説明

耐火物厚み測定方法及び耐火物厚み測定装置

【課題】 コークス炉炭化室のような高温の炉内における高温の耐火物の厚みを、高温の炉内側から測定するための耐火物厚み測定方法及び耐火物厚み測定装置を提供する。
【解決手段】 高温の炉内にマイクロ波送信機受信機2を挿入し、高温の耐火物表面に向かってマイクロ波を送信し、耐火物21の表面22で反射して返ってきた表面反射波25及び耐火物21の裏面23で反射して返ってき裏面反射波26を受信し、表面反射波25と裏面反射波26とがそれぞれ送信から受信までに要した時間の差を算出し、この時間差及び耐火物の屈折率に基づいて耐火物の厚みを算出し、前記マイクロ波送信機受信機2は冷却箱1中に収納し、冷却箱7壁面のマイクロ波通過窓6についてはマイクロ波を透過しかつ耐熱性を有する材料で構成することを特徴とする耐火物厚み測定方法及び厚み測定装置である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高温の炉内における高温の耐火物の厚みを測定するための耐火物厚み測定方法及び耐火物厚み測定装置に関するものである。
【背景技術】
【0002】
コークス炉の炭化室をはじめとする高温の炉室においては、炉室を構成する炉壁が耐火物で構成されており、耐火物の劣化状況を的確に把握することが必要である。特にコークス炉の炭化室は、過酷な条件下で通常20年以上の長期間にわたって連続操業されるものであり、炭化室を構成する耐火煉瓦は熱的、化学的および機械的要因によって徐々に劣化する。そのため耐火煉瓦の劣化に起因するコークスの押し詰まりが生じたり、耐火煉瓦が脱落したりする。このような耐火煉瓦の脱落などの事故が生じるとその補修は困難であり、操業に著しい影響が及ぼされる。従って、炭化室内の特に炉壁を構成する耐火煉瓦の状況を常時把握しておくことは、コークス炉操業管理上極めて重要である。
【0003】
耐火物の損耗状況を把握するに際しては、耐火物の炉内側に面する面(以下「表面」と呼ぶ。)の凹凸状況が評価される。炉壁の凹凸状況が耐火物の損耗状況を示しているものと推定し、表面が凹んでいれば耐火物が損耗しているものと判断する。
【0004】
コークス炉炭化室の側壁は、燃焼室の側壁をも兼ねている。即ち、炭化室と燃焼室とが側壁を境として対面している。従って、炭化室の側壁表面が凹んでいる場合、耐火物が損耗することによって凹みが生ずる場合の他、耐火物が燃焼室側に押し込まれて変位することによって凹みが生ずる場合もある。耐火物が損耗した場合と、耐火物が燃焼室側に押し込まれて変位した場合とでは、その凹部の修復方針が異なるので、両者のどちらであるかを識別することが必要となる。
【0005】
炭化室側壁耐火物の厚みを測定することができれば、側壁表面の凹部が耐火物の損耗によるのか耐火物の変位によるのかを識別することが可能となる。即ち、凹部において凹み代と同じだけ耐火物の厚みが薄くなっていれば、耐火物の損耗が原因であると特定することができ、凹部において耐火物厚みが薄くなっていなければ、耐火物の変位が原因であると特定することができる。
【0006】
炉稼働中の耐火物の厚みを測定する手段として、種々の方法が提案されている。
【0007】
特許文献1には、炉の外側の鉄皮に開孔し、開孔部から超音波探触子を挿入して耐火物に接触させ、超音波が耐火物内を往復する時間から耐火物の厚みを測定する方法が開示されている。
【0008】
特許文献2の記載のものは、耐火物間に所定間隔を隔てて対向して2以上の導電体からなる電極を埋設し、炉の外側に配置した計測装置で電極間の静電容量を計測し、これから耐火物厚さを導き出す方法である。
【0009】
特許文献3においては、炉の外側から配置したマイクロ波プローブによって耐火物の厚さを計測する方法が記載されている。炉の外側のジャケットを貫通してマイクロ波を伝搬するプローブが配置され、プローブの一方の端面が直接スタンプ材に接触するように設置する。プローブを伝搬してマイクロ波が耐火物中に送信されると、スタンプ材及び耐火物レンガは非電導性であるため、マイクロ波がこれらの中を伝搬し、耐火レンガとスラグの接触面に至る。スラグは電導性であるため送信波は接触面で反射され、反射波は耐火物中を伝搬してプローブで検出される。そして、受信機において発振器で送信された送信波と反射波に基づいて耐火物の厚さを検出する。
【0010】
特許文献1〜3いずれに記載のものも、検出装置は炉の外側の常温部分から耐火物に接触している。一方、コークス炉炭化室の耐火物厚みを測定しようとする場合、耐火物の一方の側は高温の炭化室に接し、他方の側は同じく高温の燃焼室に接しているため、特許文献1〜3に記載のような方法を採用することは困難である。また、特許文献2に記載のものは、耐火物中に電極を埋め込んでおくという処置がなければ測定できない。さらに特許文献3に記載のものは、耐火物の端面でマイクロ波を反射させるため、耐火物端面に接していて電導性を有するスラグを用いている。ところが、コークス炉炭化室の側壁にはこのような導電性を有する接触物は存在しないので、特許文献3に記載の方法を採用することができない。
【0011】
特許文献4には、コークス炉の炭化室内に挿入したアンテナからマイクロ波等の電磁波を送信し、炉壁の壁面で反射した反射波を同じアンテナで受信し、電磁波の往復時間に基づいて炉壁の壁面からアンテナまでの距離を測定し、炉壁壁面の形状(凹凸状況)を計測する方法が開示されている。特許文献3に記載の方法では、炭化室内に挿入したアンテナから発した電磁波は、炭化室壁面から反射するのみであり、これでは耐火物の厚みを測定することはできない。
【0012】
【特許文献1】特開平9−264735号公報
【特許文献2】特開2004−138317号公報
【特許文献3】特開2003−294430号公報
