説明

経皮的な薬物の放出および分析物の抽出

【課題】活性の物質の経皮的な放出用の改良された装置および方法を提供する。
【解決手段】個別の点において対象者の皮膚22に適用される複数の電極60、および、複数の電極60の間に電気エネルギーを印加し、個別の点の中間の領域68の角質層を主として切除させる電源52、を具備する対象者の体の皮膚22の角質層表皮を切除する装置20およびその方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的には薬物の放出および分析物の抽出の方法および装置に関し、特定的には、生体の皮膚の外側の層を穿孔する医療方法および装置、および経皮的薬物の放出および分析物の抽出の方法および装置に関する。
【背景技術】
【0002】
経皮的な薬物の放出および/または分析物の抽出を実行するため、皮膚パッチと皮膚との間の薬品または分析物のパッシブ拡散およびイオン導入法、ソノフォレシス、エレクトロポレーション、および化学的に強化された拡散等のアクティブプロセスを含む幾つかの方法が開発されている。これらの方法は主に小型分子の経皮的移動生成に用いられるが、一般に、厚さ10〜50ミクロンの皮膚の最外層、角質層表皮を通じた大型分子の移動は強化しない。
【0003】
参照により本書に組み込む、Henry他によるマイクロエレクトロメカニカルシステムに関するIEEE第11回年次国際ワークショップ(1998年)の494−498ページの記事、「経皮的薬品提供のためのマイクロマシン化ニードル」では、試験薬に対する皮膚の透過性を増すために、マイクロニードルによる機械的皮膚穿刺の方法が検討される。この記事では、シリコンにニードルアレイをエッチングするためのマイクロファブリケーション技術について述べられ、死体の皮膚にニードルアレイで実行した実験では、皮膚穿刺後に透過性が増すことが実証された。ニードルは所定の長さで作られ、角質層の局所的厚みに拘らず、皮膚表面から同じ深さに通す。ニードルが局所的厚みより長い場合、下にある表皮組織が傷つくことがあるのが知られているが、ニードルが短すぎると、角質層の流路形成が不完全になることがある。
【0004】
参照のため開示が本明細書に組み込まれる米国特許4,775,361号、5,165,418号および5,423,803号、およびPCT公開公報WO 97/07734号には、レーザパルスを使用して角質層を約120度Cに局所的に加熱し、局所的切除を生じさせ、角質層に大型分子が通過できる1つの穴を生じさせる方法について述べられている。レーザパルスの波長を変えることにより切除深さに或る程度の選択性があるが、角質層に必要な損傷を生成した時点でレーザパルスを終了させるフィードバックメカニズムについては開示されていない。
【0005】
PCT公開公報WO 97/07734も、角質層と接触する電気抵抗の要素を使用し、要素を通じる大電流でその近辺の組織、より詳しくは角質層を全体的に加熱する角質層の熱的切除を開示する。上述のように、角質層の十分な崩壊により電流通流を終了させる手段は開示されない。さらに、皮膚の熱的特性は、個体および対象者のグループにおける相異なる皮膚の区域により大きく変動し、痛みを生じさせずに所望の切除を行うための最適の熱の適用量の決定を非常に困難にする。最後に、マイクロニードル、レーザエネルギーまたは組織の抵抗加熱を問わず、角質層の透過性を増すことにより経皮的な分子の流れを増大させることは、本質的に(a)穴をあけるため装置を位置決めすること、(b)皮膚にパッチを当てそれを通して分子が流れるようにすること、の2つのステップの過程である。
【0006】
エレクトロポレーションも、電界の適用により穴の寸法を増大させる方法として当業者により知られている。このプロセスは、参照により本書に組み込むChizmadzhev他のBiophysics Journal、1998年2月、74(2)、「中電圧での皮膚の電気特性」という題名の記事の843〜856ページに述べられる。エレクトロポレーションは、角質層の電気抵抗を瞬間的に下げ、既存の穴の寸法を大きくするため電界を適用することにより小型分子の経皮的なフラックスを増す手段として開示される。エレクトロポレーションは一般に大型分子を通過させるに十分な直径の穴を生成しない。さらに、上記に述べるように自然に発生するバリエーションと、所望の穴拡大達成を示す正確なフィードバックメカニズムの欠如のため、最適の電圧の形態の決定は困難である。過度の電圧を印加すると、不可逆な破壊が発生し、皮膚の損傷と痛覚が生じる可能性がある。
【0007】
参照のため開示が本明細書に組み込まれるWeaver他の米国特許5,019,034号は、エレクトロポレーション生成のため皮膚に高電圧、短期間の電気的パルスを与える装置について述べ、「増大される組織の透過性とともに…可逆的な電気破壊…はエレクトロポレーションの特徴的な効果である。」と述べている。
【発明の概要】
【0008】
本発明の或る観点の目的は、活性の物質の経皮的な放出用の改良された装置および方法を提供することである。
本発明の或る観点の他の目的は、経皮的分析物抽出のため改良された装置および方法を提供することである。
【0009】
本発明の或る観点のさらに他の目的は、穿刺による生体の皮膚の角質層を通じた狭い流路形成のための改良された装置および方法を提供することである。
本発明の或る観点のさらに他の目的は、流路形成中の痛覚減少と角質層下の皮膚への損傷を最小限にするための改良された装置および方法を提供することである。
【0010】
本発明の或る観点のさらに他の目的は、流路形成のタイミングを制御するための改良された装置および方法を提供することである。
本発明の或る観点のさらに他の目的は、皮膚の特性に対応して流路形成を規制するための改善された装置および方法を提供することである。
【0011】
本発明の或る観点のさらに他の目的は、小型の自給式装置を使用する、皮膚の穿刺および/またはアクティブ物質の経皮的な供給および/または分析物抽出のための改良された装置および方法を提供することである。
本発明の或る観点のさらに他の目的は、標準医療用皮膚パッチを使用する活性物質を経皮的に供給するための改良された装置および方法を提供することである。
【0012】
本発明の好適な実施例では、物質の経皮的移動を強化するための装置は、(a)対象の皮膚と接触した少なくとも2個の電極を持つ皮膚パッチ、および(b)パッチに連結され、角質表皮を通じて電極間に電流を通過させ、角質層に少なくとも1個のマイクロ流路を生成して物質の経皮的移動を可能あるいは増強する制御ユニット、を具備する。制御ユニットは、電極における電界の大きさおよび/または持続時間を制御するためのスイッチング回路からなることが望ましい。
【0013】
本出願および特許請求の範囲の文脈で用いる「マイクロチャンネル」という用語は、角質層の全てまたは大きな部分を通じて全体として皮膚表面から延び、その中を分子が拡散できる経路を指す。マイクロチャンネルは、同じ分子がエレクトロポレーションで生成された穴で拡散するより速く大型分子を拡散させられることが望ましい。十分な大きさの電界が電極と接触して一定期間皮膚の小部分に加えられた時、局所的電力散逸によりマイクロチャンネルが形成されかかる角質層がアブレーション(ablation)されると考えられる。イオン導入やエレクトロポレーション等の当業で周知の電気的に促進される薬品提供方法と異なり、本発明は、分子のイオン化や極性化の必要なしに、活性物質の大型分子が迅速に通過できる比較的大きなチャンネルを形成することができる。
【0014】
電極間の電流通流は、2つの成分:(a)皮膚表面に対して全体として垂直な(そして、関連する電界が十分に大きい場合、電流を角質層からその下の皮膚組織と真皮に流すことのできる)垂直成分、および(b)皮膚表面に対して全体として平行な、全体として角質層内に残る横成分、を有すると記述されることができる。1個の電極で生成される電流の実質的に全てが、最終的に皮膚から発出して隣接の電極に吸収される。
【0015】
本発明の好適な実施例では、垂直成分に対する横成分の相対値を増すための方法および/または装置が採用される。一般に、角質層表皮(表皮の表面層)は、下の皮膚組織より分子の通過に対して非常に大きな抵抗を示す。そのため、本発明の実施例の目的は、物質のコンダクタンスを増し、角質層の下の皮膚組織または神経分布真皮に直接影響したり損傷を与えたりせず角質層をアブレーションすることにより角質層にマイクロ流路を形成することである。さらに、電流通流を実質的に非神経分布角質層に限定することで、特に当業で周知の他の装置に比べて、本発明の利用に対する対象の感覚、不快感または痛みを減らすかなくすことが予想される。
【0016】
皮膚上の2個の電極間に付加した電圧は、電極近接の大きさに大きく制約された電界を生じる。故に、広く間隔をあけた電極は、皮膚に比較的深く延びる電界と、それに対応する電流通流を生じる。反対に、間隔の狭い電極は深い層で大きな電流通流を生じない。そのため、本発明の実施例では、角質層の大半またはすべてからなる薄い層に大きく制約された電流通流を生成するため、装置の電極は約100ミクロンより小さい距離(だが、用途によっては約500ミクロンまでの距離)で分離する。これにより、本書上記に述べるように、所望の大きい値で垂直成分に対する横成分の比率を効果的に生じることになる。
