説明

羽ばたき飛行機

【課題】 対気速度0からの飛び立ちが可能な小型、軽量の羽ばたき飛行機を提供する。
【解決手段】 羽ばたき飛行機は、前後方向に延びる機体11と、この機体11の左右に揺動自在に取り付けられる一対の翼12と、この翼12の打ち上げ・打ち下ろしの羽ばたき運動を実現させる羽ばたき機構13とを備える。その重心Aは翼12の揚力中心Bより後方に配置される。それによって、打ち下ろし時に翼12の上面方向にかかる翼反力により機体11にピッチ角αの正方向の回転モーメントMを生じさせてピッチ角αを大きくさせつつ上昇し、打ち上げ時に翼12の下面方向にかかる翼反力により機体にピッチ角αの負方向の回転モーメントMを生じさせてピッチ角αを小さくしつつ前進するように、羽ばたき周期とピッチ角αの振動周期との同期をとるよう設定される。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、機体の左右に揺動自在に取り付けられる一対の翼の打ち上げ・打ち下ろしの羽ばたき運動によって飛翔する羽ばたき飛行機に関する。
【背景技術】
【0002】
従来、羽ばたき飛行機として、例えば、特許文献1に記載されたものが知られている。これは、凧に主翼動力装置を設けたもので、主翼動力装置により主翼に取り付けられたひもを巻き取り、或いは、解き放つことにより、主翼が1秒間に数回、羽ばたく。主翼動力装置は、搭載する電池とモータによる電動式で、減速機構とクランクとひも止めとパイプとから構成される。主翼には、弾力性があり、常に一定の形を保とうとする復元力がある。主翼は、ひもにより引っ張られて打ち下ろした後、ひもの解放により打ち上げられ、元の形状に戻る。これを繰り返すことにより自ら羽ばたいて飛行する。
【特許文献1】特開2005−288142号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
上記特許文献1に記載の飛行機においては、飛ぶために対気速度(1.6m/s)が必要で、対気速度0m/sからの飛び立ちはできない(特許文献1、段落0027参照)。また、尾翼を必要とするから、小型(翼幅10cm,1g程度)で尾翼がない形態の羽ばたき飛行機を望むことができない。加えて、姿勢維持のために揚力中心を重心の近傍にする必要があることも形態の制限を招く。また、羽ばたき運動による飛行における翼の打ち上げ時の揚力減少を防止するために、従来は翼の関節を一自由度増やし、フェザリングにより羽ばたき面に対する翼面積を減少させる手段がとられるが、これは大型、大重量化を招くという問題点がある。
したがって、この出願に係る発明は、蝶のような形態で、大きな振幅で羽ばたき飛行し、対気速度0からの飛び立ちが可能な小型、軽量の羽ばたき飛行機を提供することを課題とする。
【課題を解決するための手段】
【0004】
上記課題を解決するための本発明に係る羽ばたき飛行機は、前後方向に延びる機体11と、この機体11の左右に揺動自在に取り付けられる一対の翼12と、この翼12の打ち上げ・打ち下ろしの羽ばたき運動を実現させる羽ばたき機構13とを備える。その重心Aは翼12の揚力中心Bより後方に配置される。それによって、打ち下ろし時に翼12の上面方向にかかる翼反力により機体11にピッチ角αの正方向の回転モーメントを生じさせてピッチ角αを大きくさせつつ上昇し、打ち上げ時に翼12の下面方向にかかる翼反力により機体11にピッチ角αの負方向の回転モーメントを生じさせてピッチ角αを小さくしつつ前進するように、羽ばたき周期とピッチ角αの振動周期との同期をとるよう設定される。
【発明の効果】
【0005】