【特許文献4】特開2001−116537号公報
【発明の開示】
【発明が解決しようとする課題】
【0013】
特許文献1、3に記載の方法では、超音波やマイクロ波を発するプローブを炉外側から耐火物表面に接触させている。コークス炉炭化室壁面は高温に熱せられているため、低温のプローブを壁面に接触させると耐火物に熱歪を生じさせ、逆に耐火物を破損する可能性があるので好ましくない。また、耐火物に接触させるプローブを1000℃近くまで昇温したとしても、これほどの高温で正常動作するプローブは実現が困難である。また、特許文献2に記載のように耐火物中にセンサーを埋め込む方法では、炭化室からコークスを押し出す工程でセンサーを破損する可能性が高く、適用は不可能である。さらに、非接触で炭化室の炉壁耐火物厚みを測定する方法は全く見られなかった。
【0014】
コークス炉炭化室側壁の耐火物は、全厚が100mm程度でしかないので、耐火物厚みを測定するに際しては、少なくとも5〜10mm程度の比較的高い測定精度が要求される。また、最小測定厚みが少なくとも50mmであることが要求される。しかも、コークス炉炭化室の炉幅は400mmと狭い上、1000℃に均熱された条件での測定が必須である。
【0015】
本発明は、コークス炉炭化室のような高温の炉内における高温の耐火物の厚みを、高温の炉内側から測定するための耐火物厚み測定方法及び耐火物厚み測定装置を提供することを目的とする。
【課題を解決するための手段】
【0016】
従来、高温の炉内において高温に加熱された耐火物は、マイクロ波を透過してしまい反射波を利用することができないか、あるいはマイクロ波は表面で反射され透過しないものとして扱われてきた。これに対し本発明者らは、周波数が100GHz以下のマイクロ波を用いた場合、1000℃程度に加熱された耐火物を透過するとともに、耐火物の表面及び裏面で反射した反射波が観測されることを見出した。これら耐火物の表面と裏面からの反射波を観察し、それぞれについてマイクロ波の発射から反射波到達までの時間差を算出することができれば、その値から耐火物の厚みを測定することが可能である。
【0017】
本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)高温の炉内にマイクロ波送信機受信機2を挿入し、高温の耐火物表面に向かってマイクロ波を送信し、耐火物21の表面22で反射して返ってきたマイクロ波(以下「表面反射波25」という。)及び耐火物21の裏面23で反射して返ってきたマイクロ波(以下「裏面反射波26」という。)を受信し、表面反射波25と裏面反射波26とがそれぞれ送信から受信までに要した時間の差を算出し、この時間差及び耐火物の屈折率に基づいて耐火物の厚みを算出し、前記マイクロ波送信機受信機2は冷却箱1中に収納し、冷却箱7壁面のマイクロ波が通過する部分(以下「マイクロ波通過窓6」という。)についてはマイクロ波を透過しかつ耐熱性を有する材料で構成することを特徴とする耐火物厚み測定方法。
(2)マイクロ波を耐火物表面に平行に送信し、送信したマイクロ波24をマイクロ波反射板7で反射させてマイクロ波を耐火物表面に向け、返ってきたマイクロ波をマイクロ波反射板7で反射させて耐火物表面に平行方向に向け、マイクロ波受信機2bで受信することを特徴とする上記(1)に記載の耐火物厚み測定方法。
(3)送信するマイクロ波として直線偏波したマイクロ波を用い、マイクロ波通過窓6の表面は通過するマイクロ波の偏波方向及び進行方向に垂直な軸を中心に一定角度傾けたことを特徴とする上記(1)又は(2)に記載の耐火物厚み測定方法。
(4)冷却箱1の内側に電磁波吸収体11を配置することを特徴とする上記(1)乃至(3)のいずれかに記載の耐火物厚み測定方法。
(5)マイクロ波以外の手段を用いて耐火物表面と冷却箱との間の距離を測定し、該測定した距離に基づいて、受信したマイクロ波の中から表面反射波25及び裏面反射波26を抽出することを特徴とする上記(1)乃至(4)のいずれかに記載の耐火物厚み測定方法。
(6)表面反射波及び裏面反射波を受信し抽出することに替え、裏面反射波のみを受信し抽出し、裏面反射波に基づいて算出した耐火物裏面までの距離と、マイクロ波以外の手段を用いて耐火物表面までの距離を対比し、耐火物の厚みを算出することを特徴とする請求項5に記載の耐火物厚み測定方法。
(7)マイクロ波通過窓6としてレンズ状の形状を有するものを用い、耐火物に照射するマイクロ波を集束させることを特徴とする上記(1)乃至(6)のいずれかに記載の耐火物厚み測定方法。
(8)マイクロ波反射板7として凹面状の反射板を用い、耐火物に照射するマイクロ波を集束させることを特徴とする上記(2)乃至(6)のいずれかに記載の耐火物厚み測定方法。
【0018】
(9)高温の炉内に挿入して高温の耐火物の厚みを測定するための厚み測定装置であって、マイクロ波送信機受信機2とそれを収納する冷却箱1及び信号処理装置4を有し、冷却箱壁面にマイクロ波を透過しかつ耐熱性を有する材料で構成するマイクロ波通過窓6を設け、マイクロ波送信機2からマイクロ波通過窓6を通して高温の耐火物表面に向かってマイクロ波を送信し、耐火物21の表面22で反射して返ってきたマイクロ波(以下「表面反射波25」という。)及び耐火物21の裏面22で反射して返ってきたマイクロ波(以下「裏面反射波」という。)をマイクロ波受信機で受信し、信号処理装置4によって表面反射波25と裏面反射波26とがそれぞれ送信から受信までに要した時間の差を算出し、この時間差及び耐火物の屈折率に基づいて耐火物の厚みを算出することを特徴とする耐火物厚み測定装置。
(10)マイクロ波反射板7を有し、マイクロ波送信機はマイクロ波を耐火物表面に平行に送信し、送信したマイクロ波をマイクロ波反射板7で反射させてマイクロ波を耐火物表面に向け、返ってきたマイクロ波をマイクロ波反射板7で反射させて耐火物表面に平行方向に向け、マイクロ波受信機2bで受信することを特徴とする上記(9)に記載の耐火物厚み測定装置。