【0017】
本発明のこれらの好適な実施例の或るものでは、高周波数の交流電流と任意に加えられる直流電流が狭く間隔をあけた電極の間に適用され、角質層に横方向の容量性電流が発生し、角質層において破壊とマイクロ流路の形成が生成を生ずる。
【0018】
本発明の或る好適な実施例では、パッチは電極の列、望ましくは狭く間隔をあけた電極からなり、共にパッチ下の皮膚領域に高マイクロ流路密度を生成する。制御ユニットおよび/または関連する回路は、各電極または電極のサブセットを通じて電流通流を逐次的または同時に評価し、付加された電界に対していつ1個以上のマイクロ流路が形成されたか決定するのが望ましい。これに対応して、制御ユニットは電界の付加を切断する。マイクロ流路の形成は主に皮膚の電気抵抗の局所的低下によってマークされるため、制御ユニットは、例えば電流が閾値を超過した場合に電極に付加する電圧または電流を下げることができる。マイクロ流路形成時または直後に電流通流を減少させることにより、皮膚の火傷または痛みの可能性は最小限になる。
【0019】
本発明の或る好適な実施例では、皮膚を通じたマイクロ流路形成を誘発するため、当初は電極に比較的高電圧を付加する。電流通流の特性を検出し、その特性が所定の閾値に達した時に電流を低減または終結する。検出された電流通流の特性は、角質層を通じた1個以上のマイクロ流路の形成に対応して、皮膚の導電特性の変化に従属するのが望ましい。
【0020】
代替的または付加的に、例えば公式V(t)=V0+k(t^n)で特徴づけられる時間変化電圧V(t)を、遮断信号が生成されるまで皮膚パッチの第1の電極と第2の電極との間に付加する。(定数kおよびnは負ではないものである。)V(t)の他の形式には、正弦関数、指数項または一連のパルスが含まれる。付加された電界に対応して流れる電流I(t)は、上述のように制御ユニットで測定する。Integral[I(t)dt],dI/dtおよび/またはdI/dtの値の計算は頻繁に実行する。Iおよび/またはIntegral[I(t)dt],dI/dtおよび/またはdI/dtとそれぞれの閾値の比較をマイクロ流路形成のインジケータとして用い、および/またはいつ電極に遮断信号を生成するかを決定する。
【0021】
さらにあるいはまたはさらに、V(t)が正弦関数である実施例では、制御ユニットは、電界付加中、V(t)およびI(t)の間の位相シフトの変化を計算し、これら変化に対応して電界を制御するのが望ましい。角質層中の細胞はキャパシタンスを示し、位相シフトを生じ、角質層のアブレーションはキャパシタンスを減少させ、これが位相シフトの減少で証拠づけられると考えられている。
【0022】
さらにあるいはまたはさらに、皮膚を通過する総電荷は、キャパシタ、インダクタその他エネルギー保存装置によって限定される。これら成分に適切な値を選択することで、皮膚を通過できる電荷の絶対最大量を設定し、もって生じる損傷を限定する。
【0023】
本発明の或る実施例では、1個以上の電極は、導電性の溶解要素からなるか、これに連結され、溶解速度は全体として電極を通過する電流に比例する。十分な電荷量が溶解要素を通過すると、電極は通電を停止する。故に、最大電荷合計、Qtotalは、Integral[I(t)dt]として定義されるq(t)の場合のみ要素を通過する電流フローがQtotalより小さいように電極と関連する。これは安全機能として働き、付加された電界に従属する皮膚火傷の可能性を下げる。あるいはまたはさらに、溶解要素は、角質層のアブレーションに十分な量の電荷が中を通過した後に非導電性になるよう構築することができる。
【0024】
本発明のさらに或る実施例では、電極は望ましくは導電性物質(例えば、銀粒を含む導電性インクなど)の移転パッチのスタンピングまたは適用によって皮膚に直接「印刷」する。経皮的薬品供給のための本発明のかかる実施例の適用において、導電性物質は対象に投薬する薬品を保持するマトリクスからなるのが望ましい。
【0025】
印刷した電極は、付加した電界に対応した角質層のアブレーション時に中のコンダクタンスを実質的に完全に喪失するのが望ましい。さらに、各印刷電極は、中を流れる電流が閾値より下である時のみ導電性である材料からなるのが望ましい。電流が閾値を超えると、材料の熱溶解によってそれを大きく非導電性になるよう、すなわち材料がヒューズとして作用するようにする。さらに、電流が閾値電流に達するまで、一般に、上述のように角質層のアブレーションに必要な時間に関連する時まで電流は他方の電極に流れ続けるのが望ましい。ある実施例では、制御ユニットは他の実施例に関して述べたより実質的に単純に作り、全体として遮断信号を生成するか否か決定するための他の回路を必要としないことができる。
【0026】
本発明のさらに他の実施例では、パッチ上の2個の電極は同心の電極組を形成し、ここにおいて、内電極は角質層を通過して内電極を囲む外電極に流れる電流を生成する。内電極と外電極との距離は、上述のように電流の垂直成分に対する横の比率を高い値に保つため、約50から約200ミクロンの間が望ましい。
【0027】
本発明の或る実施例では、望ましくは導電性クリームまたはインクからなるコンダクタンス強化物質を皮膚に当て、電流フローの垂直成分に対する横の比率を上げる。あるいはまたはさらに、コンダクタンス強化物質は高拡散係数の組成からなり、角質層の脂質層に拡散しさらにその中の選択的電力散逸を増して、その下の組織に対する損傷をほとんどないように角質層をアブレーションする。ある用途では、物質は関連する電荷を持ち、小さい横電界が付加される時、角質層内の物質の横拡散が強化される(すなわち、物質のイオン導入)。
【0028】
コンダクタンス強化物質を利用するこれら実施例の一部では、物質はさらに、例えばその中に溶解あるいは混合する医薬製品等のアクティブ物質からなる。角質層の崩壊はしばしばコンダクタンス強化物質により可能は強化導電経路の除去と関連するため、これら実施例の多くで、電極に電流を生成するためのほぼ一定電圧源を用いるのが望ましい。強化導電経路の除去により、抵抗が増す間、電圧が一定のままになるため、角質層の電力散逸に所望の低下が得られる(P=V/R)。
【0029】
本発明の他の実施例では、角質層のアブレーションは、電極に電力を供給するため電流制限ソースを利用して行う。角質層は一般に高い電気抵抗を示しながら、角質層の下の表皮組織は相当低い電気抵抗を持つと考えられる。そのため、角質層のアブレーション(すなわち高抵抗組織の除去)は電極間の電気抵抗の正味減少に関連し、電気的崩壊後に表皮に散逸する電力は、一般に抵抗の変化に比例して下がる(P=IR)。
【0030】
制御ユニットで各電極の電圧、電流および/または位相の変化をモニタするには、インプリメンテーションによっては相当な量の回路を必要とする。そのため、本発明のある実施例では、制御ユニットは1個以上の電極のクラスタからなり、モニタと制御は中の個々の電極についてではなく、各クラスタについて実行する。クラスタは、例えば約1mmから約100mmの皮膚の比較的小領域が望ましく、ここで皮膚の特性は実質的に一定と想定する。
【0031】
本発明の或る実施例では、装置はスタンドアロンで、アクティブ物質の経皮的供給を可能にするか、または分析物の経皮的移動を強化する。あるいは、装置は上述のようにマイクロ流路を作ってから皮膚から取り外し、その後皮膚に設置した市販皮膚パッチとの物質の経皮的供給を強化する。本発明の他の実施例では、装置は市販の経皮的薬品供給/分析物抽出装置へのアドオンで、主に角質層におけるマイクロ流路形成を行い、任意で物質が通過できる手段として作用する。
【0032】
そのため、本発明の実施例によると、下記:
それぞれのポイントで対象の皮膚に適用される複数の電極、および、
2個以上の複数の電極の間に電気エネルギーを付加し、主にそれぞれのポイントの中間の領域の角質層をアブレーションするための電源、を含む対象の角質層表皮をアブレーションする装置が提供される。
【0033】
角質層の下の皮膚層が実質的にアブレーションされないことが望ましい。本発明の実施例では、角質層のアブレーションによってその穿孔が生じる。
【0034】
装置は、物質が中を通過できるよう、角質層の領域をアブレーションするのが望ましい。さらに、物質は、皮膚を通って供給される薬品を含むのが望ましい。あるいは、物質は皮膚から抽出される分析物を含む。
【0035】
電源は、電界を生成して角質層に電流を流し、装置は電流の特徴の変化に対応して角質層に散逸する電力を低下させるのが望ましい。さらに、特徴は次からなるリストから引くのが望ましい:電流の大きさ、電流の時間積分、電流の第1時間導関数、および電流の第2時間導関数。
【0036】
