説明

繊維シート

【課題】高強力かつ寸法安定性に優れ、さらに熱に対して安定である繊維シートを提供すること。
【解決手段】ポリエチレンナフタレート繊維を含む繊維シートであって、該ポリエチレンナフタレート繊維のX線広角回折より得られる結晶体積が550〜1200nmであり、かつ結晶化度が30〜60%であることを特徴とする繊維シート。さらには、該ポリエチレンナフタレート繊維が、リン原子をエチレンナフタレート単位に対して0.1〜300mmol%含有するものであることや、該ポリエチレンナフタレート繊維が、金属元素を含むものであり、該金属元素が周期律表における第4〜5周期かつ3〜12族の金属元素およびMgの群より選ばれる少なくとも1種以上の金属元素であること、該ポリエチレンナフタレート繊維の融点が285〜315℃であることが好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は繊維シートに関し、さらに詳しくは、高強力かつ寸法安定性に優れ、さらに熱に対して安定である産業用に適した繊維シートに関する。
【背景技術】
【0002】
ポリエステル繊維は、高強度、高ヤング率を有しており、それを活かして産業資材用の繊維シートとして広く利用されている。しかしこのような繊維シートは過酷な条件にて使用される場合が多い。例えばシートベルト、エアバッグなどの車載用品に使用される場合、夏期の高温、梅雨時期の高湿の環境下に恒常的に、繰返しさらされることとなる。しかも、近年は自動車の耐用年数が増加したため、より一層の性能の向上が求められている。
【0003】
そこで例えば特許文献1では繊維表面に酸化防止剤や紫外線吸収剤が付与された耐光性のポリエチレンテレフタレート繊維が繊維シートに用いられている。また特許文献2ではより耐久性に優れたポリエチレンナフタレート繊維が繊維シートに用いられている。しかしポリエチレンナフタレート繊維を用いたとしても、他の汎用繊維よりは優れてはいるものの、耐久性や物性についてはまだ満足のいくものではなかった。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平7−102477号公報
【特許文献2】特開2004−291830号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、高強力かつ寸法安定性に優れ、さらに熱に対して安定である繊維シートを提供することにある。
【課題を解決するための手段】
【0006】
本発明の繊維シートは、ポリエチレンナフタレート繊維を含む繊維シートであって、該ポリエチレンナフタレート繊維のX線広角回折より得られる結晶体積が550〜1200nmであり、かつ結晶化度が30〜60%であることを特徴とする。
【0007】
さらには、該ポリエチレンナフタレート繊維が、リン原子をエチレンナフタレート単位に対して0.1〜300mmol%含有するものであることや、該ポリエチレンナフタレート繊維が、金属元素を含むものであり、該金属元素が周期律表における第4〜5周期かつ3〜12族の金属元素およびMgの群より選ばれる少なくとも1種以上の金属元素であること、該ポリエチレンナフタレート繊維の融点が285〜315℃であることが好ましい。
【0008】
また、繊維シートがポリエチレンナフタレート繊維からなる糸条を経糸として製織したシートベルトウェビング、スリングベルトまたは抄紙用キャンバスのいずれかであることや、ポリエチレンナフタレート繊維を製織したエアバック用基布であること、ポリエチレンナフタレート繊維を製織し樹脂加工したセールクロスであることが好ましい。
【発明の効果】
【0009】
本発明によれば、高強力かつ寸法安定性に優れ、さらに熱に対して安定である繊維シートが提供される。
【発明を実施するための形態】
【0010】
本発明の繊維シートは、ポリエチレンナフタレート繊維を含むものである。
繊維シートとしては、繊維からなるシート状物であって、ポリエチレンナフタレート繊維を糸条またはコードとして織編物として編組したものや、不織布として構造体(シート)としたものを挙げることができる。中でも産業用に適した主に織物からなる高強力繊維シートとして、本発明の繊維シートは有効に用いられる。より具体的には、シートベルトウェビング、スリングベルト、抄紙用キャンパス、エアバック用基布、セールクロスなどが挙げられる。また表面に接着処理や樹脂加工が施されることもでき、例えばポリエチレンナフタレート繊維を製織し表面を樹脂加工することによりセールクロスに最適な産後繊維構造物を得ることができる。しかし繊維重量に比べ樹脂重量の比率が高くなると柔軟性や屈曲疲労性や低下する傾向にあるため、樹脂よりも繊維の比率が高いことが好ましい。また、繊維シートの内部には樹脂が存在せず、表面のみに樹脂が存在することや、繊維のみからなる繊維シートであることが好ましい。そのように繊維シート内部に空隙が存在することにより保温性も高くなり、例えばシートベルトであれば、肌に触れた際の冷たさを低減させることができる。
【0011】