(11)送信するマイクロ波として直線偏波したマイクロ波を用い、マイクロ波通過窓6の表面は通過するマイクロ波の偏波方向及び進行方向に垂直な軸を中心に一定角度傾けてなることを特徴とする上記(9)又は(10)に記載の耐火物厚み測定装置。
(12)冷却箱1の内側に電磁波吸収体11を配置してなることを特徴とする上記(9)乃至(11)のいずれかに記載の耐火物厚み測定装置。
(13)マイクロ波以外の手段を用いて耐火物表面と冷却箱との間の距離を測定する距離計8を有し、距離計8で測定した距離に基づいて、受信したマイクロ波の中から表面反射波25及び裏面反射波26を抽出することを特徴とする上記(9)乃至(12)のいずれかに記載の耐火物厚み測定装置。
(14)表面反射波及び裏面反射波を受信し抽出することに替え、裏面反射波のみを受信し抽出し、裏面反射波に基づいて算出した耐火物裏面までの距離と、マイクロ波以外の手段を用いて耐火物表面までの距離を対比し、耐火物の厚みを算出することを特徴とする上記(13)に記載の耐火物厚み測定装置。
(15)マイクロ波通過窓6としてレンズ状の形状を有するものを用い、耐火物に照射するマイクロ波を集束させることを特徴とする上記(9)乃至(14)のいずれかに記載の耐火物厚み測定装置。
(16)マイクロ波反射板7として凹面状の反射板を用い、耐火物に照射するマイクロ波を集束させることを特徴とする上記(10)乃至(14)のいずれかに記載の耐火物厚み測定装置。
【発明の効果】
【0019】
本発明の耐火物厚み測定方法及び耐火物厚み測定装置は、高温の炉内にマイクロ波送信機受信機を挿入し、高温の耐火物表面に向かってマイクロ波を送信し、耐火物の表面で反射して返ってきたマイクロ波(表面反射波)及び耐火物の裏面で反射して返ってきたマイクロ波(裏面反射波)を受信し、表面反射波と裏面反射波とがそれぞれ送信から受信までに要した時間の差に基づいて耐火物の厚みを算出することができるので、コークス炉炭化室の炉壁耐火物の厚みをオンラインで計測することをはじめて可能とした。
【発明を実施するための最良の形態】
【0020】
本発明において、耐火物21の表面22とは、耐火物21が厚み測定装置に対面する炉内側の面を意味し、耐火物21の裏面23とは、耐火物の表面22と反対側の耐火物の面を意味する。
【0021】
本発明の耐火物厚み測定方法及び耐火物厚み測定装置は、図1(a)に示すように高温の炉内にマイクロ波送信機受信機2を挿入し、高温の耐火物表面に向かってマイクロ波送信機からマイクロ波を送信することにより、耐火物の表面22で反射して返ってきたマイクロ波(表面反射波25)及び耐火物の裏面23で反射して返ってきたマイクロ波(裏面反射波26)を、マイクロ波受信機2bによって受信することができる。
【0022】
本発明は、周波数が100GHz以下のマイクロ波を用いることにより、マイクロ波は1000℃程度に加熱された耐火物21を透過するとともに、耐火物の表面22及び裏面23で反射した反射波を観測することができる。また、周波数が10GHz以上のマイクロ波を用いることにより、必要な厚み測定精度(5〜10mm程度)及び最小測定厚み(50mm以下)を実現することが可能となる。
【0023】
本発明において、厚み測定のためのマイクロ波送信機受信機2は高温の炉内に挿入するので、これら送信機受信機を動作可能温度範囲内に保持するため、マイクロ波送信機受信機2は冷却箱1中に収納する。冷却箱1としては、二重構造の箱体とし、内側の箱14と外側の箱15との間のスペースに水等の冷却媒体16を充填した冷却構造とすると好ましい。図1に示すように、炉外から供給冷却水17として冷却箱1に冷却媒体を供給し、冷却媒体を循環するようにすれば、冷却箱内を継続的に低温に保持することができ、長時間にわたって炉内で測定を行うことができる。
【0024】
一方、図1(b)に示すように、冷却箱1の外側の箱15のさらに外部を断熱材18で覆った上で、冷却媒体16を炉外から供給しない方法を採用しても良い。水等の冷却媒体16は熱容量が大きいので、断熱材18の断熱効果と相まって、1000℃程度の高温の炉内に挿入した後、冷却箱1の内部を5分間以上にわたって50℃以下の温度に保持することができる。低温保持時間が5分間あれば、コークス炉の押し出し機に本発明の厚み測定装置を設置し、押し出し作業と同時に耐火物の厚みを測定することが十分に可能となる。冷却箱1は冷却媒体16を外部から供給する配管を有しないので、コンパクトで着脱が容易な装置とすることができる。
【0025】
冷却箱1と炉外との間を結ぶ信号線や電源の配線を行わない場合、冷却箱1の中に電源5、データ処理装置、データ蓄積装置13等を配置しておく必要がある。炉内において耐火物厚みを測定したらその測定データをデータ蓄積装置13に蓄積し、測定が完了して冷却箱を炉外に搬出した後に、蓄積したデータを収集することができる。また、図1(b)に示すように、冷却箱1の中にワイヤレス信号発信装置19を配置し、炉内で測定を行いながら測定したデータを信号として炉外に発信することとしても良い。炉外にはワイヤレス信号受信装置20を配置し、測定を行いながら炉外でデータを受信することができる。
【0026】
冷却箱1を構成する内側の箱14と外側の箱15は、好ましくはステンレス鋼等の鋼板によって形成される。一方、鋼板はマイクロ波を透過しないので、冷却箱壁面のマイクロ波が通過する部分(マイクロ波通過窓6)についてはマイクロ波を透過しかつ耐熱性を有する材料で構成することが必要である。マイクロ波通過窓6を構成する材料としては、屈折率が1.8〜4程度の珪石セラミックやアルミナ系セラミック等の中から選択すると好適である。マイクロ波をマイクロ波通過窓6に対してほぼ垂直に入射させる場合の本発明においては、屈折率の小さい珪石セラミックの方が、窓表裏面での反射波の発生が少ないので好ましい。