あるいはまたはさらに、複数の電極のうちの1個を通る電流は、複数の電極の他の1個を通る電流から実質的に独立して低下する。
【0037】
さらにあるいはまたはさらに、複数の電極の少なくとも1個は制限導電ユニットを通る電流を受けるため連結され、このユニットが閾値より下の電流がその中をほぼ妨害されずに流れて、中を流れる電流が制限導電閾値を超えると実質的に非導電となる。
【0038】
複数の電極の少なくとも1個は、中を通過する電流に全体として比例する溶解速度で特徴づけられる導電溶解要素に連結され、これは電流の関数に対応して実質的に非導電となる。実施例では、関数には溶解要素を通過した電流の時間積分を含む。
【0039】
好適には、溶解の要素は下記:
要素内の電解液、
電解液中に浸された第1のノードおよび共通のノードであって電流は第1ノードから共通ノードまで電解液を流れ、この電流フローが中を通過する電流に全体として比例する速度で共通ノードを消費させ、共通ノードを通過した総電荷が共通ノード閾値を超えた時に溶解要素が実質的に非導電となるものを包含する。
【0040】
さらに好適には、溶解要素は、電解液に浸された第2のノードを含み、電源は交流電流を発生させ、装置はさらに下記:
電源と第1のノードとの間に直列に連結された第1のダイオードであって、交流電流がその正の位相にある時、電源から第1のノードへ通電するもの、および、
電源と第2のノードとの間に直列に連結された第2のダイオードであって、交流電流がその負の位相にある時、第2のノードから電源に通電するもので、
共通ノードを通過した総電荷が共通ノード閾値を超えた時に溶解要素は実質的に非導電となるもの、をさらに包含する。
【0041】
その代りに、溶解の要素は下記:
要素内の電解液、
電解液に浸した大面積アノード、
電解液に浸した複数のカソードであって、カソードのそれぞれが複数の電極のそれぞれに連結され、電流は大面積アノードから電解液を通って複数のカソードに通流し、この電流通流は複数のカソードの少なくとも1個を中を通過する電流に一般的に比例する速度で消費させ、少なくとも1個のカソードは、中を通過した電流の関数に対応して実質的に非導電となるもの、を包含する。
【0042】
好適には、複数の電極の少なくとも1個を流れる電流は、複数の電極の他の1個を流れる電流の特徴の変化に応答して減少させられる。
【0043】
好適な実施例では、装置は複数の電極の2個の間の電圧低下を測定するため接続された電圧感知ユニットも含み、電源からの電流は感知ユニットによる測定に応答して減少させられる。好適には、電源は電流源を含み、電流源からの電流は、2個の電極間の電位が電圧の閾値より低いことを示す感知ユニットの測定に応答して減少させられる。
【0044】
代替的にまたは付加的に、装置は2個の電極のうちの1個と電源に接続された抵抗要素を含み、電圧感知ユニットがさらに中を通過する電流を決定するため抵抗要素の電圧低下を測定するため接続される。電源は交流電流源を含み、2個の電極間の電圧低下と抵抗要素の電流の測定値が位相シフトを決定するようにする。交流電流源からの電流は閾値より下の位相シフトに対応して低下する。
【0045】
好適な実施例では、装置は下記:
複数の電極のうちの1個と電源に接続された抵抗要素、および、
中を通過する電流を決定するため抵抗要素の電圧低下を測定するよう接続された電圧感知ユニット、を包含する。
この実施例では、電源は電圧源を含み、電圧は、抵抗要素を通る電流が電流閾値より上であることを示す感知ユニットの測定に対応して低下する。
【0046】
他の1つの好適な実施例では、複数の電極の少なくとも1個は皮膚に直接印刷し、中を通る電流の値が閾値より大きいのに対応して実質的に非導電となる。
【0047】
他の1つの好適な実施例では、装置は下記:
複数の電極の2個に接続されたキャパシタ、および、
電源とキャパシタに接続されたスイッチであって、スイッチはその閉じた位相で電流が電源からキャパシタと2個の電極に流れるようにし、スイッチはその開いた位相で電源からキャパシタと2個の電極への電流通流を実質的に終了させるもの、を包含する。
この実施例では、電源は閉じた位相でキャパシタを充電し、開いた位相でコンデンサは電極に電流を放電する。
【0048】
好適には、複数の電極の2個の間の距離は約0.3mmより小さいのが望ましい。さらに、複数の電極の2個の間の距離は約0.01mmから約0.1mmの間である。
好適には、複数の電極は下記:
中に複数の穿孔を持つ共通電極、および、
複数の正の電極であって、各正の電極は共通電極のそれぞれの穿孔を通過し、
電源からの電流は各正の電極から皮膚を通って共通電極に流れるもの、を包含することが望ましい。
【0049】
好適な実施例では、電源は交流電流を発生させ、その周波数は約100Hzより高い。周波数は約1kHzから約300kHzの間が望ましい。代替的または付加的に、電源は第1の周波数値と第2の周波数値との間の交流電流の周波数を変調する。
【0050】
さらに、本発明の好適な実施例によれば、下記:
電流を発生させる電源、
個別の点で皮膚に適用される複数の電極、および、
電極の少なくとも1個に連結された導電性の溶解の要素であって、要素は全体としてその中を通過する電流に比例する溶解の速度に特徴付けられ、中を通過する電流の関数に応答して実質的に非導電となるもの、を包含する対象者の皮膚に電流を通流させる装置が提供される。
【0051】
また、本発明の実施例によると、下記:
個別の点において対象者の皮膚に複数の電極を配置すること、
個別の点の中間の領域の角質層を主としてアブレーションするため、2個以上の複数の電極の間に電気エネルギーを印加すること、を包含する対象者の皮膚に電流を通流させる装置が提供される。
【0052】
好適には、角質層の下の皮膚層は実質的にアブレーションされないようにされる。実施例では、電気エネルギーの付加は皮膚の穿刺を含む。
好適には、エネルギーの印加は、物質を領域に通過させるため、角質層の領域のアブレーションを含む。さらに好適には、方法は、薬品供給または領域を通じた分析物の抽出を含む。
【0053】
好適には、電気エネルギーの印加は下記:
皮膚上のポイントに電流を流すこと、および、
電流の特徴のバリエーションに対応して皮膚を流れる電流通流を実質的に減少させること、を包含する。
【0054】
好適な実施例では、特徴は、電流の大きさ、電流の時間積分、電流の第1の時間についての導関数、および電流の第2の時間についての導関数、からなる表からひき出される。
【0055】
他の1つの好適な実施例では、電流を流すことには1個以上のそれぞれの制限導電ユニットを通して皮膚の1個以上のポイントに電流を通すことを含み、ユニットは閾値より下の電流を実質的に妨害されずにその中を流し、中を流れる電流が制限導電閾値を超える場合、実質的に非導電となる。
【0056】
他の1つの好適な実施例では、電流を通流させることは1個以上のそれぞれの導電溶解要素を通して皮膚の1個以上の点に電流を通流させることを含み、各要素は全体としてその中を通過する電流に比例する溶解の速度によって特徴づけられ、各要素は、中を通過した総電荷が溶解要素閾値を超える時に実質的に非導電となる。
【0057】
さらに他の好適な実施例では、電流通流の低減には、個別の点の1つの電流を個別の点の他の1つの電流から実質的に独立して低減することを含む。
【0058】
さらに別の他の1つの好適な実施例では、電流通流の低減には次を含む。
複数の電極の1つを通る電流通流の監視と、
それに対応する複数の電極の他の1つを通る電流通流の低減。
【0059】
好適には、複数の電極の配置には、約0.3mmより小さくその間に分離して複数の電極の2個を配置することを含む。さらに、複数の電極を配置することは、約0.01mmから約0.1mmの間に分離して複数の電極のうちの2個を配置することを含む。
【0060】
好適な実施例では、複数の電極を配置することは下記:
皮膚を通した電流通流の強化のため、対象の皮膚の表面の領域に伝導強化材料を当て、適用すること、および
材料に電極を配置すること、を包含し、
伝導強化材料の電気抵抗はその中の電流通流の関数に応答して増大する。
【0061】
好適には、複数の電極を配置することは下記:
その中に複数の穿孔を持つ共通電極を皮膚に配置すること、および、
複数の正の電極を皮膚に配置し、各正の電極は共通電極のそれぞれの穿孔を通過し、電源からの電流が各正の電極から皮膚を通して共通の電極に通流するようになること、を包含する。
【0062】
さらに好適には、方法は、電極近辺に物質を含む医療用パッチを配置することを含み、角質層のアブレーションでパッチから皮膚への物質の輸送速度を増すことが望ましい。
【0063】
好適な実施例では、電気エネルギーの印加には交流電流の発生を含み、その周波数は約100Hzより高い。好適には、周波数は約1kHzから300kHzの間である。代替的または付加的に、電気エネルギーの印加は、第1の周波数値と第2の周波数値の間の交流電流の周波数を変調することを含む。
【0064】
さらに、本発明の好適な実施例によれば、下記:
