、データ記憶手段内の材質とプロセスデータとが検索され、表面除去装置の測定点と、検査ラインにおける機械的性質或いは組織材質情報の測定目標点とが一致するように、組織材質測定装置27が制御される。
【0055】
また、プロセスデータ収集手段31から得られる歪み、歪み速度、温度等といったプロセスデータは、組織材質情報予測手段32に送信され、組織材質情報予測手段32によって、組織材質情報が数式モデルによって算出される。以下に、図8に基づき、組織材質情報予測手段32における算出方法を説明する。
【0056】
組織材質情報を算出するための組織材質モデルは、大別して熱間加工モデルと、変態モデルとから構成される。熱間加工モデルは、圧延機21のロールで圧下されている最中に発生する動的再結晶、動的再結晶に引き続いて発生する回復、静的再結晶、粒成長等の現象を定式化することにより、圧延中及び圧延後の粒径(単位面積当りの粒界面積)や、残留転移密度等のオーステナイト状態を計算するために備えられている。この熱間加工モデルは、γ粒径と、温度や速度に基づく温度・パス間時間情報と、圧下パターンに基づく相当歪み・歪み速度情報とにより、圧延γ粒径や転移密度等の中間組織状態を演算する。なお、上記温度・パス間時間情報と相当歪み・歪み速度情報とは、圧延条件(入側板厚、出側板厚、加熱温度、パス間時間、ロール径、ロール回転数)に基づいて算出される。
【0057】
変態モデルは、核生成と成長とを分離し、粒径や、パーライト及びベイナイトの分率等といった変態後の組織状態を推定するために備えられている。この変態モデルは、ランアウトテーブル23での冷却パターンに基づく温度情報によって、フェライト粒径や各相の組織分率等を演算する。なお、上記温度情報は、冷却条件(空冷及び水冷区分、水量密度、冷却装置内通板速度、成分)と、変態モデルによる変態量とのそれぞれに基づいて演算される。
【0058】
また、熱間加工モデル及び変態モデルの他、Nb、V、Ti等の微量添加元素の影響が考えられる場合は、析出粒子の影響を考慮するため、析出モデルを適宜用いても良い。また、アルミニウムやステンレス等の一部の金属材料については、変態しないため、上記変態モデルを用いなくても良い。
【0059】
上記構成を有する組織材質情報予測手段32によって算出された組織材質情報と、組織材質情報実測手段26による実測値とは、第2組織材質情報比較手段33によって比較される。そして、第2組織材質情報比較手段33の比較結果が組織材質情報予測手段32に反映されることにより、組織材質モデルのチューニングが行われ、予測精度の向上が図られる。
【0060】
更に、プロセスデータ収集手段31から得られるプロセスデータと、組織材質情報予測手段32によって算出された組織材質情報とが、機械的性質予測手段34に送信され、この機械的性質予測手段34において、所定の予測モデルに基づき機械的性質が算出される。機械的性質予測手段34によって算出された機械的性質と、機械的性質実測手段25による実測値とは、機械的性質比較手段35によって比較される。そして、機械的性質比較手段35の比較結果が機械的性質予測手段34に反映されることにより、機械的性質の予測モデルのチューニングが行われ、予測精度の向上が図られる。
【0061】
この発明の実施の形態4によれば、環境の悪い圧延ラインにおいても、組織材質測定の目標点に対して、有効な超音波振動を検出する組織材質測定装置を提供することが可能となる。
【0062】
なお、図9はこの発明の実施の形態4における圧延設備の他の構成を示す図である。実施の形態4の構成は、図9に示すように入力構成を変えても良い。即ち、第2組織材質情報比較手段33への入力は、組織材質情報実測手段26からの実測値に代えて、組織材質情報収集手段28によって収集された組織材質測定装置27からの指示値であっても良い。また、機械的性質予測手段34への入力は、組織材質情報予測手段32によって算出された組織材質情報に代えて、組織材質情報収集手段28によって収集された組織材質測定装置27からの指示値であっても良い。上記構成によっても、上記と同様の効果を奏することが可能である。
【0063】
なお、本発明は上記実施の形態そのままに限定されるものではなく、実施段階においてはその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施の形態に示される全構成要素から、幾つかの構成要素を削除しても良い。さらに、異なる実施の形態に渡る構成要素を適宜組み合わせても良い。
【産業上の利用可能性】
【0064】
以上のように、この発明にかかる組織材質測定装置によれば、被測定材の酸化皮膜が除去された状態でその他側表面に発生した超音波振動が検出されるため、超音波振動を検出する超音波検出器への戻り光量を大幅に増加させて、被測定材の結晶粒径の測定を確実に実施することが可能となる。