【0027】
表面反射波25と裏面反射波26とをマイクロ波受信機2bで受信した後、表面反射波25と裏面反射波26とがそれぞれ送信から受信までに要した時間の差を算出し、この時間差及び耐火物の屈折率に基づいて耐火物の厚みを算出する。厚みを測定する耐火物の物性として、マイクロ波に対する屈折率が温度によって変動するようであると、本発明で耐火物の厚みを測定するためには、耐火物の温度を測定した上で屈折率を推定する必要が生じる。それに対し、本発明者らは、特にコークス炉炭化室の炉壁に用いられる耐火物の場合、炭化室の炉壁耐火物が有する温度として通常変動する温度範囲においては、マイクロ波に対する屈折率が一定に保持されることを見出した。従って、表面反射波25と裏面反射波26とがそれぞれ送信から受信までに要した時間差及び耐火物の屈折率に基づいて耐火物の厚みを算出するに際しては、耐火物の屈折率を一定値として与えても十分に精度の高い厚み測定を行うことが可能である。
【0028】
本発明で用いるマイクロ波送信機2aは、マイクロ波の発信装置とアンテナによって構成される。アンテナとしてはホーンアンテナ3を用いれば、アンテナを小型化することができ、かつ比較的指向性に優れ集束させやすいマイクロ波を送信することができるので好ましい。また、本発明で用いるマイクロ波受信機2bは、送信に用いるアンテナをそのまま受信に用いることとすれば、装置をコンパクト化することができる。マイクロ波発信装置及び受信機のいずれも、小型のものを採用することができるので、コークス炉炭化室内に挿入可能な大きさの冷却箱を用意し、その冷却箱の中にホーンアンテナとともに収めることが可能である。
【0029】
本発明は信号処理装置4を有し、この信号処理装置4によって、表面反射波25と裏面反射波26とがそれぞれ送信から受信までに要した時間の差を算出し、この時間差及び耐火物の屈折率に基づいて耐火物の厚みを算出する。炉内の冷却箱から炉外まで信号ケーブルを配線した上で、信号処理装置4のみを炉外に配置することとしても構わない。これに対し、信号処理装置4は、マイクロ波送信機受信機2とともに冷却箱1の中に収納することとすると、炉内の冷却箱から炉外まで信号ケーブルを配線する必要がないので好ましい。アンテナと信号処理装置との間の伝送路を短くでき、かつ伝送路が高温に曝されることがないので、高精度の距離測定を行う上でも好ましい。
【0030】
表面反射波25と裏面反射波26とがそれぞれ送信から受信までに要した時間の差を算出する方法として、パルスマイクロ波を用いることができる。パルスマイクロ波を発信し、耐火物表面で反射するパルスマイクロ波と、裏面で反射するパルスマイクロ波とを受信し、これらパルス波を受信した時刻を相対比較することにより、表面反射波と裏面反射波とがそれぞれ送信から受信までに要した時間差を算出することができる。
【0031】
本発明においてより好ましくは、FMCW(周波数変調連続波、Frequency Modulated Continuous Wave)方式を採用することができる。FMCW方式において、マイクロ波の周波数は時間に対して直線状に増加する。時間間隔δt時間における周波数変化代をδfとすると、δf/δt=G(一定)という関係となる。最低周波数fminから周波数を上記関係によって増加させ、周波数が最高周波数fmaxに達したら元のfminに戻り、このような鋸歯状刃パターンで周波数変調を行うものである。
【0032】
FMCW方式を用いた距離測定において、周波数f1のマイクロ波を送信後、Δt秒後に反射波として受信したとする。そのとき、送信周波数はf2(=f1+G・Δt)に変化している。このときの送信周波数f2と反射波受信周波数f1の差Δfから、
Δf=(f2−f1)=GΔt
の関係に基づいて反射波が発信から受信までに要した時間(Δt)を算出することができる。
【0033】
表面反射波25のΔtと裏面反射波26のΔtがそれぞれ算出できれば、それから表面反射波25と裏面反射波26とがそれぞれ送信から受信までに要した時間の差を算出することができる。
【0034】
FMCW方式においては、送信波と受信波をミキシングし、差の周波数を持ったビート波信号を取り出し、この信号をFFT(高速フーリエ変換)による周波数分析を行い、差の周波数Δfを求め、時間差Δtを算出する。
【0035】
図2は、横軸に時間差をとり、縦軸に信号強度をとってプロットした図である。表面反射波25と裏面反射波26によるピークが観察される。両ピークの間隔から、マイクロ波が耐火物内部を進行したことに起因する時間差を算出することができる。図2(a)は耐火物厚みが厚い場合、図2(b)は耐火物厚みが薄い場合の測定結果を示す。
【0036】
時間差を算出する当該炉内温度における耐火物の屈折率nを予め定めておき、上記表面反射波と裏面反射波との時間差にc/2n(cは真空中における光速)をかけることにより、装置からの距離に換算し、耐火物の厚みを算出することができる。
【0037】
FMCW方式の変調周波数を約1.5GHz以上とすることにより、本発明に必要な厚み測定精度及び最小測定厚みを実現することが可能となる。
【0038】
冷却箱1の中におけるマイクロ波送信機受信機2、特にホーンアンテナ3の配置については、図1に示すようにホーンアンテナ3を距離測定対象の耐火物表面に対面させることとしても良いが、特にコークス炉炭化室の側壁耐火物については、両側壁間の距離が400mm程度しかないので、マイクロ波送信機受信機2をこのように配置することは困難であることが多い。また、炭化室の両側の側壁について耐火物の厚みを測定しようとすると、それぞれの耐火物に面するように配置して2組の送信機受信機が必要となる。