この発明の羽ばたき飛行機によれば、例えば、ピッチ角α=0°近傍の姿勢で、上限羽ばたき角θ≒90°近傍から、初速度0で翼12の打ち下ろしが開始される。翼12の打ち下ろし時に、左右の翼12を引き剥がす動作で両翼の上面間に負圧を生じさせつつピッチ角αの正方向の回転モーメントを生じさせて徐々にピッチ角αを増大させ、下限羽ばたき角(例えば−80°)近傍に達する。ピッチ角αが比較的小さい間、すなわち翼12の上面が垂直上向きに近い間、翼の間の負圧が翼の上面の全面に広がり、この上方の負圧により上から引き上げられるように機体が上昇する。
次いで、羽ばたき角−80°近傍からの翼の打ち上げ動作に移り、左右の翼12を広げる動作で両翼の下面間に負圧を生じさせ、ピッチ角αが比較的大きい間、すなわち翼12の下面が前向きに近い間、翼12の上下面の圧力差により機体が前進する。打ち上げ時羽ばたき角θ≒0°近傍でピッチ角αが最大となる。この間、フェザリング制御と同等のメカニズム、すなわち翼12の鉛直方向の投影面積を小さくして、打ち上げ時の揚力減少を最小限に抑えることができる。翼12の打ち上げ動作の進行に従い、ピッチ角αの負方向の回転モーメントを増大させて徐々にピッチ角を減少させ、上限羽ばたき角θ≒90°近傍で羽ばたきの第1ストロークが終了する。以上が飛び立ち動作の概略である。そして、羽ばたきの第2ストロークにおける打ち下ろし羽ばたき角θ≒0°近傍で最小ピッチ角の姿勢に戻る。ただし、最小ピッチ角は0°近傍には戻らず、これよりも大きいピッチ角(例えば20°近傍)が最小ピッチ角となる。
羽ばたきの第2ストローク以降は、自由飛翔に遷移する。上記の飛び立ち動作では、羽ばたき角+90°、ピッチ角0°、初速度0で羽ばたきが始まるが、第2ストローク以降は、打ち下ろし時、羽ばたき角0°のときピッチ角最小、打ち上げ時羽ばたき角0°のときピッチ角最大となる動作を繰り返す。
このように、本発明は、対気速度無しで自重以上の揚力を生み出す羽ばたき機構を提供できる。ピッチ角αの制御のための追加的な機構は不要であるから、軽量化でき、それにより、尾翼が不要で、初速度0から自重以上の揚力を生み出し、飛び立ちが可能な小型軽量の飛行機を実現できる。
【発明を実施するための最良の形態】
【0006】
図面を参照してこの発明の実施の形態を説明する。図1は羽ばたき飛行機の前方から見た斜視図、図2は図1の羽ばたき飛行機の後方から見た斜視図、図3は図1の羽ばたき飛行機の正面図、図4は図1の羽ばたき飛行機の側面図、図5は図1の羽ばたき飛行機における翼が上限角にある飛び立ち前の状態の側面図、図6は図1の羽ばたき飛行機における翼の第1ストローク打ち下ろし時の羽ばたき角0°にある飛翔状態の側面図、図7は図1の羽ばたき飛行機における翼の第1ストローク下限角にある飛翔状態の側面図、図8は図1の羽ばたき飛行機における翼の第1ストローク打ち上げ時の羽ばたき角0°にある飛翔状態の側面図、図9は図1の羽ばたき飛行機における翼の第2ストローク以降で、翼が上限角にある飛翔状態の側面図、図10は図1の羽ばたき飛行機における翼の第2ストローク以降、打ち下ろし時の羽ばたき角0°にある飛翔状態の側面図、図11ないし図16は図1の羽ばたき飛行機における翼の羽ばたき角、ピッチ角および腹振り角の関係を動作の順にしたがって模式的に示すに示すもので、それぞれ(A)は正面図、(B)は側面図、(C)は平面図である。
【0007】
羽ばたき飛行機は、図1ないし図4に示すように、棒状体から構成される機体11、機体11に取り付けられる羽ばたき翼12、羽ばたき翼12の羽ばたき運動を実現させる羽ばたき機構13を備える。この羽ばたき飛行機の重心Aは、翼12の翼反力中心Bより後方に配置される。なお、図において重心Aの位置が常に部材上にあるよう示したが、実際には、翼12の上下運動により、わずかに移動し、部材のない空間上に存在する場合がある。
