説明

Fターム[2F067UU02]の内容

Fターム[2F067UU02]に分類される特許

1 - 12 / 12


【課題】試料作製装置及び試料作製方法において、簡便な方法により加工対象の試料の膜厚を測定すること。
【解決手段】試料Sに第1の加速電圧の電子線EBを照射し、試料Sから発生する第1の二次信号Is1を取得するステップと、試料Sに第2の加速電圧の電子線EBを照射し、試料Sから発生する第2の二次信号Is2を取得するステップと、第2の二次信号Is2と第1の二次信号Is1との比Is2/Is1を算出するステップと、比Is2/Is1が試料Sの膜厚tに依存することを利用し、比Is2/Is1に基づいて膜厚tを算出するステップと、算出した試料Sの膜厚tに基づき、膜厚tが目標膜厚t0となるのに要する試料Sの加工量を算出するステップと、試料SにイオンビームIBを照射して上記加工量だけ試料Sを加工して、膜厚tを目標膜厚t0に近づけるステップとを有する試料作製方法による。 (もっと読む)


【課題】ラインセンサを用いた全幅測定において、中央部及び周端部のリアルタイム補正ならびに中長期の補正を可能とする放射線測定装置を実現する。
【解決手段】放射線源から所定の幅を有する被測定物に放射線を照射し、前記被測定物を透過した放射線の強度をラインセンサにより前記幅方向に測定し、前記被測定物と同一材質で厚さが既知の複数の参照物体の測定で予め求められた透過放射線強度特性を参照して前記被測定物の厚さ若しくは坪量を測定する放射線測定装置において、
前記放射線源と前記被測定物間に介在させた坪量若しくは厚さが予め別の測定により既知の校正サンプルを、前記ラインセンサの検出部に沿って移動させる校正サンプル移動手段と、
前記校正サンプルの移動位置における前記ラインセンサによる透過放射線強度信号に基づいて補正値を演算し、前記透過放射線強度特性を補正する校正処理手段と、
を備える。 (もっと読む)


【課題】反射・散乱部材で反射された放射線を入射するモニタ用センサを配置することで、モニタ用センサに入射する放射線源からの放射線強度を抑えて長寿命化を実現する。
【解決手段】放射状の照射角を持つ放射線源と測定用センサを有する放射線検査装置において、前記放射線源と前記測定用センサの間で且つ、前記測定用センサに向かう放射線を妨げない位置に反射・散乱部材を配置すると共に、該反射・散乱部材で反射された放射線を入射するモニタ用センサを配置した。 (もっと読む)


【課題】計測時間が短期間で、かつクロストークによる影響を抑制することができる放射線計測システムを提供する。
【解決手段】放射線計測システム100では、対象物50が放射線計測対象の領域において、放射線の強度分布について予め設定される強弱の変化がつけてある。このような対象物50の放射線を計測する際には、シンチレータ11を計測領域に対向する位置に配置し、シンチレータ11が対向する領域と該領域に隣接する領域とは、強度分布に基づく強弱の変化を有する。したがって対向する領域からシンチレータ11に照射する放射線の強度と、隣接する領域からシンチレータ11に照射する放射線の強度とが異なることになる。強度分布は既知であるので、予め既知の強度分布による各シンチレータ11への影響を調査などしておくことによって、既知の強度分布に基づいて、隣接する領域からの放射線の入射量を予測することができる。 (もっと読む)


【課題】画素毎に、検出素子の個体差を考慮した校正を施す。
【解決手段】格子状に等間隔に配列された複数の検出素子61を有し、各検出素子61が検出した被写体としてのプリント基板Wの画像を画素毎に分解して出力する撮像ユニット20、40を備えている装置に適用される。個々の画素の個体差を表す個体差ファクタα、βを記憶し、記憶された個体差ファクタα、βに基づいて、当該検出素子61毎に線形な校正値を出力し、前記検出値校正処理部225が演算した校正値Iχcに基づいて、画素毎に目標物理量としての輝度値Bや材料厚さχを演算する。 (もっと読む)


【課題】量産品で安価なX線管を用いて、高いX線管電圧にて高出力線量の白色X線を発生させると共に、白色X線からローパスフィルタ手段により低エネルギー域の軟X線を高線量で抽出して試料に照射可能なX線測定装置を実現する。
【解決手段】X線源から出射される軟X線を含むX線を試料に照射し、試料の透過線量をX線検出器で検出するX線測定装置において、
前記X線源より円錐状に出射されたX線ビームを、スライスした扇状ビームX線に生成するコリメータと、
前記扇状ビームX線を所定の角度で入射し、反射した前記軟X線を前記試料に照射する反射ミラーと、
を備える。 (もっと読む)