【0039】
本発明においては、図3に示すように、マイクロ波を耐火物表面に平行に送信し、送信したマイクロ波をマイクロ波反射板7で反射させてマイクロ波を耐火物表面に向け、返ってきたマイクロ波をマイクロ波反射板7で反射させて耐火物表面に平行方向に向け、マイクロ波受信機2bで受信することとすると好ましい。マイクロ波反射板7としては、導電性を有する平板であれば材質は問わない。一般的に金属板を用いることができる。
【0040】
ホーンアンテナ3は、特に指向性の高い特性を実現しようとした場合、マイクロ波送信方向に長い形状となる。上記のようにマイクロ波を耐火物表面に平行に送信するようにすれば、ホーンアンテナの長手方向を耐火物と平行に配置できるので、炭化室のように両側壁間が極めて狭い場合でも、性能の良いマイクロ波送信機受信機2を用いて冷却箱内に配置することが可能となる。
【0041】
また、送信したマイクロ波をマイクロ波反射板7で反射させるとともに、角度切替器12によってマイクロ波反射板7の向きを90°回転することとすれば、冷却箱内に固定した1組のマイクロ波送信機受信機2を用い、両側壁の耐火物厚みを交互に測定することが可能となる。例えば、厚み測定装置を炭化室内に挿入し、一定速度で炉奥まで進行させる過程で図3(a)に示すように一方の側壁について耐火物厚み測定を行い、炉奥から帰ってくる復路においては、図3(b)に示すようにマイクロ波反射板の向きを90°回転し、往路で測定したのと反対側の側壁耐火物の厚みを測定することができる。
【0042】
マイクロ波反射板7を用いる本発明において、図4に示すように、マイクロ波反射板7を冷却箱1の外に配置することとしても良い。冷却箱1の外側前方に例えばステンレス鋼製の角柱を配置し、この角柱の2面を2枚のマイクロ波反射板(7a、7b)とする。冷却箱内のホーンアンテナ3をこれらマイクロ波反射板の一方の方向に向ける。2枚の反射板それぞれはお互いに約90°の角度をもって配置され、炭化室の各側壁の方向へマイクロ波24を反射することができる。ホーンアンテナの向きをわずかにずらして2枚の反射板のうちの一方にマイクロ波を照射することにより、その反射板に反射してマイクロ波が照射される側の側壁耐火物厚みを測定することができる。マイクロ波反射板を構成する角柱は、その内部に冷却水を充填しておくことにより、短時間の挿入時間であれば十分にマイクロ波反射板を冷却することができる。
【0043】
本発明で冷却箱1に設けるマイクロ波通過窓6としては、マイクロ波の透過性がよく耐熱性を有する材料を用いることとするが、マイクロ波が窓を通過するに際し、窓の内側及び外側の表面でのマイクロ波の反射が避けられない。炭化室側壁耐火物の厚み測定に際しては、耐火物とマイクロ波通過窓との間隔が100〜150mmと近接しているので、マイクロ波が窓の表面及び耐火物表面との間において多重反射を繰り返した後にマイクロ波受信機に返ってくる。このため、図5に示すように、測定結果のグラフには表面反射波と裏面反射波の他に、多くの多重反射によるノイズ27が乗ることとなる。この多重反射波が耐火物厚み測定に悪影響を及ぼすことがある。
【0044】
本発明においては、図6に示すように、マイクロ波通過窓6表面の法線方向をマイクロ波24の進行方向から傾斜させることにより、マイクロ波通過窓6で反射した反射波の進行方向をずらすことができる。これにより、冷却箱の内側では、反射波が直接ホーンアンテナに返ってくることを防止できる。また、冷却箱の外側では、耐火物表面とマイクロ波通過窓との間での多重反射の発生を防止することができる。ところが、マイクロ波通過窓6に対する入射角θ(マイクロ波進行方向とマイクロ波通過窓表面の法線方向との間の角度)を大きくすると、それに伴ってマイクロ波の反射率が増大するという現象を伴う。マイクロ波の反射率が増大したのでは、多重反射を防止するという目的を十分に達することができない。
【0045】
ところで、図7(a)に示すように、電磁波を透過する材料に対して電磁波が一定の入射角θ(垂直以外の角度)で入射するとき、入射面(入射電磁波の進行方向と入射点における材料表面の法線を含む面を意味する。)に垂直な方向のs偏光成分(図7(a)で紙と垂直の方向)と入射面に平行な方向のp偏光成分とに着目する。材料表面で反射する反射波については、s偏光成分が多く、p偏光成分が少なくなるという現象が見られる。特に入射角θがブリュースター角βを満足する場合には、反射波中におけるp偏光成分がゼロとなる。従って、マイクロ波通過窓をマイクロ波進行方向に対して傾けた上で、入射する電磁波としてp偏光成分のみの直線偏波した電磁波を用いることとすれば、マイクロ波通過窓の表面におけるマイクロ波の反射率を低下させることが可能である。ブリュースター角βは、窓材料の屈折率をnとしたときにtanβ=nと表すことができる。入射角θがブリュースター角βよりも小さい値であっても、多重反射を防止するという本発明の効果を十分に発揮することができる。
【0046】
即ち本発明においては、図7(b)に示すように、送信するマイクロ波として直線偏波したマイクロ波を用い、マイクロ波通過窓の表面は通過するマイクロ波の偏波方向及び進行方向に垂直な軸zを中心に一定角度θ傾けることとすると好ましい。図7(b)において、傾斜前の表面の法線は入射波進行方向を向いており、傾斜後の表面の法線は入射波進行方向と角度θの傾きを持っている。マイクロ波通過窓の表面をこのように傾けることにより、マイクロ波通過窓に入射するマイクロ波は入射角がθとなるとともにp偏光成分のみとなるので、マイクロ波の反射率を低下させることができる。
【0047】