【0008】
羽ばたき翼12は、機体11の左右に取り付けられており、羽ばたき機構13により駆動されて、図5に示す上限羽ばたき角から図7に示す下限羽ばたき角まで往復揺動する羽ばたき運動を行う。羽ばたき翼12は、翼根部材14と、翼根部材14から翼端部まで翼前縁に沿って、やや後方へ湾曲して延びる第1の骨杆15と、翼根部材14から骨杆15に対して所定の角度離れて翼端部まで翼下縁に沿って延びる第2の骨杆16と、第1及び第2の骨杆15,16間に張られた所定形状(ほぼ台形状)の翼型を有する翼膜17とから構成される。翼膜17は軽量な合成樹脂フィルムからなり、第1及び第2の骨杆15,16の先端部間に延びる後縁部17aが、羽ばたき時にまくれる柔軟性を有する。
【0009】
第1及び第2の骨杆15,16は、いずれも竹材で調製された部材であり、軽量であるとともに適度な強度、弾性、柔軟性を有している。同等の性質を有していれば、素材はこれに限定されない。第1及び第2の骨杆15,16は、翼根部材14を介して、機体11の左右に、機体11の軸線と平行に固着されたピン18で枢着される。翼12は、後述する羽ばたき機構13に連結されており、羽ばたき機構13の駆動により、ピン18を中心に上下方向に回動する。これにより、羽ばたき翼12のフラッピング運動が可能となる。また、第1及び第2の骨杆15,16は、いずれも翼根部14から翼端部に向かって徐々にその断面積が縮小し、翼端部側がより高い柔軟性を有している。これにより、羽ばたき時の翼12の後縁部17aの圧力を緩和することで、効率的に揚力を作り出せるようにしてある。
【0010】
第1の骨杆15は、例えば図17に模式的に示すように、翼の上面側対応部に、長さ方向に所定間隔を置いて複数の切り込み15aを設ける等の手段により、上面方向の剛性を相対的に低く、下面方向の剛性を高くし、翼12の打ち下ろし時と打ち上げ時とで変形量に異方性を持たせることができる。これにより、翼12の打ち下ろし時にはほぼフラットの翼面形状であるが、打ち上げ時には「上に凸の撓みを作り出すことができる。
【0011】
羽ばたき機構13は、機体11の下方に位置して機体11に対して相対回転自在に設けられる胴体19と、この胴体19を機体11に対して相対回転させる駆動部22と、胴体19の前方端部の左右において胴体19と翼12とを結合し、機体11と胴体19との相対回転を翼12の羽ばたき運動に変換する羽ばたきリンク機構である弾性体リンク20とを具備する。
【0012】
胴体19は、胴本体32、斜め支持杆21、軸受け部材28、ガイド棒30を具備する。胴本体32は、棒状で、機体11の下方に間隔を置いて、機体11に沿って前後方向に延びる。斜め支持杆21は、胴本体32の後端部から斜め上前方へ延出して上端部において機体11の中間部にピン23で枢支され、その下部は、胴本体32の後端部から斜め下後方へ延出する。軸受け部材28は、斜め支持杆21の下端部間に、胴本体32、ガイド棒30と一体に固着される。したがって、胴体19は、前後方向の中間部においてピン23で機体11に枢支されることになり、ピン23を中心に機体11に対して相対回転する。
【0013】
弾性体リンク20は、弾性合成樹脂製の帯板状部材からなり、下端において胴体19の前端部左右側面に固着され、上方へ延びつつ湾曲し、上端部において翼根部材14を介して翼12の骨杆15,16に固着される。
【0014】