そして本発明の繊維シートは、そこに用いられるポリエチレンナフタレート繊維のX線広角回折より得られる結晶体積が550〜1200nmであり、かつ結晶化度が30〜60%であることをその最大の特徴とするものである。
【0012】
ここで本発明に用いられるポリエチレンナフタレート繊維としては、主たる繰返し単位がエチレンナフタレートであるポリマーであり、好ましくはエチレン−2,6−ナフタレート単位を80%以上、特には90%以上含むポリエチレンナフタレートであることが好ましい。他に少量であれば、適当な第3成分を含む共重合体であっても差し支えない。
【0013】
また、前記ポリエチレンナフタレート中には、各種の添加剤、たとえば二酸化チタンなどの艶消剤、熱安定剤、消泡剤、整色剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、蛍光増白剤、可塑剤、耐衝撃剤の添加剤、または補強剤としてモンモリナイト、ベントナイト、ヘクトライト、板状酸化鉄、板状炭酸カルシウム、板状ベーマイト、あるいはカーボンナノチューブなどの添加剤が含まれていてもよい。
【0014】
そして本発明に用いられるポリエチレンナフタレート繊維は、上記のようなポリエチレンナフタレートからなる繊維であって、さらにX線広角回折より得られる結晶体積が550〜1200nmであり、結晶化度が30〜60%であることを必須とするが、さらには結晶体積が600〜1000nmであることが好ましい。また結晶化度としては35〜55%であることが好ましい。
【0015】
ここで繊維の結晶体積とは、繊維の広角X線回折において、回折角が15〜16度、23〜25度、25.5〜27度の回折ピークから得られる結晶サイズの積である。ちなみにこのそれぞれの回折角はポリエチレンナフタレート繊維の結晶面(010)、(100)、(1−10)における面反射によるものであり、理論的には各ブラッグ反射角2θに対応するものであるが、全体の結晶構造の変化により若干シフトしたピークを有するものである。また、このような結晶構造はポリエチレンナフタレート繊維に特有のものであり、例えば同じポリエステル繊維ではあってもポリエチレンテレフタレート繊維などには存在しない。
【0016】
また、繊維の結晶化度(Xc)とは、比重(ρ)とポリエチレンナレフタレートの完全非晶密度(ρa)と完全結晶密度(ρc)とから下記の(数式1)により求めた値である。
結晶化度 Xc={ρc(ρ−ρa)/ρ(ρc−ρa)}×100 (数式1)
式中
ρ :ポリエチレンナフタレート繊維の比重
ρa :1.325(ポリエチレンナレフタレートの完全非晶密度)
ρc :1.407(ポリエチレンナレフタレートの完全結晶密度)。
【0017】
本発明で用いられるこのポリエチレンナフタレート繊維は、従来の高強力繊維と同様の高い結晶化度を維持しながら、さらに従来に無い高い結晶体積を実現することにより、高い熱安定性と高い融点を得ることができたことにその特徴がある。結晶体積が550nm未満では、このような高い融点を得ることができないのである。結晶体積は高くするほど熱安定性に優れ好ましいが、一般にその場合には結晶化度が低下し強度が低下する傾向にあるため、本発明においては1200nmが上限となる。また結晶化度が30%未満では非晶部位が熱劣化を起こしやすく充分な耐熱性を確保できない。また高い引張強度やモジュラスを実現することができない。
【0018】
このように繊維の結晶体積を大きくするためには、紡糸時の口金下温度を低く保ちながら、紡糸する方法が有効である。また、紡糸ドラフト比や延伸倍率等を高め、繊維を引き伸ばすことによっても大きい結晶体積を得ることができる。ただし、紡糸ドラフト比を高くすると剛直な繊維であるポリエチレンナフタレート繊維は断糸しやすくなるため、紡糸ドラフト比は100〜5000程度に留め、延伸倍率を高めることが特に有効である。通常は紡糸時の口金下温度を低く保った状態で結晶体積を大きくするようなドラフトを行った場合には、紡糸時に断糸が発生し、繊維を製造することが困難であった。本発明で用いられるポリエチレンナフタレート繊維は、後に述べる特定のリン化合物を用いることによって、このような結晶体積を実現できるようになったものである。
【0019】
繊維の結晶化度を高めるためには、結晶体積を大きくするのと同じく、紡糸ドラフト比や延伸倍率等を高め、繊維を高倍率に引き伸ばすことによって得ることができる。しかし結晶体積が大きくなるとともに結晶化度が高くなると、剛直な繊維であるポリエチレンナフタレート繊維はますます断糸しやすくなる。そこで本発明に用いられるポリエチレンナフタレート繊維では、相反する性質である結晶体積を550〜1200nmの範囲内としながら、結晶化度を30〜60%とするために、紡糸前のポリマーの段階で、均一な結晶構造を形成させることが重要となる。例えば後述する特有のリン化合物をポリマーに含有させることによってそのような均一な結晶構造を実現させることが可能となる。
【0020】