例えばマイクロ波通過窓として屈折率が2の珪石セラミックを用いたとき、ブリュースター角βは63.4°となる。マイクロ波の偏波方向及び進行方向に垂直な軸zを中心に傾ける角度θを40°程度とすれば、マイクロ波の反射率をほぼ半分にでき、実質的に多重反射の影響を少なくすることができる。
【0048】
マイクロ波発信のアンテナとしてホーンアンテナを用いることにより、マイクロ波の指向性を高めることができるが、マイクロ波の主な進行方向から外れた角度の方向へのマイクロ波伝搬をゼロにすることはできない。一方、マイクロ波送信機受信機を収納する冷却箱は通常は鋼板によって形成され、鋼板は電磁波を反射する。このようなマイクロ波がホーンアンテナやマイクロ波反射板裏面と冷却箱内面の間で多重反射や定常波が発生し、耐火物厚み測定を行う上でのノイズとして障害の原因となることがある。
【0049】
本発明においては、図7に示すように、冷却箱1の内側に電磁波吸収体11を配置することにより、上記のように発生する多重反射や定常波の発生を抑えることができる。電磁波吸収体11の配置場所として、ホーンアンテナ出口以降の冷却箱内側部分及びマイクロ波反射板裏面に配置すると良い。また、電磁波吸収体11としてフェライト樹脂やポリウレタンなど一般的な電波吸収材料を用いることができる。
【0050】
マイクロ波を送信してから、表面反射波25及び裏面反射波26が返ってくるまでの概略の時間がわかれば、反射波が返ってくると予想される時間帯のみ検出を行い、それ以外の時間帯については検出を行わないことにより、多重反射や定常波による誤動作の発生頻度を減少させることができる。
【0051】
本発明においては、図9に示すように、マイクロ波以外の手段を用いた距離計8によって耐火物表面と冷却箱との間の距離を測定し、測定した距離に基づいて、受信したマイクロ波の中から表面反射波及び裏面反射波を抽出すると好ましい。マイクロ波以外の手段の一例として、光学式距離測定手段であるレーザー距離計や光切断形状計などを用いることができる。また、接触式距離測定手段として、機械的に耐火物表面に触診して距離を測定することとしても良い。特に、ホーンアンテナと耐火物表面より短い距離領域でノイズが発生する場合に有効である。その他のマイクロ波以外の距離測定手段としては、音波距離計など高温の空間内で耐火物表面との距離が測定できる距離計であれば良い。受信したマイクロ波信号に図10に示すようにゲートをかける。レーザー距離計による耐火物表面位置から適当な距離分だけオフセットを取り、その位置をゲート端部としてゲートをかける。これにより、ノイズ成分を除去することで誤動作を防止することができる。
【0052】
なお、マイクロ波以外の手段を用いて耐火物表面と冷却箱との間の距離を測定する本発明(図9)においては、受信するマイクロ波のうち裏面反射波のみに着目することとしても、耐火物の厚みを測定することが可能である。即ち、測定装置から耐火物表面までの距離はマイクロ波以外の手段による距離計を用いて測定し、測定装置から耐火物裏面までの距離はマイクロ波のうちの裏面反射波に基づいて測定し、測定した距離を比較することにより、測定位置における耐火物の厚みを算出することが可能である。
【0053】
ホーンアンテナから発信したマイクロ波は、通常100mmφ程度の幅を有している。このまま耐火物表面に照射したのでは、100mm以下の空間分解能で耐火物厚みを測定することができない。
【0054】
本発明においては、図11に示すように、マイクロ波通過窓6としてレンズ状の形状を有するものを用い、耐火物に照射するマイクロ波を集束させることとすると良い。ホーンアンテナ3から発信され、場合によってマイクロ波反射板7で反射してマイクロ波通過窓6を通過する際において、マイクロ波はほぼ平行波あるいはせいぜい拡がり角10°程度の広がりを有する電磁波束となっている。マイクロ波通過窓6として、屈折率が1以上の材料で凸レンズ形状のものを用いれば、ほぼ平行波であるマイクロ波束を集束させることができ、耐火物表面から裏面までの間において焦点を結ばせることができる。
【0055】
厚みを測定する耐火物の屈折率が1.8程度の場合、焦点距離250〜300mmが適している。これにより、比較的反射波が小さい耐火物裏面に焦点を結ぶことができる。例えば、マイクロ波通過窓として屈折率4のものを用いた場合、両面が曲率半径1500mm程度の球面形状となるような凸レンズ形状とすれば、焦点距離が250mmとなる。
【0056】
本発明においてはまた、図12に示すように、マイクロ波反射板7として凹面状の反射板を用い、耐火物に照射するマイクロ波を集束させることとしても良い。厚みを測定する耐火物の屈折率が1.8程度の場合、軸外し焦点距離は350〜400mmが適している。z=(x2+y2)/2fで表される放物面を、(x−f)2+y2≦r2で表される円柱部で切り取ることにより、焦点距離がfで半径がrの放物面鏡を得ることができる。この放物面鏡をマイクロ波反射板として用い、焦点距離f=350mm程度とすれば、炭化室側壁耐火物裏面の位置に焦点を結ぶことができる。マイクロ波反射板7の向きを、角度切替器12によって図12(a)の向きから図12(b)の向きに変換することにより、対面する2面の耐火物厚みを測定することができる。
【0057】
耐火物表面あるいは裏面から返ってきたマイクロ波は、本発明のレンズ状の形状を有するマイクロ波通過窓、あるいは凹面状の反射板を通過した後にほぼ平行波となり、ホーンアンテナによって受信される。
【実施例】
【0058】
図1に示す本発明の厚み測定装置を用い、コークス炉炭化室の側壁を構成する耐火物の厚みを測定した。
【0059】
マイクロ波送信機2aは、マイクロ波発振管とホーンアンテナ3及び発信管を駆動する電気回路とから構成される。また、マイクロ波受信機2bは、マイクロ波送信機2aと共用のホーンアンテナ3とマイクロ波検出器とから構成される。マイクロ波の発振器と検出器は一体となっており、全体はおよそ50mm×100mm×150mmの大きさである。炉壁に対してほぼ垂直な方向にマイクロ波が放射されるようにホーンアンテナ3を配置しており、ホーンアンテナ3の発信口の口径は約50mmφである。