個別の点において皮膚に複数の電極を配置すること、
電極に電流を適用すること、および、
電極の少なくとも1個に導電性の溶解の要素を結合し、要素はその中を通過する電流に一般的に比例する溶解の速度に特徴付けられ、中を通過する電流の関数に応答して実質的に非導電となるようにすること、を包含する対象者の皮膚に電流を通流させる方法が提供される。
本発明は、図面を参照しての発明の実施例の詳細な説明を参照することにより、より完全に理解されるであろう。
【図面の簡単な説明】
【0065】
【図1A】図1Aは、本発明の実施例による物質の経皮的輸送のための装置の部分断面図である。
【図1B】図1Bは、本発明の実施例による物質の経皮的輸送のための他の装置の部分断面図である。
【図2】図2は、本発明の実施例による図1Aの装置の底面図である。
【図3】図3は、本発明の実施例による図1Aの装置のスイッチングユニットの略図である。
【図4】図4は、本発明の実施例による電極アセンブリの略図である。
【図5】図5は、本発明の実施例による他の電極アセンブリの略図である。
【図6】図6は、本発明の実施例によるさらに他の電極アセンブリの略図である。
【図7】図7は、本発明の実施例によるさらに他の電極アセンブリの略図である。
【図8A】図8Aは、本発明の実施例による電荷制限電極アセンブリの略図である。
【図8B】図8Bは、本発明の実施例による電荷制限電極アセンブリの略図である。
【図9】図9は、本発明の実施例による他の電荷制限電極アセンブリの略図である。
【図10】図10は、本発明の実施例によるさらに他の電荷制限電極アセンブリの略図である。
【図11A】図11Aは、本発明の実施例による同心電極アセンブリの側面図である。
【図11B】図11Bは、本発明の実施例による図11Aの同心電極アセンブリの共通電極層の上面図である。
【発明を実施するための形態】
【0066】
図1Aは、本発明の実施例による活性物質の経皮的供給および/または分析物の経皮的な抽出のための皮膚穿刺の装置20の部分断面図である。装置20は、皮膚パッチ40に取り付けた制御ユニット30からなり、これは、対象の皮膚22の好適領域に固定するのが望ましい。装置20は、その中を制御された電流を通過させることにより、皮膚の通常は実質的に不透過角質層を通して活性物質を投薬し、これにより角質層をアブレーションし、物質が通過できるマイクロ流路を生成するのが望ましい。あるいはまたはさらに、装置20は、一般的に診断目的のため、下の組織からパッチ40へ分子が通過できるよう、角質層にマイクロ流路を生成するのに用いる。
【0067】
装置20が角質層に電流を流すと、この組織が抵抗で加熱され、十分な量のエネルギーが短期間にその中を通過した時、組織がその中で消費される総エネルギーによってアブレーションされる。このアブレーションで所望のマイクロ流路、すなわち、組織中に物理的間隙が作られる。皮膚の小領域に電流を加えると、このようなマイクロ流路が形成され、分子をイオン化または極性化する必要なく、また角質層の下の真皮や表皮に痛みや実質的な外傷を生じることなく、その中を大きな分子さえ比較的自由に通過することができることがわかっている。
【0068】
制御ユニット30は、スイッチングユニット50、電池52(リチウムコイン電池など)および任意のボタン54と感知信号発生装置56からなるユーザインターフェースで、ディスプレイおよび/またはブザーからなることのできるものから構成するのが望ましい。最も単純な実施例では、ボタン54は分析物抽出または活性物質の供給を開始および終結するが、ボタン54は抽出または投薬速度と持続時間もプログラム可能に制御するのが望ましい。
【0069】
パッチ40は2個以上の電極60、望ましくは電極の列75からなり、皮膚との間に電流を通す。経皮的薬品供給のため装置20を適用する際、マイクロ流路が電極間の電流フローに対応して形成されると、パッチ40に保存された活性物質がその中を流れる。パッチでは、活性物質は電極間領域68に保存されるか適用され、そこから皮膚に作られたマイクロ流路中に直接流れるのが望ましい。
【0070】
スイッチングユニット50と電池52を含む制御ユニット30は、反復利用向けに、使い捨て皮膚パッチ40に取り外し可能に取りつけるよう設計するのが望ましい。使用前、制御ユニット30をパッチ40に取りつけ、パッチ40の下面の保護タブ(図示せず)を取り外し、1個以上の電極60と、薬品供給システムの中で活性物質を露出させるのが望ましい。1個以上の任意のアライメントピン32は、制御ユニット30および/または皮膚パッチ40に組み込み、その間に正しいアライメントを維持するのが望ましい。制御ユニット30をパッチ40に取りつけると、電気接点62を制御ユニット30の下面に、電気接点58を皮膚パッチ40の上面にも接続する。本発明の他の実施例(図示せず)では、制御ユニット30と皮膚パッチ40は1個の統合ユニットとして構成される。
【0071】
図1Bは、本発明の実施例による物質の経皮的輸送のための他の装置21の部分的断面図である。装置21は、上述の装置20と実質的に同じ方法で動作するが、装置21は市販の医療用パッチとアドオン構成で用いるのが望ましい。一般に、医療用パッチ74は、多孔で薄く柔軟な使い捨て電極パッチ70に結合され、該電極パッチは、医療用パッチ74内に保存される活性物質の皮膚22内への増大された流れを可能にするよう、皮膚22にマイクロ流路を作るために用いられる。
【0072】
電極パッチ70は、その電気接点58を制御ユニット30の電気接点62に接続し、パッチ70内部の柔軟なリード76および78で電荷を運び、皮膚22の表面に配置した電極120間に電界を作るよう構成するのが望ましい。使用前、医療用パッチ74は電極パッチ70に、一般に電極120からパッチ70の反対側に配置する。医療用パッチ70の下側の接着剤は、2個のパッチを共に固定するのが望ましい。その後、電極パッチ70を図1Bに示すように折り、パッチ74の上面を接着剤72によって電極パッチ70に固定する。装置21の動作中、活性物質はパッチ74の下面からパッチ70を通って皮膚22に拡散するのが望ましい。故に装置21は現在利用可能な能動的または受動的な幅広い医療用パッチと互換で、これらは同じ一般的な構造(薄いシェル、活性物質の内部リザーバ、多孔および接着剤コーティング下面)である。
【0073】
当然ながら、説明の装置21は本発明のある側面を実施する多くの方法の1つに過ぎないことが理解される。あるいは、例えば電極パッチ70は折りたたまず、制御ユニット30を電極パッチ70の上の医療用パッチ74に隣接して配置する。さらにあるいは、制御ユニット30はその上面に電気パッチの電気接点に接続した電気接点を持つ。
【0074】
図2は、本発明の実施例による図1Aの皮膚パッチ40の底面図で、電極60の列75を示す。図示の列75は16個の電極からなるが、実施例によれば、列は小さくてもよく、または例えば50x50あるいはそれ以上と大きくてもよく、より多くの量の活性物質を供給または分析物を抽出できることが理解される。この実施例の電極60は、8個の電極セット77に構成し、セットの1個の電極を出る電荷の大半がセットの他の電極に移動し、一般に隣接するセットの電極には移動しないようにするのが望ましい。電極セット77はさらに、経皮的移動速度を最大限にするため高密度にパックするのが望ましい。説明のため限定ではなく、密度は4〜100個の電極セット/cmの範囲である。各電極セットは一般に電流の閾値または電荷移動合計を過ぎる前に少なくとも1個のマイクロ流路を生成し、それに対応してスイッチングユニット50が電極セットへの電流を本書に述べるように終結または減少させるのが望ましい。
【0075】
図3は、本発明の実施例による図2のような電極60の4x4の列を制御するよう構成された図1Aの装置20のスイッチングユニット50の略図である。スイッチングユニット50は、電極60につながる16個のコンダクタ90に適用される電圧V(t)をアクティブに制御するCPU80からなるのが望ましい。CPU80は、電流の特徴(例えば、時間積分電流、I、dI/dt、dI/dt)が閾値を超えてマイクロ流路形成を示すか否か判断するため、電極60につながるコンダクタ90のそれぞれを通る電流通流、I(t)を監視する。CPUは、閾値を超えた電極への電流通流を終了させる。あるいはまたはさらに、用途によれば、電極60の一部は一般に流路形成開始には用いず、主にCPU80および/または他の回路が皮膚22の電気特性を監視できるようにする。
【0076】