【課題】ビームハードニングの発生を抑制しつつ、フラックスの空間的な強度分布を改善し、中央部と周辺強度のフラックスのエネルギー分布と線量を揃え、測定位置に起因する測定誤差を低減することを可能とするX線測定装置を実現する。
【解決手段】X線源から出射されるX線を試料に照射し、試料の透過線量をX線検出器で検出するX線測定装置において、
前記X線源より円錐状に出射されたX線を扇状に薄くスライスしたスライスビームX線にビーム変換するコリメータと、
このコリメータと前記試料の間に介在し、前記スライスビームX線のフラックスの一部を通過または遮蔽し、ビームハードニングを抑制すると共に前記フラックスの強度分布を調整するフラックス遮蔽板と、
を備える。 (もっと読む)


【課題】管径の異なる多数種類の配管に対して線源と検出部とを結ぶ線が配管のほぼ中心を通るような正確な装着を実現し、使い勝手の向上および計測精度の向上を共に図るような配管用厚さ測定装置を提供する。
【解決手段】線源取付部100とセンサ取付部300とはそれぞれ二箇所のローラを介して配管10と当接させ、締結ベルト200で配管10の外周を締め付けて固定する。締結ベルト200は、凹凸面で嵌め合わせ可能に形成されており、先端部が一致していれば、配管10との接触箇所の長さが同じ長さとなり、このとき放射線は配管10の中心を経てセンサの検出部へ到達し、正確な配管10の厚さを測定できる配管用厚さ測定装置1となる。 (もっと読む)


【課題】シート状部材の厚さ測定精度を向上させると共に、放射線源を含む測定構成機器の耐圧防爆構造を実現する。
【解決手段】放射線を発生する放射線源と、この放射線源からの放射線の照射によって励起されて固有のエネルギーを持つ特性X線を発生する特性X線発生部材と、この特性X線発生部材から発生した特性X線の強度を検出する放射線検出器とからなる。被測定部材は前記特性X線発生部材と放射線検出器の間を走行させ、前記被測定部材を透過して前記放射線検出器に入射される特性X線強度の減衰量に基づいて上記被測定部材の厚さを演算する。 (もっと読む)


【課題】表面から散乱したX線の検出に基づいて、試料の表面上における周期構造の寸法を測定するための、改善された方法および装置を提供する。
【解決手段】試料をX線解析する方法は、試料の表面上の周期構造の領域に衝突するようにX線ビームを方向付け、方位角の関数として散乱X線の回折スペクトルを検出するように反射モードで表面から散乱したX線を受け取ることを含む。回折スペクトルは、構造の寸法を決定するために解析される。
(もっと読む)


【課題】X線によって高い空間分解能で被検体の表面形状を検査できるようにする。
【解決手段】X線検査装置に、真空容器5に収められたリング状の電子エミッタ6およびリング状のX線ターゲット7を備える。リング状のX線ターゲット7から放出されたX線は、すべて所定のX線照射領域11に向かう。このX線は、被検体に照射され、被検体から放たれる散乱または蛍光X線12は、反射X線コリメータ2を通って、X線二次検出器3によって検出される。リング状のX線ターゲット7から放出されるX線9は、すべて所定のX線照射領域11に向かうため、X線ターゲット7の熱衝撃を大きくすることなく、X線強度を増加させ、検査精度を高めることができる。 (もっと読む)


【課題】 コークス炉炭化室のような高温の炉内における高温の耐火物の厚みを、高温の炉内側から測定するための耐火物厚み測定方法及び耐火物厚み測定装置を提供する。
【解決手段】 高温の炉内にマイクロ波送信機受信機2を挿入し、高温の耐火物表面に向かってマイクロ波を送信し、耐火物21の表面22で反射して返ってきた表面反射波25及び耐火物21の裏面23で反射して返ってき裏面反射波26を受信し、表面反射波25と裏面反射波26とがそれぞれ送信から受信までに要した時間の差を算出し、この時間差及び耐火物の屈折率に基づいて耐火物の厚みを算出し、前記マイクロ波送信機受信機2は冷却箱1中に収納し、冷却箱7壁面のマイクロ波通過窓6についてはマイクロ波を透過しかつ耐熱性を有する材料で構成することを特徴とする耐火物厚み測定方法及び厚み測定装置である。 (もっと読む)


1 - 12 / 12