また、被測定材に付いた酸化皮膜を除去して、且つ、非破壊で結晶粒径の測定が可能であるため、特に、熱間圧延ラインでのオンライン測定にも対応することが可能である。
【符号の説明】
【0065】
1 被測定材、 2 超音波発振器、 3 超音波検出器、 4 信号処理手段、
5 粒径算出手段、 6 表面除去装置、 7 CWレーザ、 8 ミラー、
9 ビームスプリッタ、 10 ビームスプリッタ、 11 ファブリペロー干渉計、
12 光検出器、 13a 反射ミラー、 13b 反射ミラー、
14 アクチュエータ、 15 粗密波エコー抽出手段、 16 周波数分析手段、
17 周波数別減衰曲線同定手段、 18 多次関数フィッティング手段、
19 フォトリフラクティブ素子、 20 ガス噴出装置 21 圧延機、
22 ストリップ、 23 ランアウトテーブル、 24 コイル、
25 機械的性質実測手段、 26 組織材質情報実測手段、
27 組織材質測定装置、 28 組織材質情報収集手段、
29 第1組織材質情報比較手段、 30 温度計、
31 プロセスデータ収集手段、 32 組織材質情報予測手段、
33 第2組織材質情報比較手段、 34 機械的性質予測手段、
35 機械的性質比較手段

【特許請求の範囲】
【請求項1】
圧延ラインに設けられ、前記圧延ラインを流れる圧延製品の組織材質情報を、非接触で測定する組織材質測定装置と、
前記組織材質測定装置によって測定された組織材質情報を収集する組織材質情報収集手段と、
前記圧延ラインのプロセスデータを収集するプロセスデータ収集手段と、
前記プロセスデータ収集手段によって収集されたプロセスデータに基づいて、前記圧延製品の組織材質情報を所定の組織材質予測モデルによって算出する組織材質情報予測手段と、
前記組織材質情報収集手段によって収集された組織材質情報と前記組織材質情報予測手段によって算出された組織材質情報とを比較する組織材質情報比較手段と、
を備えたことを特徴とする組織材質測定システム。
【請求項2】
前記組織材質情報予測手段は、前記組織材質情報比較手段による比較結果に基づいて、前記組織材質予測モデルのチューニングを行うことを特徴とする請求項1に記載の組織材質測定システム。
【請求項3】
前記組織材質情報収集手段によって収集された組織材質情報と前記圧延製品の組織材質情報の実測値とを比較する第2組織材質情報比較手段と、
を更に備えたことを特徴とする請求項1又は請求項2に記載の組織材質測定システム。
【請求項4】
前記組織材質測定装置は、所定の同定手法によって前記圧延製品の結晶粒径を算出するとともに、前記第2組織材質情報比較手段の比較結果に基づいて、前記同定手法のパラメータのチューニングを行うことを特徴とする請求項3に記載の組織材質測定システム。
【請求項5】
前記プロセスデータ収集手段によって収集されたプロセスデータと前記組織材質情報収集手段によって収集された組織材質情報とに基づいて、前記圧延製品の機械的性質を所定の予測モデルによって算出する機械的性質予測手段と、
前記機械的性質予測手段によって算出された機械的性質と前記圧延製品の機械的性質の実測値とを比較する機械的性質比較手段と、
を更に備えたことを特徴とする請求項1又は請求項2に記載の組織材質測定システム。
【請求項6】
前記機械的性質予測手段は、前記機械的性質比較手段による比較結果に基づいて、前記予測モデルのチューニングを行うことを特徴とする請求項5に記載の組織材質測定システム。
【請求項7】
前記プロセスデータ収集手段によって収集されたプロセスデータと前記組織材質情報予測手段によって算出された組織材質情報とに基づいて、前記圧延製品の機械的性質を所定の予測モデルによって算出する機械的性質予測手段と、
前記機械的性質予測手段によって算出された機械的性質と前記圧延製品の機械的性質の実測値とを比較する機械的性質比較手段と、
を更に備えたことを特徴とする請求項1又は請求項2に記載の組織材質測定システム。
【請求項8】
前記機械的性質予測手段は、前記機械的性質比較手段による比較結果に基づいて、前記予測モデルのチューニングを行うことを特徴とする請求項7に記載の組織材質測定システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−32404(P2012−32404A)
【公開日】平成24年2月16日(2012.2.16)
【国際特許分類】
【出願番号】特願2011−232898(P2011−232898)
【出願日】平成23年10月24日(2011.10.24)
【分割の表示】特願2008−522450(P2008−522450)の分割
【原出願日】平成19年6月18日(2007.6.18)
【出願人】(501137636)東芝三菱電機産業システム株式会社 (904)
【Fターム(参考)】