駆動部22は、胴本体32の前端下方において駆動源となるゴム紐24の一端を係止する係止部材25と、胴本体32の後端下方においてゴム紐24の他端を係止するクランク26と、クランク26と機体11の後端部とを連結する連接杆27とを具備する。クランク26は、胴体19の軸受け部材28に軸支される。クランク26の前方端にはゴム紐24が係止され、後方端には、連接杆27の基端が枢着される。連接杆27の先端部は機体11の後端からそれの軸線に沿って後方へ延出する支軸29に枢支される。
【0015】
したがって、撚られたゴム紐24に蓄えられたエネルギによりクランク26が回転すると、連接杆27、支軸29を経て機体11の前後端部がピン23を中心にして、胴体19に対して交互に相対上下動するように回転する。胴体19に対する機体11の相対回転面は、ガイド棒30によって規制される。ガイド棒30は、軸受け部材28から胴体19に対して直角に上方へ延びており、その上部は、機体11の後部に上下方向に貫通するように形成された軸線方向の長孔31を自由に貫通している。胴本体32と機体11の前端部における相対昇降動は弾性体リンク20を介して骨杆15,16に伝わり、骨杆15,16を羽ばたき運動(往復揺動)させる。
【0016】
この実施形態の羽ばたき飛行機を模式的に示す図11ないし図15を参照して、機体11の前端部に対する胴本体32の相対上下動を翼12の180°に近い羽ばたき運動bに変換する弾性体リンク20の動作を説明する。胴本体32は、上下に矢印aのストロークで近似的に往復直動運動をする。図11において、胴本体32の前端部が上死点にあり、翼12は、撓んだ弾性体リンク20に押し上げられ、上限角(羽ばたき角θ≒90°)の位置にある。胴本体32の上死点では、翼12が胴本体32の前端部の上下方向運動線aとほぼ平行に配置される。しかし、このとき、弾性体リンク20の軸線は翼根部材14に対して平行にならないので、胴本体32前端部の上昇行程においては、その力が弾性体リンク20の軸線方向の押圧力として有効に翼12に伝えられ、正面図右側の翼12についてみると、反時計方向の回転トルクが生じる。以下、正面図右側の翼12に注目して説明する。ここから胴本体32の前端部が下降行程に転じると、弾性体リンク20の撓みを戻そうとする力f1により、翼12の時計方向の回転トルクが生じる。
【0017】
胴本体32前端部の下降行程により、翼根部材14は時計方向へ回転し、図12に示すように、翼12の羽ばたき角θ≒0°の状態となる。この状態を、弾性体リンク20の撓みの中立点(自然形)に設定してある。
【0018】
さらに胴本体32の前端部が下降し、図13に示す下死点に到達すると、弾性体リンク20は反対方向へ撓んで延び、翼12は下限羽ばたき角(θ≒−80°)に達する。この状態においても、弾性体リンク20の軸線は翼根部材14に対して平行にならない。したがって、下降行程の下死点付近においても、胴本体32の力が弾性体リンク20の軸線方向の押圧力として有効に翼12に伝えられ、翼12の時計方向の回転トルクが得られる。胴本体32前端部が、上昇行程に転じると、弾性体リンク20が撓んで蓄えたエネルギ、すなわち撓みを戻そうとする力f2により、剛体リンク3を反時計方向へ回転させるトルクが得られる。
【0019】
弾性体リンク20の撓みの中立点(自然形)を、翼12の回転角θ≒0°付近に設定することにより、翼12の効率のよい羽ばたき運動を実現できるが、中立点の回転角θを変更(自然形を変更)し、あるいは弾性体リンク20の材料定数を変更することにより、胴本体32前端部の上下死点における翼12の回転トルクを変更することができる。弾性体リンク20は、合成樹脂製の帯板で構成するのが好適であるが、その材質は問わない。
【0020】