さらに本発明で用いられるポリエチレンナフタレート繊維としては、X線広角回折の最大ピーク回折角が25.5〜27.0度の範囲にあることが好ましい。理由は定かではないが、結晶面である(010)、(100)、(1−10)のうち、繊維軸上にこの(1−10)面の結晶が大きく成長することにより耐熱性が大幅に向上される。このような繊維軸と平行な結晶の大きさは、特に繊維を一定方向に高倍率で引き伸ばすことによって高めることができ、たとえば紡糸ドラフト比や延伸倍率等を高めることによって得ることができる。
【0021】
また本発明で用いられるポリエチレンナフタレート繊維は、リン原子をエチレンナフタレート単位に対して0.1〜300mmol%含有するものであることが好ましい。さらには、リン原子の含有量が10〜200mmol%であることが好ましい。リン化合物により結晶性をコントロールすることが容易になるからである。逆に多すぎる場合には紡糸時の異物欠点が発生するために製糸性が低下し、併せて物性が低下する傾向にある。
【0022】
また、通常ポリエチレンナフタレート繊維は触媒としての金属元素を含むものであるが、この繊維に含まれる金属元素が二価金属であることが好ましく、さらには周期律表における第4〜5周期かつ3〜12族の金属元素およびMgの群より選ばれる少なくとも1種以上の金属元素であることが好ましい。特には繊維に含まれる金属元素が、Zn、Mn、Co、Mgの群から選ばれる少なくとも1種以上の金属元素であることが好ましい。理由は定かではないが、これらの金属元素をリン化合物と併用した場合に特に結晶体積のばらつきが少ない均一な結晶が得られやすくなる。
【0023】
このような金属元素の含有量としては、エチレンナフタレート単位に対して10〜1000mmol%含有するものであることが好ましい。そして前述のリン元素Pと金属元素Mの存在比であるP/M比としては0.8〜2.0の範囲であることが好ましい。P/M比が小さすぎる場合には、金属濃度が過剰となり、過剰金属成分がポリマーの熱分解を促進し、熱安定性を損なう傾向にある。逆にP/M比が大きすぎる場合には、リン化合物が過剰のため、ポリエチレンナフタレートポリマーの重合反応を阻害し、繊維物性が低下する傾向にある。さらに好ましいP/M比としては0.9〜1.8であることが好ましい。
【0024】
そして本発明で用いられるポリエチレンナフタレート繊維の強度としては4.0〜10.0cN/dtexであることが好ましい。さらには5.0〜9.0cN/dtex、より好ましくは6.0〜8.0cN/dtexであることが好ましい。強度が低すぎる場合にはもちろん、高すぎる場合にも耐久性に劣る傾向にある。また、ぎりぎりの高強度で生産を行うと製糸工程での断糸が発生し易い傾向にあり工業繊維としての品質安定性に問題がある傾向にある。
【0025】
繊維の融点としては285〜315℃であることが好ましい。さらには290〜310℃であることが最適である。融点が低すぎる場合には耐熱性、寸法安定性が劣る傾向にある。一方高すぎても溶融紡糸が困難になる傾向にある。バラツキが発生し製造工程での糸切れが発生しやすくなるためである。繊維が高い融点を有する場合には、繊維の耐熱強力維持率を高く保つことができ、耐久性も向上する。
【0026】
また180℃の乾熱収縮率は、0.5〜4.0%未満であることが好ましい。さらには1.0〜3.5%であることが好ましい。乾熱収縮率が高すぎる場合、加工時の寸法変化が大きくなる傾向にあり、繊維を用いた成形品の寸法安定性が劣るものとなりやすい。このような高融点、低乾熱収縮率は本発明の繊維を構成するポリマーの結晶体積を大きくすることにより達成されたものである。
【0027】
本発明の繊維シートに用いられる繊維の単糸繊度には特に限定は無いが、繊維の安定生産性の面からは0.1〜100dtex/フィラメントであることが好ましい。さらに強力や耐熱性の面からは1〜20dtex/フィラメントであることが特に好ましい。
【0028】
総繊度に関しても特に制限は無いが、糸条として用いる場合には10〜10,000dtexが好ましく、特には250〜6,000dtexであることが好ましい。また総繊度としては例えば1,000dtexの繊維を2本合糸して総繊度2,000dtexのコードとするように、紡糸、延伸の途中、あるいはそれぞれの終了後に2〜10本の合糸を行うことも好ましい。
【0029】
さらに本発明にて用いられるポリエチレンナフタレート繊維は、上記のようなポリエチレンナフタレート繊維をマルチフィラメントとし、撚りを掛けてコードの形態としたものであることも好ましい。マルチフィラメント繊維に撚りを掛けることにより、強力利用率が平均化し、その疲労性が向上する。撚り数としては50〜1000回/mの範囲であることが好ましく、下撚りと上撚りを行い合糸したコードであることも好ましい。合糸する前の糸条を構成するフィラメント数は50〜3000本であることが好ましい。このようなマルチフィラメントとすることにより耐疲労性や柔軟性がより向上する。繊度が小さすぎる場合には強度が不足する傾向にある。逆に繊度が大きすぎる場合には太くなりすぎて柔軟性が得られない問題や、紡糸時に単糸間の膠着が起こりやすく安定した繊維の製造が困難となる傾向にある。