【0060】
これらマイクロ波送信機受信機2が冷却箱1に収納されている。冷却箱1は外形が150mm×150mm×220mm程度の大きさを有するものであり、ステンレス鋼製のジャケット構造で、ジャケット内に冷却水を通水し、炉内に挿入中は炉外から冷却水を供給して循環させている。ホーンアンテナ3からのマイクロ波が通過する部分には、70mmφの開口を有し、セラミックファイバー製の平板をマイクロ波通過窓6として冷却箱1の外壁の一部として組み込まれている。セラミックファイバーは耐熱性があり、かつマイクロ波に対して透明である。
【0061】
マイクロ波送信機受信機2からの信号を入力して信号処理を行う信号処理装置4は、炉外に配置される。冷却箱1と信号処理装置4との間は、冷却水配管で保護された信号線によって結ばれる。電源5も炉外に配置され、信号線と同様に電源供給線を配置する。
【0062】
マイクロ波送信機2aは、中心周波数が36GHzで、6GHzの周波数変調をかけた鋸歯状刃信号を発生する。鋸歯状波の周期は30MHzである。
【0063】
マイクロ波送信機2aのホーンアンテナ3から10°程度の広がりをもって放射されたマイクロ波は、マイクロ波通過窓6を通過して測定対象である耐火物表面に到達し、一部が表面で反射して表面反射波25を形成し、残りが内部へ侵入する。表面反射波25は再びマイクロ波通過窓6を通過して、ホーンアンテナ3からマイクロ波受信機2bに到達する。また、耐火物内部へ進入したマイクロ波は、耐火物内部で一部が吸収、散乱されながら、大部分が裏面に到達し、耐火物裏面でその一部が反射され、反射した裏面反射波26は同じ過程を経てマイクロ波受信機2bに到達する。マイクロ波受信機2bは、表面反射波25と裏面反射波26の他に、マイクロ波通過窓6での反射波など、マイクロ波受信機に到達するすべてのマイクロ波を変調成分を含めて検出する。検出されたマイクロ波とマイクロ波送信機からの信号とを混合し、信号処理装置4に信号を送る。
【0064】
信号処理装置4においては、FMCW方式によって信号処理を行う。FMCW方式においては前述のとおり、送信波と受信波をミキシングし、差の周波数を持ったビート波信号を取り出し、この信号をFFT(高速フーリエ変換)による周波数分析を行い、差の周波数Δfを求め、時間差Δtを算出する。時間差を算出する当該炉内温度における耐火物の屈折率nを予め定めておき、表面反射波25と裏面反射波26との時間差にc/2n(cは真空中における光速)をかけることにより、耐火物の厚みを算出することができる。
【0065】
FMCW方式については、以下のように説明することもできる。即ち、マイクロ波受信機2bに到達した変調成分は、マイクロ波が放射されてから反射波として検出されるまでの時間に比例して位相がずれており、信号処理装置4で位相成分を計算することで、マイクロ波送信装置と対象との時間差を測定することができる。信号処理は例えば、マイクロ波放射時の信号と、検出信号との相関演算であり、反射波が発生した場合その時間差及び強度に応じたピークが得られる。耐火物からの表面反射波及び裏面反射波は、伝搬に要する時間が異なるため、異なる位置にピークが発生する。これから、表面反射波25と裏面反射波26との時間差Δtを算出し、これにc/2n(cは真空中における光速)をかけることにより、耐火物の厚みを算出することができる。
【0066】
一般に物質の屈折率はその材質の温度に依存するが、コークス炉炭化室のような均熱された条件下では、耐火物温度はそれほど大きな分布を有しておらず、炉温である1000℃で予め屈折率を測定しておけば、この値を定数として用いて十分な精度で厚み測定に用いることができる。
【0067】
マイクロ波を放射して炭化室炉壁耐火物の厚みを測定しつつ、冷却箱を奥行き方向に移動し、奥行き方向の耐火物厚み分布の測定を行った。ポイントAでは、耐火物厚みが150mmと測定され、初期の耐火物厚みに対応していた。一方、ポイントBでは、耐火物厚みが120mmとなっており、厚みが薄くなっていることが計測できた。
【図面の簡単な説明】
【0068】
【図1】本発明によって炭化室側壁の耐火物厚みを測定する概略断面図である。
【図2】本発明によって検出された反射波の波形を示す図である。
【図3】本発明によって炭化室側壁の耐火物厚みを測定する概略断面図である。
【図4】本発明によって炭化室側壁の耐火物厚みを測定する概略断面図である。
【図5】本発明によって検出された反射波の波形を示す図である。
【図6】本発明によって炭化室側壁の耐火物厚みを測定する概略断面図である。
【図7】本発明のマイクロ波通過窓を傾斜される状況を示す図である。
【図8】本発明によって炭化室側壁の耐火物厚みを測定する概略断面図である。
【図9】本発明によって炭化室側壁の耐火物厚みを測定する概略断面図である。
【図10】本発明によって検出された反射波の波形を示す図である。
【図11】本発明によって炭化室側壁の耐火物厚みを測定する概略断面図である。
【図12】本発明によって炭化室側壁の耐火物厚みを測定する概略断面図である。
【符号の説明】
【0069】
1 冷却箱
2 マイクロ波送信機受信機
2a マイクロ波送信機
2b マイクロ波受信機
3 ホーンアンテナ
4 信号処理装置
5 電源
6 マイクロ波通過窓
7 マイクロ波反射板
8 距離計
9 距離計反射板
10 距離計窓
11 電磁波吸収体
12 角度切替器
13 データ蓄積装置
14 内側の箱
15 外側の箱
16 冷却媒体
17 供給冷却水
18 断熱材
19 ワイヤレス信号発信装置