この実施形態の羽ばたき飛行機は、例えば、図11に示すピッチ角0°の姿勢で、上限羽ばたき角90°近傍から、初速度0で翼の打ち下ろし動作を開始する。翼の打ち下ろし時には、左右の翼12を引き剥がす動作で両翼の上面間に負圧を生じさせつつピッチ角α(図12)の正方向の回転モーメントMを生じさせて徐々にピッチ角を増大させ、図12に示す羽ばたき角θ≒0°の状態を経て、図13に示す下限羽ばたき角(例えばθ≒−80°)近傍に達する。ピッチ角αが比較的小さい(0°に近い)間、すなわち翼12の上面が垂直上向きに近い間、翼の間の負圧が翼の上面の全面に広がり、この上方の負圧により上から引き上げられるように機体が上昇する。
【0021】
次いで、羽ばたき角θ≒−80°近傍からの翼12の打ち上げ動作に移るが、ピッチ角αは、打ち下ろし時の回転モーメントによる機体の回転慣性で、図14に示す翼12の打ち上げ時羽ばたき角θ≒0°近傍まで増加を続ける。翼12の打ち上げにより、左右の翼12を広げる動作で両翼の下面間に負圧を生じさせ、ピッチ角αが比較的大きい(90°に近い)間、すなわち翼の下面が前向きに近い間、翼の上下面の圧力差により機体が前進する。この間、翼の鉛直方向の投影面積が小さいから、打ち上げ時の揚力減少が抑えられる。ピッチ角αが0°近傍であれば、打ち上げ時羽ばたき角θ≒0°近傍で揚力減少が最大となるが、この実施形態の飛行機においては、このとき、図14に示すように、ピッチ角αが最大となるため、揚力減少が最小限に抑えられる。すなわち、ピッチ角制御による、フェザリング制御と同等のメカニズムにより、揚力減少を最小限に抑えて自重以上の揚力を維持する。その後、翼12の打ち上げによるピッチ角αの負方向の回転モーメントMで徐々にピッチ角αを減少させ、図15に示す羽ばたき角θ≒90°を経て、図16に示す第2ストロークの羽ばたき角θ≒0°近傍で最小ピッチ角(約20°)の姿勢に戻る。図15までの羽ばたきの第1ストロークが飛び立ち動作の概略である。
【0022】
羽ばたきの第2ストローク以降は、自由飛翔に遷移する。上記の飛び立ち動作では、羽ばたき角θ≒+90°、ピッチ角α≒0°、初速度0で羽ばたきが始まるが、第2ストローク以降は、打ち下ろし時、羽ばたき角θ≒0°のときピッチ角α最小(約20°)、打ち上げ時、羽ばたき角θ≒0°のときピッチ角α最大となる。最小ピッチ角αは0°近傍には戻らず、これよりも大きい20°近傍となる。
【0023】
このように、本発明は、対気速度無しで自重以上の揚力を生み出す羽ばたき機構を提供できる。ピッチ角αの制御のための追加的な機構は不要であるから、軽量化でき、それにより、尾翼が不要で、初速度0から自重以上の揚力を生み出し、飛び立ちが可能な小型軽量の飛行機を実現できる。
【0024】
さらに、この実施形態の羽ばたき飛行機においては、羽ばたき動作に連動して機体11に対して胴体19の後部を上下方向に振る腹振り動作を行って、ピッチ角αの制御をさらに確実なものとする。すなわち、胴本体32、斜め支持杆21、軸受け部材28、ガイド棒30を具備する胴体19は、ピン23による機体11への枢支部を境に、前部と後部とが、機体11に対して上下逆方向に相対回転する。上記のように、胴体19の前部の上下動は翼12の上下動を生じる。これに対し、胴体19の後部の上下動(腹振り運動)は翼12の上下動と逆位相で同周期となる。ピッチ角αと腹振り角βの関係を図11ないし図15に示す。すなわち、翼12の打ち下ろし動作時に、胴体19の振り上げ動作(ピッチ角における負の方向回転)が、翼12の打ち上げ動作時に、胴体19の振り下ろし動作(ピッチ角における正の方向回転)が行われる。この腹振り動作は、翼12の打ち下ろし動作開始時におけるピッチ角の正方向の回転モーメント増大に寄与し、翼12の打ち上げ動作開始時におけるピッチ角の負方向の回転モーメント増大に寄与する。腹振り運動のピッチ角への影響は、その振動角度に大きく依存するが、いずれにしても、腹振り開始時、すなわち、腹振りによる回転トルクが極大、極小の時には、ピッチ角の回転モーメント増大に寄与している。