【0030】
本発明の繊維シートは、このようなポリエチレンナフタレート繊維を含むものである。さらには経糸や緯糸に、このようなポリエチレンナフタレート繊維からなる糸条を用いることが好ましい。より具体的には、例えば、シートベルトウェビングやエアバッグ、スリングベルト、セールクロス、抄紙用キャンバスなどの繊維シート構造物が挙げられる。そして本発明の繊維シートは、従来品に比べ、マルチフィラメントの毛羽欠点が少なく、高強力且つ寸法安定性に優れ、高温熱処理時の強力維持率の優れたものとなる。
【0031】
一方、本発明の繊維シートに用いられるポリエチレンナフタレート繊維は、より具体的には、例えば下記のような製造方法にて得ることができる。
すなわち、主たる繰り返し単位がエチレンナフタレートであるポリマーを溶融し、紡糸口金から吐出するポリエチレンナフタレート繊維の製造方法であって、溶融時のポリマー中に下記一般式(1)であらわされる少なくとも1種類のリン化合物添加した後に紡糸口金から吐出し、紡糸口金から吐出後の紡糸ドラフト比が100〜5000であり、紡糸口金から吐出直後に溶融ポリマー温度のプラスマイナス50℃以内の温度の保温紡糸筒を通過し、かつ延伸する製造方法により得ることできる。
【0032】
【化1】

[上の式中、Arは炭素数6〜20個の炭化水素基であるアリール基であり、Rは水素原子又は炭素数の1〜20個の炭化水素基であるアルキル基、アリール基又はベンジル基、Xは、水素原子または−OH基である。]
【0033】
製造に用いられる主たる繰返し単位がエチレンナフタレートであるポリマーは、従来公知のポリエチレンナフタレートの製造方法に従って製造することができる。すなわち、酸成分として、ナフタレン−2,6―ジメチルカルボキシレート(NDC)に代表される2,6−ナフタレンジカルボン酸のジアルキルエステルとグリコール成分であるエチレングリコールとでエステル交換反応させた後、この反応の生成物を減圧下で加熱して、余剰のジオール成分を除去しつつ重縮合させることによって製造することができる。あるいは、酸成分として2,6−ナフタレンジカルボン酸とジオール成分であるエチレングリコールとでエステル化させることにより、従来公知の直接重合法により製造することもできる。
【0034】
エステル交換反応を利用した方法の場合に用いるエステル交換触媒としては、特に限定されるものではないが、ポリエチレンナフタレートの溶融安定性、色相、ポリマー不溶異物の少なさ、紡糸の安定性の観点から、マンガン、マグネシウム、亜鉛化合物が好ましい。また重合触媒も、特に限定されるものではないが、ポリエチレンナフタレートの重合活性、固相重合活性、溶融安定性、色相に優れ、かつ得られる繊維が高強度で、優れた製糸性、延伸性を有する点で、アンチモン化合物が特に好ましい。
【0035】
溶融時のポリマー中に含まれるリン化合物である一般式(1)の好ましい化合物としては、例えばフェニルホスホン酸やフェニルホスフィン酸を挙げることができる。
さらに一般式(1)中で用いられているRの炭化水素基としては、アルキル基、アリール基、ベンジル基であることが好ましく、それらは未置換のもしくは置換されたものであっても良い。このときRの置換基としては立体構造を阻害しないのであることが好ましく、例えば、ヒドロキシル基、エステル基、アルコキシ基等で置換されているものが好ましい。また上記(1)のArで示されるアリール基は、例えば、アルキル基、アリール基、ベンジル基、アルキレン基、ヒドロキシル基、ハロゲン原子で置換されていても良い。
【0036】
中でも結晶性を向上させるためにはこのリン化合物としては、下記一般式(2)で表されたフェニルホスホン酸およびその誘導体あることが好ましい。
【化2】

[上の式中、Arは炭素数6〜20個の炭化水素基であるアリール基であり、Rは水素原子又は未置換もしくは置換された1〜20個の炭素元素を有する炭化水素基である。]
【0037】
本発明で用いられるポリエチレンナフタレート繊維では、これら特有のリン化合物を溶融ポリマー中に直接添加することにより、ポリエチレンナフタレートの結晶性が向上し、その後の製造条件の下で結晶化度を高く保ちながら、結晶体積の大きいポリエチレンナフタレート繊維を得ることができたのである。これはこの特有のリン化合物が、紡糸及び延伸工程で生じる粗大な結晶成長を抑制し結晶を微分散化させる効果であると考えられる。また従来ポリエチレンナフタレート繊維を高速紡糸することは非常に困難であったが、これらのリン化合物が添加されることにより、紡糸安定性が飛躍的に向上し、かつ断糸が起きない点から実用的な延伸倍率を高めることによって繊維を高強度化することができるようになった。
【0038】
また安定生産のためには、式(1)を例に説明すると、Rの炭素数としては4個以上、さらには6個以上であることが好ましく、特にアリール基であることが好ましい。またXが水素原子または水酸基であるために、工程中の真空下では飛散しにくい効果がある。
【0039】