20 ワイヤレス信号受信装置
21 耐火物
22 表面
23 裏面
24 マイクロ波
25 表面反射波
26 裏面反射波
27 多重反射によるノイズ

【特許請求の範囲】
【請求項1】
高温の炉内にマイクロ波送信機受信機を挿入し、高温の耐火物表面に向かってマイクロ波を送信し、耐火物の表面で反射して返ってきたマイクロ波(以下「表面反射波」という。)及び耐火物の裏面で反射して返ってきたマイクロ波(以下「裏面反射波」という。)を受信し、表面反射波と裏面反射波とがそれぞれ送信から受信までに要した時間の差を算出し、この時間差及び耐火物の屈折率に基づいて耐火物の厚みを算出し、前記マイクロ波送信機受信機は冷却箱中に収納し、該冷却箱壁面のマイクロ波が通過する部分(以下「マイクロ波通過窓」という。)についてはマイクロ波を透過しかつ耐熱性を有する材料で構成することを特徴とする耐火物厚み測定方法。
【請求項2】
マイクロ波を耐火物表面に平行に送信し、送信したマイクロ波をマイクロ波反射板で反射させてマイクロ波を耐火物表面に向け、返ってきたマイクロ波をマイクロ波反射板で反射させて耐火物表面に平行方向に向け、マイクロ波受信機で受信することを特徴とする請求項1に記載の耐火物厚み測定方法。
【請求項3】
送信するマイクロ波として直線偏波したマイクロ波を用い、前記マイクロ波通過窓の表面は通過するマイクロ波の偏波方向及び進行方向に垂直な軸を中心に一定角度傾けたことを特徴とする請求項1又は2に記載の耐火物厚み測定方法。
【請求項4】
前記冷却箱の内側に電磁波吸収体を配置することを特徴とする請求項1乃至3のいずれかに記載の耐火物厚み測定方法。
【請求項5】
マイクロ波以外の手段を用いて耐火物表面と冷却箱との間の距離を測定し、該測定した距離に基づいて、受信したマイクロ波の中から前記表面反射波及び裏面反射波を抽出することを特徴とする請求項1乃至4のいずれかに記載の耐火物厚み測定方法。
【請求項6】
表面反射波及び裏面反射波を受信し抽出することに替え、裏面反射波のみを受信し抽出し、裏面反射波に基づいて算出した耐火物裏面までの距離と、マイクロ波以外の手段を用いて耐火物表面までの距離を対比し、耐火物の厚みを算出することを特徴とする請求項5に記載の耐火物厚み測定方法。
【請求項7】
前記マイクロ波通過窓としてレンズ状の形状を有するものを用い、耐火物に照射するマイクロ波を集束させることを特徴とする請求項1乃至6のいずれかに記載の耐火物厚み測定方法。
【請求項8】
前記マイクロ波反射板として凹面状の反射板を用い、耐火物に照射するマイクロ波を集束させることを特徴とする請求項2乃至6のいずれかに記載の耐火物厚み測定方法。
【請求項9】
高温の炉内に挿入して高温の耐火物の厚みを測定するための厚み測定装置であって、マイクロ波送信機受信機とそれを収納する冷却箱及び信号処理装置を有し、冷却箱壁面にマイクロ波を透過しかつ耐熱性を有する材料で構成するマイクロ波通過窓を設け、マイクロ波送信機からマイクロ波通過窓を通して高温の耐火物表面に向かってマイクロ波を送信し、耐火物の表面で反射して返ってきたマイクロ波(以下「表面反射波」という。)及び耐火物の裏面で反射して返ってきたマイクロ波(以下「裏面反射波」という。)をマイクロ波受信機で受信し、前記信号処理装置によって表面反射波と裏面反射波とがそれぞれ送信から受信までに要した時間の差を算出し、この時間差及び耐火物の屈折率に基づいて耐火物の厚みを算出することを特徴とする耐火物厚み測定装置。
【請求項10】
マイクロ波反射板を有し、前記マイクロ波送信機はマイクロ波を耐火物表面に平行に送信し、送信したマイクロ波を前記マイクロ波反射板で反射させてマイクロ波を耐火物表面に向け、返ってきたマイクロ波をマイクロ波反射板で反射させて耐火物表面に平行方向に向け、マイクロ波受信機で受信することを特徴とする請求項9に記載の耐火物厚み測定装置。
【請求項11】
送信するマイクロ波として直線偏波したマイクロ波を用い、前記マイクロ波通過窓の表面は通過するマイクロ波の偏波方向及び進行方向に垂直な軸を中心に一定角度傾けてなることを特徴とする請求項9又は10に記載の耐火物厚み測定装置。
【請求項12】
前記冷却箱の内側に電磁波吸収体を配置してなることを特徴とする請求項9乃至11のいずれかに記載の耐火物厚み測定装置。
【請求項13】
マイクロ波以外の手段を用いて耐火物表面と冷却箱との間の距離を測定する距離計を有し、該距離計で測定した距離に基づいて、受信したマイクロ波の中から前記表面反射波及び裏面反射波を抽出することを特徴とする請求項9乃至12のいずれかに記載の耐火物厚み測定装置。
【請求項14】
表面反射波及び裏面反射波を受信し抽出することに替え、裏面反射波のみを受信し抽出し、裏面反射波に基づいて算出した耐火物裏面までの距離と、マイクロ波以外の手段を用いて耐火物表面までの距離を対比し、耐火物の厚みを算出することを特徴とする請求項13に記載の耐火物厚み測定装置。
【請求項15】
前記マイクロ波通過窓としてレンズ状の形状を有するものを用い、耐火物に照射するマイクロ波を集束させることを特徴とする請求項9乃至14のいずれかに記載の耐火物厚み測定装置。
【請求項16】
前記マイクロ波反射板として凹面状の反射板を用い、耐火物に照射するマイクロ波を集束させることを特徴とする請求項10乃至14のいずれかに記載の耐火物厚み測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−153845(P2006−153845A)
【公開日】平成18年6月15日(2006.6.15)
【国際特許分類】
【出願番号】特願2005−200089(P2005−200089)
【出願日】平成17年7月8日(2005.7.8)
【出願人】(000006655)新日本製鐵株式会社 (6,474)
【Fターム(参考)】