発振器92からクロック信号を受け取るCPU80は、8本のデータライン81と、A/D−D/Aコンバータ82につながる4本のコントロールライン85を介して、5本のアドレスライン84と、多重化のユニット88につながる4本のコントロールライン86によって電極60と通信および制御するのが望ましい。複数のコンダクタを通る電流の監視と制御には多くの方法があり、本書に述べるCPU、A/D−D/Aコンバータと多重化のユニットを使うことはその中のわずか1つであることは当業者には理解される。一般に、データライン81は、CPUとA/D−D/Aコンバータ82との間で低バイトおよび高バイトのデータを交互に運ぶ。主に、16個の電極のうち1個に所望の電圧を示す10ビットのデータがA/D−D/Aコンバータ82でアナログ電圧に変換され、この電圧が多重化のユニット88によって該当する電極に渡され、電極選択はアドレスライン84に表されるバイナリ値によって決定する。多くの用途で、それぞれの電極に電圧を定義するには10ビットは必要なく、スイッチングユニット50内の回路はこれに従って単純になる。
【0077】
間欠的に、CPU80は電流感知モードに入り、スイッチングユニット50はコンダクタ90を通して電流を流し続けるが、CPUはコントロールライン85および86の状態を変更して、コンダクタ90を通る電流通流を測定する。コントロールライン86の変化に対応して、多重化のユニット88はコンダクタ90のうち1個を通る電流を測定し、その測定値を電圧に変換し、その電圧をA/D−D/Aコンバータ82に流し、これは電流を表すデジタル値をCPUに渡す。CPU80は16個の電極をそれぞれ走査し、現在の電流通流の値を検出し、この値を任意のメモリユニット89に保存し、任意でこの値を同じ電極の前の値と比較し、Integral[I(t)],dI/dtおよび/またはdI/dtを計算し、電流測定および/または任意の計算に対応してその電極の電位を規制するのが望ましい。CPU80、発振器92およびメモリ89は、全体として同じ機能を実行できるよう他の回路に置換できることは当業者には理解される。
【0078】
図4は、複数の電極120からなる電極アセンブリ94の図で、これは本発明の実施例によると角質層100にマイクロ流路を生成するため皮膚22に配置される。アセンブリ94の電極120はグループ化されることがあり、2個以上の電極のセットを重ねて、複数の電極セット124を形成し、そのうち1つは図4で点線で示される。スイッチングユニット50から来た電流は一般に各電極セットの1個の電極からそのセットの他の電極に流れる。セット124の2個の電極間の矢印は電流の望ましい通流を示す。
【0079】
各電極セットの電極間の間隔は約0.1mmより小さいのが望ましいが、用途によっては、0.1mmから約0.3mmの範囲になる(説明のためで限定ではない)。一般に、角質層の厚みと実質的に同じ大きさの電界浸透深さを達成し、電流が角質層の下の表皮組織にほとんど入らないように距離を設定する。実験結果から、最も深いアブレーション深さは一般に電極間隔と同様であることがわかったため、約0.01mmと約0.1mmの間に間隔を維持することでマイクロ流路の生成を最適化する一方、神経分布真皮と角質層の下の表皮組織の損傷、痛覚および/または痛みを実質的に低減する。
【0080】
皮膚の上に置かれた2個の電極近辺の皮膚のあらゆる点で、電極間に生成される電界は基本的に次の2つの成分を持つと考えることができる:皮膚に垂直の成分で、全体として皮膚に垂直な電流フローを生じるものと、横成分で、全体として皮膚に平行な電流フローを生じるものである。電極の1個の微小に下の皮膚のポイントで、垂直成分は全体に大きく、および/または横成分より大きい。本発明は全体として角質層の最も深い部分と表皮の残りの最も表面的部分との間のインターフェースに対応する深さで垂直成分に対する横成分の比率を最大限にしようとする。比較的大きい横成分を持つ角質層基盤の電界は主に角質層に電流フローを生成し、その下の表皮組織への電流フローは比較的少なくなる。故に、本発明の方法と装置を用いると、組織のアブレーションは所望のように主に角質層で発生し、その下の組織ではほとんど発生しない。
【0081】
図4に示す実施例のある用途では、主に(a)その上に電極をスタンピングすることによって、(b)導電物質の移動パッチを利用することによって、および/または(c)当業で周知の他の技術によって、皮膚22に直接電極120を印刷するのが望ましい。スイッチングユニット50は、電極の上面の印刷済みポート(図示せず)を介して印刷済み電極に電流を送るのが望ましい。経皮的薬品供給のための本発明の使用において、導電物質は、一般に中に溶解または懸濁するアクティブ物質を含むのが望ましい。あるいはまたはさらに、印刷済み電極は角質層のアブレーションが完了するのと実質的に同時にスイッチングユニットまたは電源から切断されるのが望ましい。この印刷済み電極の「セルフクエンチング」機能は一般に、電極の製作の制御、特にその厚みおよび/または化学的組成を規制することによって達成する。シルバーベースのエマルジョンインクからなる印刷済み電極は、高電流フローに対応してインク内で熱溶解し、その中の導電を低下させるのが望ましい。
【0082】
図3を参照して本書で述べたように、スイッチングユニット50は電極60(または図1Bとその後の図に示す電極120)への電流フローをモニタし、角質層100のアブレーションが発生したと判断したら1個以上の電極へのフローを選択的に終結する。図4を参照すると、電極のクラスタ96は電極120のグルーピングで、一般に非常に相互に密接しているため、全体として均一な特性を持つ皮膚22の領域に重なると想定される。説明のためで限定ではなく、クラスタのサイズは一般に約4mmから約100mmの範囲である。スイッチングユニット50はクラスタ96全体の電極中の電流フローをモニタおよび終結するのが望ましい(すなわち、電極のすべてであり、個々の電極を個別にではなく)。あるいはまたはさらに、クラスタ96の電極120を通る電流は、電極のサブセットでのみ電流をモニタすることによって判断し、そこから導かれる値は全体として他の電極のそれぞれを通る電流を表すと想定する。クラスタ96下の角質層100がアブレーションされたとのスイッチングユニット50の判断で、クラスタ96の電極すべてへの電流フローが実質的に終結される。電極のクラスタのモニタは全体として本発明に関連する制御回路を単純化する一方、そのパフォーマンスを実質的に低下させない。
【0083】
スイッチングユニット50と電極120との間に直列につながれたオプションの抵抗要素98は、角質層のアブレーションに関連する表皮の伝導性の大幅増加後の皮膚中の電力散逸を制限する。抵抗要素98の代表的な値は1kOhm−100kOhmの範囲だが、用途によってはこの範囲外の値を持つことができる。
【0084】
図5は、本発明の実施例による、皮膚22上の電極120を介して電荷を流すよう接続された電流ソース114からなる他の電極アセンブリ110の略図である。電流源114は、パルスチャージにより電流源の特性を示し、これによって角質層100の実質的に完全なアブレーション後に関連する表皮の抵抗低下後に下の表皮組織102に散逸する電力を制限する誘電要素と直列に接続された電力源(例えば電池)からなるのが望ましい。あるいはまたはさらに、電流制限ソース114は、トランジスタ、オプアンプ、市販の「理想的」電流源等、角質層のアブレーション後に皮膚を通る電流を全体として一定に保つアクティブな構成要素からなり、散逸する電力(P=IR)が角質層100の電気的破壊時に皮膚の抵抗低下と共に低下するようにする。
【0085】
破壊前、電極120間のインピーダンスは高く、その間に一般に大きな電圧低下を生じるため、皮膚中を散逸するエネルギー(P=VI)は所望の高い値を持つ。エネルギー散逸速度は、一般に50ミリ秒未満の短期間に角質層100の電気破壊を生じるに十分なものが望ましいが、約1から約1000ミリ秒の範囲でもよい。角質層100の破壊に必要な電圧の報告値は約5−1000ボルトの範囲で広がる。本発明においては、約100ボルトの電極間電圧が一般に下の組織102に大きな損傷を与えずに角質層100を全体としてアブレーションすることがわかっている。しかしながら、用途や対象/患者のタイプによっては、これより低いか高い電極間電圧がより適している場合があることが理解される。
【0086】
皮膚22への電界の適用中、間欠的あるいは連続的に、任意の電圧感知ユニット112が電極間電圧を測定し、これに相当する信号をCPU80またはスイッチング・ユニット50の他の回路に送って、これが信号に対応し電流源114の生成する電流を規制するのが望ましい。あるいはまたはさらに、電圧感知ユニット112は、電極間電圧を所定の閾値と間欠的または連続的に比較し、電圧が閾値より下がると電流源114に信号を送るコンパレータからなる。いずれの場合も、CPU80、回路および/またはコンパレータは、電極間電圧の閾値以下への低下に対応して電流フローを低減または終結するため電流源114を制御するのが望ましい。
【0087】
図6は、本発明の実施例による、任意の抵抗要素134を介して皮膚22の表面の2個の電極120に直列に接続した電圧源136からなる他の電極アセンブリ130の略図である。任意の電圧感知ユニット112は、抵抗要素134の電圧低下を測定し、その中を通過する電流を判断する。図5を参照して上述したものと実質的に似た方法で、ユニット112および/またはCPU80および/またはスイッチングユニット50の他の回路は、ユニット112の測定に対応して電圧源136の出力を規制する。要素134の電圧低下が所定の閾値を超えたとき、これを角質層のアブレーションの表示に用いて、これに対応して電圧源136が生成する電圧を低減または終結させるのが望ましい。