また、高い結晶性向上の効果を示すためには、Rがアリール基であることが、さらにはベンジル基やフェニル基であることが好ましく、本発明の製造方法では、リン化合物がフェニルホスフィン酸またはフェニルホスホン酸であることが特に好ましい。中でもフェニルホスホン酸およびその誘導体であることが最適であり、作業性の面からもフェニルホスホン酸が最も好ましい。フェニルホスホン酸は水酸基を有するため、そうでは無いフェニルホスホン酸ジメチルなどのアルキルエステルに比べて沸点が高く、真空下で飛散しにくいというメリットもある。つまり、添加したリン化合物のうちポリエチレンナフタレート中に残存する量が増え、添加量対比の効果が高くなる。また真空系の閉塞が発生しにくい点からも有利である。
【0040】
このような製造方法にて本発明で用いられるポリエチレンナフタレート繊維は得られるが、ポリエチレンナフタレート繊維としては、リン原子をエチレンナフタレート単位に対して0.1〜300mmol%含有するものであることが好ましい。
【0041】
また、このようなリン化合物と共に、金属元素が含まれていることが好ましく、その金属が二価金属であることが好ましい。さらには周期律表における第4〜5周期かつ3〜12族の金属元素およびMgの群より選ばれる少なくとも1種以上の金属元素が溶融ポリマー中に添加されていることが好ましい。特には繊維に含まれる金属元素が、Zn、Mn、Co、Mgの群から選ばれる少なくとも1種以上の金属元素であることが好ましい。これらの金属元素は、エステル交換触媒や重合触媒として添加しても良いし、別途添加することも可能である。このような金属元素の含有量としては、エチレンナフタレート単位に対して10〜1000mmol%含有するものであることが好ましい。そして前述のリン元素Pと金属元素Mの存在比であるP/M比としては0.8〜2.0の範囲であることが好ましい。
【0042】
本発明で用いられる結晶体積が550〜1200nmであり、結晶化度が30〜60%であるポリエチレンナフタレート繊維は、上記のようなポリエチレンナフタレートポリマーを溶融し、紡糸口金から吐出後の紡糸ドラフト比が100〜5000であり、紡糸口金から吐出直後に溶融ポリマー温度のプラスマイナス50℃以内の範囲内に設定された保温紡糸筒を通過し、かつ延伸することなどによって得ることができる。
【0043】
ここで紡糸ドラフトとは、紡糸巻取速度(紡糸速度)と紡糸吐出線速度の比として定義され、下記の(数式2)で表されるものである。
紡糸ドラフト=πDV/4W (数式2)
(式中、Dは口金の孔径、Vは紡糸引取速度、Wは単孔あたりの体積吐出量を示す)
【0044】
紡糸ドラフト比を大きくすることによって、ポリマー中の結晶体積や結晶化度を上げることができる。このような高紡糸ドラフトとするためには、紡糸速度が高いことが好ましく、1500〜6000m/分、さらには2000〜5000m/分であることが好ましい。
【0045】
さらにこのようなポリエチレンナフタレート繊維を得るためには、紡糸口金から吐出直後に溶融ポリマー温度のプラスマイナス50℃以内の範囲内に設定された保温紡糸筒を通過することが好ましい。さらには保温紡糸筒の設定温度は溶融ポリマー温度以下であることが好ましい。また、保温紡糸筒の長さとしては10〜300mmであることが好ましく、さらには30〜150mmであることが好ましい。保温紡糸筒の通過時間としては、0.2秒以上であることが好ましい。
【0046】
通常ポリエチレンナフタレート繊維の製造方法においては、上記のように高ドラフト条件を採用した場合、溶融ポリマー温度よりも数十度高い加熱紡糸筒を使用している。剛直なポリマーであるポリエチレンナフタレートポリマーは、紡糸口金から吐出された直後にすぐに配向しやすく、単糸切れを発生しやすいため、加熱紡糸筒をもちいて遅延冷却させる必要があったからである。そして紡糸筒温度が溶融ポリマー温度付近の場合には、吐出するポリマーの速度が速いために、遅延冷却状態とならないからである。
【0047】
しかし本発明で用いられるポリエチレンナフタレート繊維では、上記のような特定のリン化合物を用いて微小結晶を形成させることにより、同じ配向度であっても均一な構造とすることが可能となった。そして均一構造であるがゆえに加熱紡糸筒を用いなくても単糸切れが発生せず、高い製糸性を確保することが可能となったのである。そして、このような低温の保温紡糸筒を用いることによりポリエチレンナフタレート繊維の結晶体積をより有効に大きくすることができるようになった。高温の紡糸筒ではポリマー中の分子運動が激しく、大きな結晶の生成が阻害されるためである。そして大きな結晶体積を有することにより、得られる繊維の融点や耐熱疲労性を有効に高めることができるようになったのである。
【0048】
保温紡糸筒を通過した紡出糸条は、次いで30℃以下の冷風を吹き付けて冷却することが好ましい。さらには25℃以下の冷風であることが好ましい。冷却風の吹出量としては2〜10Nm/分、吹出長さとしては100〜500mm程度であることが好ましい。次いで、冷却された糸状については、油剤を付与することが好ましい。
【0049】