【産業上の利用可能性】
【0025】
本発明の羽ばたき飛行機は、玩具に適用できる他、これに実用的機能を付加した各種の飛行体に適用できる。
【図面の簡単な説明】
【0026】
【図1】羽ばたき飛行機の前方から見た斜視図である。
【図2】図1の羽ばたき飛行機の後方から見た斜視図である。
【図3】図1の羽ばたき飛行機の正面図である。
【図4】図1の羽ばたき飛行機の側面図である。
【図5】図1の羽ばたき飛行機における翼が上限角にある飛び立ち前の状態の側面図である。
【図6】図1の羽ばたき飛行機における翼の第1ストローク打ち下ろし時の羽ばたき角0°にある飛翔状態の側面図である。
【図7】図1の羽ばたき飛行機における翼の第1ストローク下限角にある飛翔状態の側面図である。
【図8】図1の羽ばたき飛行機における翼の第1ストローク打ち上げ時の羽ばたき角0°にある飛翔状態の側面図である。
【図9】図1の羽ばたき飛行機における翼の第2ストローク以降で、翼が上限角にある飛翔状態の側面図である。
【図10】図1の羽ばたき飛行機における翼の第2ストローク以降、打ち下ろし時の羽ばたき角0°にある飛翔状態の側面図である。
【図11】図1の羽ばたき飛行機における翼の羽ばたき角、ピッチ角および腹振り角の関係を動作の順にしたがって模式的に示すに示すもので、(A)は正面図、(B)は側面図、(C)は平面図である。
【図12】図1の羽ばたき飛行機における翼の羽ばたき角、ピッチ角および腹振り角の関係を動作の順にしたがって模式的に示すに示すもので、(A)は正面図、(B)は側面図、(C)は平面図である。
【図13】図1の羽ばたき飛行機における翼の羽ばたき角、ピッチ角および腹振り角の関係を動作の順にしたがって模式的に示すに示すもので、(A)は正面図、(B)は側面図、(C)は平面図である。
【図14】図1の羽ばたき飛行機における翼の羽ばたき角、ピッチ角および腹振り角の関係を動作の順にしたがって模式的に示すに示すもので、(A)は正面図、(B)は側面図、(C)は平面図である。
【図15】図1の羽ばたき飛行機における翼の羽ばたき角、ピッチ角および腹振り角の関係を動作の順にしたがって模式的に示すに示すもので、(A)は正面図、(B)は側面図、(C)は平面図である。
【図16】図1の羽ばたき飛行機における翼の羽ばたき角、ピッチ角および腹振り角の関係を動作の順にしたがって模式的に示すに示すもので、(A)は正面図、(B)は側面図、(C)は平面図である。
【図17】翼の骨杆の実施例を示す模式的正面図である。
【符号の説明】
【0027】
A 重心
B 翼反力中心
a 胴本体前部の運動ストローク
b 羽ばたき運動ストローク
f1 撓みを戻そうとする力
f2 撓みを戻そうとする力
θ 羽ばたき角
11 機体
12 翼
13 羽ばたき機構
14 翼根部材
15 第1骨杆
15a 切り込み
16 第2骨杆
17 翼膜
17a 後縁部
18 ピン
19 胴体
20 弾性体リンク
21 斜め支持杆
22 駆動部
23 水平ピン
24 ゴム紐
25 係止部材
26 クランク
27 連接杆
28 軸受け部材
29 支軸
30 ガイド棒
31 長孔
32 胴本体

【特許請求の範囲】
【請求項1】
前後方向に延びる機体と、この機体の左右に揺動自在に取り付けられる一対の翼と、この翼の打ち上げ・打ち下ろしの羽ばたき運動を実現させる羽ばたき機構と、を備える羽ばたき飛行機であって、