【0088】
図6に示す実施例の適用では、任意の抵抗要素134と任意の電圧感知ユニット112を使用しない場合、マイクロ流路形成後に電極120を通る電流フローを大きく低減するため他の手段を採用するのが望ましい。これは、図4を参照して上述したように「セルフクエンチング」印刷電極を用いて行うのが望ましい。
【0089】
あるいはまたはさらに、導電強化物質132をその上に電極120を配置する前に皮膚22に適用する。物質132は一般に、電極120と皮膚22との間のインターフェースで電気抵抗を下げることにより皮膚22への電流フローを改善する。実験結果から、物質132の使用は、電界の横成分のその垂直成分に対する前述の比率を増すという追加的所望効果を持つことがわかる。特に、物質132は角質層100中に拡散し、角質層の横抵抗および横破壊強度を下げると考えられる。関係P=V/Rにより、物質132の存在により増した(その破壊前の)角質層100の導電性は、角質層に比較的高率のエネルギー散逸を生成する。しかしながら、アブレーションが発生すると、物質132により強化された導電経路が実質的に除去されるため、抵抗が増して皮膚中のエネルギー散逸に所望の付随的低下が生じることが観察される。
【0090】
物質132は一般に導電性クリーム、ジェルおよび/またはインクからなる。この実施例のある用途では、物質132はさらに皮膚への高い拡散係数を持ち、上述のように垂直成分に対する電界の横成分の増加を促進する材料からなる。あるいはまたはさらに、比較的弱い電界を用いた「プレ」イオン導入を用いて、マイクロ流路を形成する強い電界の適用前に皮膚の外層への物質132のフローを強化する。プレイオン導入後の皮膚中の導電性物質の存在は、マイクロ流路形成速度を高めると考えられる。プレイオン導入は一般に、例えば、皮膚に物質132を導入するため30秒間電極間に3ボルトDC電界を適用することによって実施する。あるいはまたはさらに、これより大きいマイクロ流路を生成するAC電流を、物質132のイオン導入を支援する同時の小さいDC電流によって補足し、これによってマイクロ流路形成を強化する。
【0091】
ある用途では、アクティブ物質の経皮的供給を強化するためマイクロ流路を生成した時、アクティブ物質は物質132に組み込まれるのが望ましい。
【0092】
図7は、本発明の実施例による電極120と皮膚22とに電流を流すため任意の抵抗要素152と直列に接続した交流電流源154からなる他の電極アセンブリ150の略図である。皮膚を通した電流の導入周波数は対象が経験する痛覚または痛みに大きな影響を持つことが報告されている。例えば、L.GeddesおよびL.Baker、John Wiley&Sonsによる1989年の「Principles of Applied Biomedical Instrumentation」を参照のため本明細書に組み込まれる。本発明において、10kHz導入周波数がよい結果を生むことがわかっているが、約100Hzから約10MHzの間の周波数が大半の用途に適切である。対象の皮膚の特性により、この範囲外の導入周波数を利用することが適切な場合がある。任意で、電界の適用中、周波数対時間を表すグラフ(図示せず)が一般に正弦波形または三角形になるよう、2つの終端点(例えば2kHzと15kHz)の間で導入周波数を周期的に変調する。
【0093】
角質層100は一般にDC電流にさらされた時は単純な絶縁体の特性を示すが、特に導入周波数が1kHzより上の時は、AC刺激より下の大きなキャパシタンスを示す。これら周波数において、角質層を通る電流フローはその中でエネルギーを散逸し、角質層の加熱と最終的なアブレーションに貢献する。プレ切除キャパシタンスは、電極間の電圧とその間を流れる電流との間に測定可能な位相シフトを生じるが、この位相シフトは角質層のアブレーションの開始と完了時に大きく低下することが観察される。感知ユニット112は一般に、上述のように電極間電圧を測定し、電極120を通る電流フローを決定し、望ましくは任意の抵抗要素152の電圧低下を測定することによりこの位相シフトを検出するために用いられる。ベースラインからの位相シフトの変化を感知ユニット112および/またはCPU80および/またはスイッチングユニット50の他の回路が用いて、角質層の破壊を示すのが望ましく、それに対応して、このような変化を示す電極120への電流フローを低減または終結するのが望ましい。
上述のように、用途によっては、物質132を皮膚22に当て、DC電流をAC電流に重ねてマイクロ流路形成中に物質132のイオン導入を生じさせる。
【0094】
あるいはまたはさらに、ACおよび/またはDC電流供給を利用した用途では(図5,6および7のような)、電荷供給持続期間は任意の普通タイマ回路(図示せず)によって制限する。さらにあるいはまたはさらに、供給される総電荷(または交流運転のモード)の二乗平均電荷は、当業で周知の方法を用いて制限する。例えば、キャパシタおよび/またはインダクタ等のエネルギー保存コンポーネントを用いて電荷供給を変調することができる。
【0095】
図5,6および7に示す実施例では、電流または電圧の閾値を超えることを皮膚に付加する電流を下げる時のインジケータとして用いたが、導関数、時間積分、および/またはその累乗等の電流および/または電圧の他の関数も、電流を下げるべき時の決定に評価することができる。
【0096】
図8Aは、本発明の実施例による電源172と電極120の間に直列に接続した電解槽180からなる電荷制限電極アセンブリ170の略図である。電解槽180はアノード174とカソード176とからなり、両者は電解液178に浸され、アノード174からカソード176への電流フローの媒体として作用する。電流が槽を流れると、カソード176は電解槽180が実質的に非導電になるまで電解質によって定常的に消費される。この方法で、カソード176の消費が、その中を流れる電流に全体として比例した速度で進む。カソード176の初期質量を修正することにより、所定の値を実質的に超えない電荷のフローを可能にして槽180を構築することができる。
【0097】
図8Bは、本発明の実施例による、大面積アノード194に、そこから電解液196を介して複数カソード202に流れる電流を送る電源192からなる他の電荷制限電極アセンブリ190の略図である。全体として、アセンブリ190に具現化する電荷制限機能は図8Aに示す実施例に関して説明したものと同様である。アノード194は、紙にように全体として皮膚22の表面に垂直な縦方向に並んだ繊維を持つ繊維材料からなる。あるいはまたはさらに、アノード194は、一般に約0.1mmから約2mmとカソード202に非常に近接しており、電解液内の横伝導を低下させることによって、カソード202に接続した電極198を通る電流の独立終結を強化する。
【0098】
図9は、本発明の実施例による制御されたスイッチ214に直列の電源212からなるさらに他の電荷制限電極アセンブリ210の略図である。ソース212とスイッチ214は電極120を横切ってキャパシタ216に直列に接続され、電極は皮膚22に当てられる。キャパシタ216を利用して、公式q=CVで与えられる電源212の生成する指定電圧でキャパシタ216の電荷保持容量を超えないよう電極120を介して供給される総電荷を全体として制限するのが望ましく、ここでCはキャパシタの静電容量である。説明のため限定でなく、50ボルトの印加電圧について、静電容量が約1nFから約0.2マイクロファラッドの範囲のキャパシタが適切である。
【0099】
この実施例で代表的な動作シーケンスは下記:(a)ソース212をオンにする;(b)スイッチ214を閉じると、電流の実質的にすべてがソース212から低インピーダンスコンデンサ216を通ってこれを充電する;(c)スイッチ214を開き、ソース212をオフにする;(d)コンデンサ216からの放電で角質層のアブレーションを行う;および(e)コンデンサ216の放電完了に対応してプロセスをパッシブに終結する;を具備する。
【0100】
図10は本発明の実施例による電解槽230、電極120および皮膚22に直列に接続したACソース222からなるさらに他の電荷制限電極アセンブリ220の略図である。槽230は、2個の交流ノード226および236と共通ノード240からなるのが望ましく、ノードはすべて電解液232に浸されている。以下に説明する場合を除き、電解槽230の機能は、図8Aおよび8Bを参照して上述した電解電荷制限装置のものと実質的に同様である。
【0101】