本発明に用いられる繊維を得るためには上記のように高紡糸ドラフトを行うことが好ましい。通常程度のドラフトを行った場合には、結晶体積が小さくなり融点も低く、本発明のように高い寸法安定性を得ることができない。一方、高紡糸ドラフトであっても加熱紡糸筒を用いて遅延冷却を行った場合には、同じく結晶体積が小さくなり融点も低く、本発明の保温紡糸筒を用いた場合と違い高い寸法安定性を得ることができないからである。
【0050】
その後延伸を行うが、このような条件にて製造を行った場合、均一な結晶を有する繊維に対し高紡糸ドラフトを行っているために、断糸が有効に防止される。そして結晶化度が高いにもかかわらず、大きい結晶体積の繊維を得ることができるのである。延伸は、引取りローラーから一旦巻取って、いわゆる別延伸法で延伸してもよく、あるいは引取りローラーから連続的に延伸工程に未延伸糸を供給する、いわゆる直接延伸法で延伸しても構わない。また延伸条件としては1段ないし多段延伸であり、延伸負荷率としては60〜95%であることが好ましい。延伸負荷率とは繊維が実際に断糸する張力に対する、延伸を行う際の張力の比である。延伸倍率や延伸負荷率を上げることによって、結晶体積や結晶化度を有効に大きくすることができる。
【0051】
延伸時の予熱温度としては、ポリエチレンナフタレート未延伸糸のガラス転移点以上、結晶化開始温度の20℃以上低い温度以下で行うことが好ましく、120〜160℃が好適である。延伸倍率は紡糸速度に依存するが、破断延伸倍率に対し延伸負荷率60〜95%となる延伸倍率で延伸を行うことが好ましい。また、繊維の強度を維持し寸法安定性を向上させるためにも、延伸工程で170℃から繊維の融点以下の温度で熱セットを行うことが好ましい。さらには延神時の熱セット温度が170〜270℃の範囲であることが好ましい。このような高温での熱セットにより、有効に延伸倍率を上げることができ結晶体積を大きくすることができるようになる。
【0052】
上記の製造方法では、特定のリン化合物を用いることによって、高ドラフト率かつ保温紡糸筒による冷却条件を採用することができ、高い製糸性の製造方法でありながら、高い寸法安定性と耐疲労性を有する本発明に最適な繊維を得ることができたのである。ちなみに上記の特定のリン化合物を用いない場合には、紡糸するためにドラフト率を下げるか、加熱紡糸筒を用いて遅延冷却させる必要があり、本発明で必要とされる高物性、高融点の繊維を得ることはできないのである。
【0053】
このような製造方法にて得られたポリエチレンナフタレート繊維は、結晶体積が大きいと共に高い結晶化率を実現しており、高強度とともに高い融点と高い寸法安定性を有し、さらには優れた耐疲労性をも満たす繊維となり、本発明の繊維シートに有効に用いることができる。
【0054】
例えば繊維シートがシートベルトウェビングやスリングベルト等の織物である場合には、上記のポリエチレンナフタレート繊維からなる糸条を経糸として製織したものであることが好ましい。より具体的にはシートベルトウェビングであれば、上記ポリエチレンナフタレート繊維(約1670dtex)290〜320本を経糸とし、常法にしたがって製織することによりシートベルトウェビングとなる。さらに染色や樹脂加工を施すことによりシートベルトとなる。本発明のシートベルトウェビングは、高強力で伸びが少なく、耐熱性に優れたものとなる。
【0055】
また、スリングベルトであれば、上記ポリエチレンナフタレート繊維を2〜10本合糸し、それを経糸として10〜50本用い、また、緯糸として通常のポリエステル糸(ポリエチレンテレフタレート糸)を用い、織密度10〜50本/2.54cm(1インチ)で
幅25〜100mm程度の生機スリングベルトであることが好ましい。さらにはこの生機スリングベルトを熱処理を施したり、染色を行うことが好ましい。
【0056】
繊維シートがエアバック用基布などである場合は、上記のポリエチレンナフタレート繊維を製織したものであることが好ましい。具体的には、上記ポリエチレンナフタレート繊維を、経糸及び緯糸に配して、平織物に製織することで得ることができる。さらに高温の金属ロール/弾性ロールカレンダーを用い、カレンダー加工したものであることが好ましい。
【0057】
繊維シートがセールクロスである場合には、上記のポリエチレンナフタレート繊維を製織し樹脂加工したものである。具体的には、上記のポリエチレンナフタレート繊維からなる糸を用い、例えばリップストップ構造を持つ織物に製織することが好ましい。さらには染色処理を行った後に、樹脂加工したものであることが好ましい。
【0058】
繊維シートが抄紙用キャンバスである場合には、上記のポリエチレンナフタレート繊維を製織したものである。織組織には何ら限定はなく、平織り、綾織及び2重織り以上の多重織りなどの任意の織構造とすることができる。
【0059】
このような本発明の繊維シートは、マルチフィラメントの毛羽欠点が少なく、高強力で伸びが少なく、寸法安定性、耐熱性に優れたものとなり、各種産業用途に使用することができる。
【実施例】
【0060】
本発明をさらに下記実施例により具体的に説明するが、本発明の範囲はこれら実施例により限定されるものではない。また各種特性は下記の方法により測定した。