重心が前記翼の揚力中心より後方に配置され、それによって、打ち下ろし時に翼の上面方向にかかる翼反力により機体にピッチ角の正方向の回転モーメントを生じさせてピッチ角を増大させつつ上昇し、打ち上げ時に翼の下面方向にかかる翼反力により機体にピッチ角の負方向の回転モーメントを生じさせてピッチ角を小さくしつつ前進するように、羽ばたき周期とピッチ角の振動周期との同期をとるよう設定されることを特徴とする羽ばたき飛行機。
【請求項2】
前記羽ばたき機構は、前記機体の下方に位置して機体に対して上下方向に相対揺動自在に設けられる胴体と、この胴体を前記機体に対してピッチ角の正方向と負方向へ相対回転させる駆動部と、前記胴体と前記翼とを結合し前記機体と胴体との相対回転を翼の羽ばたき運動に変換する羽ばたきリンク機構と、を具備し、
前記胴体は、前後方向の中間部において前記機体に枢支され、枢支部を中心に機体に対してピッチ角の正方向と負方向へ相対回転するように設けられ、
前記羽ばたきリンク機構は、前記機体に対する前記胴体前部の相対回転運動を胴体後部の相対回転運動と逆位相となる翼の羽ばたき運動に変換するように、胴体の前部と前記翼との間に設けられ、
それによって、前記翼の羽ばたきと胴体後部の相対回転運動とが同周期逆位相となるように設定されることを特徴とする請求項1に記載の羽ばたき飛行機。
【請求項3】
前記胴体は、前記機体に沿って前後方向に延びる胴本体と、この胴本体から上方へ延出して上端部において前記機体の中間部に枢支される支持杆とを具備し、
前記胴本体は、前端部において前記羽ばたきリンク機構を介して前記翼に連結され、
前記駆動部は、前記胴本体の前方下部に固定され駆動源となるゴム紐の一端が係止される係止部材と、中間部が胴本体の後方下部に軸支され一端側にゴム紐の他端が係止されるクランクと、一端側がクランクの他端側に枢支され他端側が前記機体の後部に枢支されクランクの回転を胴本体に対する機体後部の相対回転運動に変換して伝える連接杆とを具備することを特徴とする請求項2に記載の羽ばたき飛行機。
【請求項4】
前記翼は、前記機体に枢支される翼根部材と、この翼根部材から翼端部まで翼前縁に沿って延びる第1の骨杆と、翼根部材から第1の骨杆に対して所定の角度離れて翼端部まで翼下縁に沿って延びる第2の骨杆と、第1及び第2の骨杆の間に張られる柔軟な翼膜とを具備し、
前記翼膜は、前記第1及び第2の骨杆の先端部間に延びる後縁が羽ばたき時にまくれる柔軟性を有することを特徴とする請求項1ないし3のいずれかに記載の羽ばたき飛行機。
【請求項5】
前記第1の骨杆は、上面方向の剛性が相対的に低く、下面方向の剛性が相対的に高く構成され、
それにより、前記翼の打ち下ろし時にはほぼフラットの翼面形状であるが、打ち上げ時には大きな上に凸の撓みを作り出すことができるように構成されることを特徴とする請求項4に記載の羽ばたき飛行機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2010−18059(P2010−18059A)
【公開日】平成22年1月28日(2010.1.28)
【国際特許分類】
【出願番号】特願2008−178153(P2008−178153)
【出願日】平成20年7月8日(2008.7.8)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 平成20年6月5日 社団法人日本機械学会発行の「No.08−4 ロボティクス・メカトロニクス講演会2008 講演概要集」に発表
【出願人】(598163064)学校法人千葉工業大学 (101)
【Fターム(参考)】