ACソース222は電極120に電圧差を生じ(1個の電極のみ示す)、これが所定の周波数で正と負の位相を循環し、皮膚22の角質層100をアブレーションするエネルギーを生成する。正の位相では、電解槽230のダイオード224は電流を流して交流ノード226をアノードとして、共通ノード240をカソードとして動作させ、これはその後、正の位相の間その電解によって消費される。反対に、負の位相では、ダイオード224は交流ノード226の伝導をブロックし、正の位相に関連する共通ノード240の消費を止める。同じように、負の位相では、第2ダイオード234は電流を流し、交流ノード236をカソードとして(消費される)、共通ノード240をアノードとして作用させる。十分な量の電荷が電解槽230を通過した時、共通ノード240が完全に消費され、槽230は実質的に非導電となる。電解槽230の特性は、角質層の破壊と相関する量の電荷が通過した後、非導電となるよう決定するのが望ましい。
【0102】
図11Aおよび11Bを参照すると、それぞれ本発明の実施例による同心電極アセンブリ250の側面図とアセンブリ250の共通電極層252の上面図である。実質的に非導電基板260が共通電極層252に重なる。層252の穿孔254は電極262の中の通過を可能にし、これが基板260に重なる充電のバス264から任意の抵抗部材256を介して電荷を受け取る。電極262は複数の導電性の繊維からなるのが望ましいが、電極は皮膚22に電気的に接続され、角質層100をアブレーションするため電荷が皮膚22に進入し、その後共通電極層252を通り皮膚22から出るようにさせる。
【0103】
ある実施例では、基板260を横断する一個以上の穴266によって基板260と基板260上のリザーバ(図示せず)との間に活性的な物質/分析物の流れを可能にする。同心電極アセンブリ250の製作は従来技術でよく知られている柔軟なプリント回路生産のプロセスと実質的に同様であることに注意すべきである。
【0104】
上述の好適な実施例は例示のためにのみ示されるものであり、本発明の完全な範囲は特許請求の範囲によってのみ限定されることが一般的に理解されるであろう。

【特許請求の範囲】
【請求項1】
個別の点において対象者の皮膚に適用されるよう適合している複数の電極、および、
2個以上の複数の電極の間に電気エネルギーを印加し、個別の点の中間の領域の角質層を主として切除させるよう適合している電源、
を具備する対象者の体の皮膚の角質層表皮を切除する装置。
【請求項2】
電源は、角質層の下の皮膚層が実質的に切除されないよう電気エネルギーを印加するよう適合している、請求項1記載の装置。
【請求項3】
電源は、角質層の切除がその穿刺を生じるよう電気エネルギーを印加するよう適合している、請求項1記載の装置。
【請求項4】
装置は、物質がその中を通過できるよう角質層の領域を切除するよう適合している、請求項1記載の装置。
【請求項5】
装置は、対象の身体に皮膚を通して物質が通過できるよう角質層の領域を切除するよう適合している、請求項4記載の装置。
【請求項6】
装置は、身体内から皮膚を通して物質が通過できるよう角質層の領域を切除するよう適合している、請求項4記載の装置。
【請求項7】
電源は、角質層に電流を流す電界を生成するよう適合し、装置は、電流の特徴のバリエーションに対応して角質層で消費される電力を低減するよう適合している、請求項1〜6のいずれかに記載の装置。
【請求項8】
電流の特徴は、電流の大きさ、電流の時間積分、電流の第1の時間についての導関数、および電流の第2の時間についての導関数からなる表からひき出される、請求項7記載の装置。
【請求項9】
電源は、複数の電極の他の1つを通る電流と実質的に独立して複数の電極の1つを通る電流を低減するため電界を修正するよう適合している、請求項7記載の装置。
【請求項10】
制限された導電のユニットからなり、複数の電極の少なくとも1個は制限導電ユニットを通る電流を受けるため連結され、このユニットが閾値より下の電流がその中をほぼ妨害されずに流れて、中を流れる電流が制限された導電の閾値を超えると実質的に非導電となる、請求項7記載の装置。
【請求項11】
導電性の溶解の要素からなり、複数の電極の少なくとも1個は導電性の溶解の要素に連結され、溶解の要素は、中を通過する電流に全体として比例する溶解速度で特徴づけられ、溶解の要素は、電流の関数に対応して実質的に非導電となるよう適合している、請求項7記載の装置。
【請求項12】
溶解の要素は、関数が溶解の要素を通過した電流の時間積分からなるよう適合している、請求項11記載の装置。
【請求項13】
溶解の要素は、要素内の電解液、および、
電解液中に浸された第1ノードおよび共通ノードを具備し、
溶解の要素は、電流が第1ノードから共通ノードまで電解液を流れるよう適合し、共通ノードは、中を通過する電流に全体として比例する速度で電流フローに消費されるよう適合し、溶解の要素は、共通ノードを通過した総電荷が共通ノード閾値を超えた時に実質的に非導電となるよう適合している、請求項11記載の装置。
【請求項14】
溶解の要素は電解液に浸された第2のノードをさらに具備し、電源は交流電流を発生するよう適合し、装置は、電源と第1ノードとの間に直列に連結された第1ノードで、交流電流がその正の位相にある時、電源から第1ノードへ通電するよう適合されたもの、および、電源と第2ノードとの間に直列に連結された第2ノードで、交流電流がその負の位相にある時、第2ノードから電源に通電するよう適合するものをさらに具備し、
溶解の要素は、共通ノードを通過する全電荷が共通ノードの閾値を超えた時に実質的に非導電となるよう適合している、請求項13記載の装置。
【請求項15】
溶解の要素は、
要素内の電解液、
電解液に浸した大面積アノード、および、
電解液に浸した複数のカソードであって、カソードのそれぞれが複数の電極のそれぞれに連結されているもの、を具備し、
溶解の要素は、電流が大面積アノードから電解液を通って複数のカソードに流れるよう適合し、複数のカソードの少なくとも1個は、中を通過する電流に全体として比例する速度で電流フローによって消費されるよう適合し、少なくとも1個のカソードは、中を通過した電流の関数に対応して実質的に非導電となるよう適合している、請求項11記載の装置。
【請求項16】
電源は、複数の電極の1つを通る電流を複数の電極の他の1つを通る電流の特徴のバリエーションに対応して低減するため電界を修正するよう適合している、請求項7記載の装置。
【請求項17】
複数の電極の2個の間の電圧低下を測定するため接続された電圧感知ユニットを具備し、電源からは、感知ユニットによる測定に対応して減少するよう電界を修正するよう適合している、請求項7記載の装置。
【請求項18】
電源は電流源を具備し、2個の電極間の電位が電圧閾値より低いことを示す感知ユニットの測定に対応して電流を低減するよう適合している、請求項17記載の装置。
【請求項19】
2個の電極のうちの1個と電源に接続された抵抗要素からなり、電圧感知ユニットは、その中を通過する電流を決定するため抵抗要素の電圧低下を測定するようさらに接続され、電源は交流電流源を具備し、2個の電極間の電圧低下と抵抗要素の電流の測定値が位相シフトを決定し、交流電流源は、閾値より下の位相シフトに対応して角質層を通る電流を低減するよう適合している、請求項17記載の装置。
【請求項20】
複数の電極のうちの1個と電源に接続された抵抗要素、および、
中を通過する電流を決定するため抵抗要素の電圧低下を測定するよう接続された電圧感知ユニットを具備し、
電源は電圧源を具備し、電圧源は、抵抗要素を通る電流が電流閾値より上であることを示す感知ユニットの測定に対応して電圧を低減させるよう適合している、請求項7記載の装置。
【請求項21】
複数の電極の少なくとも1個は皮膚に直接印刷するよう適合し、中を通る電流の値が閾値より大であることに対応して実質的に非導電となるよう適合している、請求項7記載の装置。
【請求項22】
複数の電極の2個に接続されるキャパシタ、および、
電源とキャパシタに接続されたスイッチを具備し、スイッチは閉鎖の位相において電流が電源からキャパシタと2個の電極に流れるように適合しており、スイッチは解放の位相において電源からキャパシタと2個の電極への電流フローを実質的に終結するよう適合され、
閉鎖の位相において電源はキャパシタを充電するよう適合し、キャパシタは解放の位相において電極を通して電流を放電するよう適合している、請求項7記載の装置。
【請求項23】
複数の電極の2個の間の距離は約0.3mmより小さい、請求項1〜6のいずれかに記載の装置。
【請求項24】
2個の電極間の距離は約0.01mmから約0.1mmの間である、請求項23記載の装置。
【請求項25】
複数の電極は、中に複数の穿孔を持つ共通電極、および、複数の正の電極であって、各正の電極は共通電極の個別の穿孔を通過するもの、を具備し、
電源は、電源からの電流が各正の電極から皮膚を通って共通電極に流れるよう適合している、請求項1〜6のいずれかに記載の装置。
【請求項26】
電源は、交流電流を発生させるよう適合しており、その周波数は約100Hzより高い、請求項1〜6のいずれかに記載の装置。
【請求項27】
電源は、周波数が約1kHzから約300kHzの間であるよう交流電流を発生するよう適合している、請求項26記載の装置。
【請求項28】