【0061】
(1)結晶体積、最大ピーク回折角
繊維の結晶体積、最大ピーク回折角はBruker社製D8 DISCOVER with GADDS SuperSpeedを用いて広角X線回折法により求めた。
結晶体積は、繊維の広角X線回折において2Θがそれぞれ15〜16°、23〜25°、25.5〜27°に現れる回折ピーク強度の半価幅より、それぞれの結晶サイズをフェラーの式(数式3)、
【数1】

(ここで、Dは結晶サイズ、Bは回折ピーク強度の半価幅、Θは回折角、λはX線の波長(0.154178nm=1.54178オングストローム)を表す。)
より算出し、下式により結晶1ユニットあたりの結晶体積とした。
結晶体積(nm)=結晶サイズ(2Θ=15〜16°)×結晶サイズ(2Θ=23〜25°)×結晶サイズ(2Θ=25.5〜27°)
最大ピーク回折角は、広角X線回折において強度が最も大きいピークの回折角を求めた。
【0062】
(2)融点Tm
TAインスツルメンツ社製Q10型示差走査熱量計を用い、試料量10mgの繊維を窒素気流下、20℃/分の昇温条件で320℃まで加熱して現れた吸熱ピークの温度を融点Tmとした。
【0063】
(3)マルチフィラメント繊維の強度
引張荷重測定器((株)島津製作所製オートグラフ)を用い、JIS L−1013に従って測定した。
【0064】
(4)180℃乾熱収縮率
JIS L1013 B法(フィラメント収縮率)に準拠し、180℃で30分間の収縮率とした。
【0065】
(5)高温下での耐熱強力維持率
織物を200℃で5分間熱処理した後、強力を測定し、熱処理前の織物強力で割り、100倍して強力維持率を算出した。
【0066】
[実施例1]
(繊維の製造)
2,6−ナフタレンジカルボン酸ジメチル100重量部とエチレングリコール50重量部との混合物に酢酸マンガン四水和物0.030重量部、酢酸ナトリウム三水和物0.0056重量部を攪拌機、蒸留搭及びメタノール留出コンデンサーを設けた反応器に仕込み、150℃から245℃まで徐々に昇温しつつ、反応の結果生成するメタノールを反応器外に留出させながら、エステル交換反応を行い、引き続いてエステル交換反応が終わる前にフェニルホスホン酸(PPA)を0.03重量部(50ミリモル%)を添加した。その後、反応生成物に三酸化二アンチモン0.024重量部を添加して、攪拌装置、窒素導入口、減圧口及び蒸留装置を備えた反応容器に移し、305℃まで昇温させ、30Pa以下の高真空下で縮合重合反応を行い、常法に従ってチップ化して極限粘度0.62のポリエチレンナフタレート樹脂チップを得た。このチップを65Paの真空度下、120℃で2時間予備乾燥した後、同真空下240℃で10〜13時間固相重合を行い、極限粘度0.74のポリエチレンナフタレート樹脂チップを得た。
このチップを、孔数384ホール、孔径0.8mm、ランド長0.8mmの円形紡糸孔を有する紡糸口金からポリマー温度310℃で吐出し、紡糸速度4750m/分、紡糸ドラフト1251の条件で紡糸を行った。紡出した糸状は口金直下に設置した長さ50mm、雰囲気温度280℃の保温紡糸筒を通じ、さらに、保温紡糸筒の直下から長さ450mmにわたって、25℃の冷却風を8.0Nm/分の流速で吹き付けて、糸状の冷却を行った。その後、油剤付与装置にて一定量計量供給した油剤を付与した後、引取りローラーに導き、巻取機で巻取った。
【0067】
次いでこの未延伸糸を用い、以下の通り延伸を行った。なお延伸倍率は破断延伸倍率に対し延伸負荷率92%となるように設定した。すなわち、未延伸糸に1%のプリストレッチをかけた後、130m/分の周速で回転する150℃の加熱供給ローラーと第一段延伸ローラーとの間で第一段延伸を行い、次いで180℃に加熱した第一段延伸ローラーと180℃に加熱した第二段延伸ローラーとの間で230℃に加熱した非接触式セットバス(長さ70cm)を通し定長熱セットを行った後、巻取機に巻き取った。このときの全延伸倍率(TDR)は1.05であり、延伸時に断糸や単糸切れの発生なく製糸性は良好であった。
得られた延伸糸は結晶体積781nm、結晶化度47%、最大ピーク回折角26.5°、繊度1,670dtex、強度は7.2cN/dtex、180℃乾収2.7%、融点298℃と高耐熱性かつ低収縮性に優れたものであった。
【0068】
(産業繊維構造体の製造)
(1.シートベルトウェビング)
得られたポリエチレンナフタレート繊維(1670dtex)300本を経糸とし、製織することによりシートベルトウェビングを得た。高強力で伸びが少なく、耐熱性に優れたものであった。結果を表1に記す。
【0069】
(2.スリングベルト)
得られたポリエチレンナフタレート繊維を2本合糸し、それを経糸として30本用い、また、緯糸として560dtex96フィラメントのポリエステル糸を用い、織密度19本/2.54cm(1インチ)で51mm幅の生機スリングベルトを製織した。この生機スリングベルトを処理加工機に通し、130℃で120秒熱処理を施し、スリングベルトを得た。得られたスリングベルトはパッド染色剤を付与し、温度250℃、染色時間1分間の条件で染色した。従来対比、マルチフィラメントの毛羽欠点が少なく、高強力であり且つ寸法安定性に優れ、高温熱処理時の強力維持率の優れたスリングベルトが得られた。