電源は交流電流を発生し、第1周波数値と第2周波数値との間のその周波数を変調するよう適合している、請求項1〜6のいずれかに記載の装置。
【請求項29】
電流を発生するよう適合している電源、
個別の点で皮膚に適用されるよう適合している複数の電極、および、
電極の少なくとも1個に連結された導電性の溶解の要素を具備し、
要素は全体としてその中を通過する電流に比例する溶解速度を持ち、中を通過する電流の関数に対応して実質的に非導電となるよう適合している、手段の物体の皮膚を通して電流を通流させる装置。
【請求項30】
各個の点において皮膚に対して複数の電極を配置すること、および、
個別の点の中間の区域の角質層を主として切除するため、2個以上の複数の電極の間に電気エネルギーを印加すること、を具備する、対象者の皮膚の角質層表皮を切除する方法。
【請求項31】
角質層の下の皮膚層は実質的に切除されない、請求項30記載の方法。
【請求項32】
電気エネルギーの印加は、皮膚の穿刺からなる、請求項30記載の方法。
【請求項33】
エネルギーの印加は、物質が領域を通過するよう角質層の領域を切除することを具備する、請求項30記載の方法。
【請求項34】
領域を通した薬品の供給からなる、請求項33記載の方法。
【請求項35】
領域を通した分析物の抽出からなる、請求項33記載の方法。
【請求項36】
電気エネルギーの印加は、皮膚上の点に電流を流すこと、および、
電流の特徴のバリエーションに対応して皮膚を流れる電流通流を実質的に下げることを具備する、請求項30〜35のいずれかに記載の方法。
【請求項37】
特徴は、電流の大きさ、電流の時間積分、電流の第1の時間についての導関数、および電流の第2の時間についての導関数からなる表からひき出される、請求項36記載の方法。
【請求項38】
電流を流すことは、1個以上のそれぞれの制限導電ユニットを通して皮膚上の1個以上の点に電流を通すことからなり、ユニットは、閾値より下の電流を実質的に妨害されずにその中を流し、ユニットは、中を流れる電流が制限された導電の閾値を超える場合、実質的に非導電となる、請求項36記載の方法。
【請求項39】
電流を流すことは、1個以上のそれぞれの導電性の溶解の要素を通して皮膚の1個以上のポイントに電流を流すことからなり、各要素は、全体としてその中を通過する電流に比例する溶解速度によって特徴づけられ、中を通過する全電荷が溶解の要素の閾値を超える時に実質的に非導電となる、請求項36記載の方法。
【請求項40】
電流通流の低減は、個別の点の1つの電流を個別の点の他の1つの電流から実質的に独立して低減する、請求項36記載の方法。
【請求項41】
電流通流を低減させることは、複数の電極の1つを通る電流通流の監視することと、
それに対応する複数の電極の他の1つを通る電流通流を低減させることを具備する、請求項36記載の方法。
【請求項42】
電気エネルギーの印加は交流電流の発生からなり、その周波数は約100Hzより高い、請求項30〜35のいずれかに記載の方法。
【請求項43】
周波数は、約1kHzから約300kHzの間である、請求項42記載の方法。
【請求項44】
電気エネルギーの印加は、交流電流の発生と、その周波数を第1周波数値と第2周波数値との間での変調からなる、請求項30〜35のいずれかに記載の方法。
【請求項45】
複数の電極を配置することは、約0.3mmより小さくその間に分離して複数の電極の2個を配置することを具備する、請求項30〜35のいずれかに記載の方法。
【請求項46】
複数の電極を配置することは、約0.01mmから約0.1mmの間の間隔をおいて複数の電極のうちの2つを配置することを具備する、請求項45記載の方法。
【請求項47】
複数の電極の配置は、皮膚を通した電流フローの強化のため、対象の皮膚の表面の領域に伝導強化材料を当て、
材料に電極を配置することからなり、
伝導強化材料の電気抵抗はその中の電流フローの関数に応答して増大する、請求項30〜35のいずれかに記載の方法。
【請求項48】
複数の電極を配置することは、その中に複数の穿孔を持つ共通電極を皮膚に配置し、複数の正の電極を皮膚に配置し、各正の電極が共通電極の個別の穿孔を通過するようにすることを具備し、
電源からの電流は各正の電極から皮膚を通して共通電極に流れる、請求項30〜35のいずれかに記載の方法。
【請求項49】
電極近辺に物質を含む医療用パッチを配置することを具備し、角質層の切除でパッチから皮膚への物質の輸送速度が増大する、請求項30〜35のいずれかに記載の方法。
【請求項50】
個別の点において皮膚に対し複数の電極を配置すること、
電極を通して電流を適用すること、および、
電極の少なくとも1個に導電性の溶解の要素を結合することを具備し、要素はその中を通過する電流に一般的に比例する溶解の速度を有すること、および、中を通過する電流の関数に対応して実質的に非導電になることという特徴を有する、対象者の皮膚を通して電流を通流させる方法。
【請求項51】
電源は、2個以上の複数の電極の間に交流電流を適用するよう適合している、請求項1記載の装置。
【請求項52】
電気エネルギーの印加は、交流電流の適用を具備する、請求項30記載の装置。
【請求項53】
個別の点において対象者の皮膚に適用されるよう適合している複数の電極、および、
2個以上の複数の電極の間に交流電流を適用し、角質層を切除するよう適合している電源を具備する、対象者の体の皮膚の角質層表皮を切除する装置。
【請求項54】
電源は、約100Hzより高い周波数で交流電流を適用するよう適合している請求項53記載の装置。
【請求項55】
電源は、約1kHzから約300kHzの間の周波数で交流電流を適用するよう適合している、請求項54記載の装置。
【請求項56】
2つの点の間隔が約0.3mmより小さくなるように個別の点において対象者の皮膚に適用されるよう適合している複数の電極、および、
角質層を切除するため、2つの点で皮膚に適用される2個の電極の間に電気エネルギーを印加するよう適合している電源、を具備する、対象者の皮膚の角質層表皮を切除する装置。
【請求項57】
2つの点が約0.01〜0.1mm離れている、請求項56記載の装置。
【請求項58】
個別の点において対象者の皮膚に適用されるよう適合している複数の電極、および、
第1の期間中に角質層の領域の切除を行い、第1の期間後の第2の期間中に切除領域を通した物質の通過を容易にするため、2個以上の複数の電極の間に電気エネルギーを印加するよう適合している電源、を具備する、対象者の体の皮膚の角質層表皮を切除する装置。
【請求項59】
電源は、約1秒より短い間電気エネルギーを印加するよう適合している、請求項58記載の装置。
【請求項60】
電源は、約200ミリ秒より小なる時間電気エネルギーを印加するよう適合している、請求項59記載の装置。
【請求項61】
個別の点において皮膚に複数の電極を配置すること、および、
角質層を切除するため2個以上の複数の電極の間に交流電流を適用すること、を具備する、対象者の皮膚の角質層表皮を切除する方法。
【請求項62】
交流電流の適用は約100Hzより高い周波数で電流を適用することを具備する、請求項61記載の方法。
【請求項63】
交流電流の適用は約1kHzから約300kHzの間の周波数で電流を適用することを具備する、請求項62記載の方法。
【請求項64】
2つの点が約0.3mmより小さい間隔となるように個別の点において対象者の皮膚に複数の電極を配置すること、および、
角質層を切除するため2つの点で皮膚に適用された2個の電極の間に電気エネルギーを印加することを具備する、対象者の皮膚の角質層表皮を切除する方法。
【請求項65】
2つの点が約0.01〜0.1mm離れている、請求項64記載の方法。
【請求項66】
個別の点において対象者の皮膚に複数の電極を配置すること、および、
第1期間後の第2期間中に切除領域を通した物質の通過を容易にするため、2個以上の複数の電極の間に電気エネルギーを印加し、第1の期間中に角質層の領域を切除することを具備する、対象者の体の皮膚の角質層表皮を切除する方法。
【請求項67】
第1の期間中のエネルギーの印加は約1秒より短いエネルギーの印加を具備する、請求項66記載の方法。
【請求項68】
第1の期間中のエネルギーの印加は約200ミリ秒より短いエネルギーの印加を具備する、請求項67記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate


【公開番号】特開2011−143251(P2011−143251A)
【公開日】平成23年7月28日(2011.7.28)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−2458(P2011−2458)
【出願日】平成23年1月7日(2011.1.7)
【分割の表示】特願2000−580699(P2000−580699)の分割
【原出願日】平成11年11月1日(1999.11.1)
【出願人】(503078298)トランスファーマ リミティド (1)
【Fターム(参考)】