【0070】
(3.エアバック用基布)
得られたポリエチレンナフタレート繊維をウォータージェットルーム織機を用い、経糸及び緯糸に配して、経密度が53本/2.54cm(1インチ)、緯密度が同じく53本/2.54cm(1インチ)の平織物に製織した後、精錬、加熱セットを施した。次に金属ロールの温度が180℃の一対の金属ロール/弾性ロールカレンダーを用い、線圧が20N/cm、速度6m/分の条件で上記平織物をカレンダー加工してエアバッグ用の基布を得た。得られた基布は従来に比べ、マルチフィラメントの毛羽欠点が少なく、高強力且つ寸法安定性に優れ、高温熱処理時の強力維持率の優れたものであった。
【0071】
(4.セールクロス)
得られたポリエチレンナフタレート糸を用い、経密度:110本/2.54cm(1インチ)、緯密度:90本/2.54cm(1インチ)のリップストップ構造を持つ織物を製織した。該織物を精錬・リラックス処理した後、サーキュラー染色機を用いて130℃の温度で染色処理を行い、乾燥処理した。次いで、下記処方の樹脂加工液を含浸法により織物に付着させた後、熱処理と乾燥を行った。得られたセールクロスはマルチフィラメントの毛羽欠点が少なく、高強力で伸びが少なく、寸法安定性、耐熱性に優れたものであった。
(樹脂液の処方)
MEK 60重量部
U135(ポリウレタン樹脂、セイコー化成(株)製) 100重量部
ST90(シリコーン樹脂) 40重量部
架橋剤(コロネートHL10) 3重量部
(抄紙用キャンバス)
得られたポリエチレンテレフタレートを用いて織組織を作成した。得られた抄紙用キャンバスは強度、寸法安定性に優れ、耐熱性にすぐれたものであった。
【0072】
[比較例1]
実施例1のポリエチレンー2,6−ナフタレートの重合において、エステル交換反応が終わる前にリン化合物であるフェニルホスホン酸(PPA)を用いる代わりに、正リン酸を40mmol%添加したこと以外は、実施例1と同様に実施してポリエチレンナフタレート樹脂チップ(極限粘度0.75)を得た。この該樹脂チップを用い実施例1と同様にして溶融紡糸を行ったが、紡糸での断糸が多発し満足に製糸することができなかった。
【0073】
そのため、実施例1の紡糸速度を2500m/分から496m/分に変更するとともに、その他の条件を変更した。すなわち得られる繊維の総繊度をあわせるためにキャップ口金口径を0.8mmから0.5mm、250ホールに変更し、口金直下の保温紡糸筒の温度280℃を400℃に、長さを50mmから250mmに変更して、未延伸糸を得た。またその後の延伸倍率を実施例1の1.08倍から5.3倍に変更し延伸糸を得た。得られたポリエチレンナフタレート繊維は、結晶体積298nm、結晶化度48%、最大ピーク回折角15.5°、強度は7.5cN/dtex、180℃乾収6.0%、融点280℃と耐熱性が劣ったものであった。得られたポリエチレンナフタレート繊維を用いて、実施例1と同様にシートベルトウェビングを得た。評価結果を表1に併せて示す。
【0074】
【表1】


【特許請求の範囲】
【請求項1】
ポリエチレンナフタレート繊維を含む繊維シートであって、該ポリエチレンナフタレート繊維のX線広角回折より得られる結晶体積が550〜1200nmであり、かつ結晶化度が30〜60%であることを特徴とする繊維シート。
【請求項2】
該ポリエチレンナフタレート繊維が、リン原子をエチレンナフタレート単位に対して0.1〜300mmol%含有するものである請求項1記載の繊維シート。
【請求項3】
該ポリエチレンナフタレート繊維が、金属元素を含むものであり、該金属元素が周期律表における第4〜5周期かつ3〜12族の金属元素およびMgの群より選ばれる少なくとも1種以上の金属元素である請求項1または請求項2に記載の繊維シート。
【請求項4】
該ポリエチレンナフタレート繊維の融点が285〜315℃である請求項1〜3のいずれか1項記載の繊維シート。
【請求項5】
繊維シートがポリエチレンナフタレート繊維からなる糸条を経糸として製織したシートベルトウェビング、スリングベルトまたは抄紙用キャンバスのいずれかである請求項1〜4のいずれか1項記載の繊維シート。
【請求項6】
繊維シートがポリエチレンナフタレート繊維を製織したエアバック用基布である請求項1〜4のいずれか1項記載の繊維シート。
【請求項7】
繊維シートがポリエチレンナフタレート繊維を製織し樹脂加工したセールクロスである請求項1〜4のいずれか1項記載の繊維シート。

【公開番号】特開2011−58137(P2011−58137A)
【公開日】平成23年3月24日(2011.3.24)
【国際特許分類】
【出願番号】特願2009−210508(P2009−210508)
【出願日】平成21年9月11日(2009.9.11)
【出願人】(302011711)帝人ファイバー株式会社 (1,101)
【Fターム(参考)】