説明

蒸気タービン

【課題】ノズルからの噴出速度をさらに高速として衝動力と粘性力を増大して蒸気タービンの効率を向上し、コンパクト化を図ることを目的とする。
【解決手段】ヒートポンプ式の加熱手段13の加熱面12をノズル1と羽根3の間に配設して、ノズル1から噴出する蒸気を加熱面12によって高温化するようにした。したがって、蒸気はより高速となって羽根3に入り、結果的に羽根3への衝動力が増加し、タービンのトルクが大きくなる。すなわち、同じ蒸気量で発生する回転トルクが大きくなって蒸気タービンとしての効率が向上し、そのコンパクト化や簡素化が可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽熱を利用したランキンシステムなどに搭載される蒸気タービンに関するものである。
【背景技術】
【0002】
従来、この種の蒸気タービンは、ノズルから噴出した蒸気が出力軸に狭い間隔で稠密に取り付けられた平面形状のディスク形の間を外周から軸に向かって流れ、蒸気の粘性力と付着力によりディスクを回転させるようにしている(例えば特許文献1参照)。
【0003】
また、平板形状のディスクを用いて粘性だけを利用したテスラタービンもある。
【特許文献1】特開2002−174166号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、前記従来技術では、高圧の蒸気を先細ノズル、末広ノズル等に導き、運動量を発生させて高速流れとする。この蒸気流れを回転する多数のディスクに当てトルクを発生させる構成としているが、ノズルからでる蒸気は断熱状態で膨張する為、非常に低温となる(例えば、空気を用いて0.4Mpaの圧力から大気圧にすると−76℃)。
【0005】
したがって、ボイルシャルルに示されるように体積が収縮して十分な速度まで上昇しなかった。このため、質量×速度=で得られる運動量が小さくなり、蒸気により生じるタービン出力は最高の出力が得られないという課題があった。
【0006】
本発明は、上記従来の課題を解決するもので、蒸気タービンの効率向上を図ることを目的とする。
【課題を解決するための手段】
【0007】
前記従来の課題を解決するために、本発明の蒸気タービンは、蒸気を噴出するノズルと、このノズルから噴出する蒸気を案内する複数のブレードを重ね合わせて構成した羽根と、前記ノズルと前記羽根、及びこの羽根の回転軸を内包し蒸気の入口と出口を構成したケーシングとを具備し、前記ノズルに加熱手段を付加したものである。
【0008】
その結果、加熱手段によりノズルから噴出する蒸気を加熱でき、その体積を増大することにより蒸気の速度を加速し、より高速となって羽根に入るので、羽根への衝動力が増加し、同じ蒸気量で発生する回転トルクが大きくなり、蒸気タービンの効率を向上するものである。
【発明の効果】
【0009】
本発明の蒸気タービンは、ノズルから噴出する断熱膨張で低温化した蒸気は、加熱手段によって高温化できる。このため、蒸気の体積は増加し、体積を通路面積で割った蒸気流速は高速となる。そのため、運動量は増大しタービンに与えるトルクが大きくすることにより蒸気タービンの出力が大きくなり蒸気から駆動力に変換するタービン性能が向上し、蒸気タービンのコンパクト化や簡素化を図ることができる。
【発明を実施するための最良の形態】
【0010】
第1の発明は、蒸気を噴出するノズルと、このノズルから噴出する蒸気を案内する複数のブレードを重ね合わせて構成した羽根と、前記ノズルと前記羽根及びこの羽根の回転軸
を内包し蒸気の入口と出口を構成したケーシングとを具備し、前記ノズルから噴出した蒸気を加熱する加熱手段を前記ノズルと前記羽根の間に配置した。
【0011】
したがって、ノズルから噴出した蒸気は、加熱手段によって高温化でき、この蒸気の体積が増加するため蒸気流速はさらに高速となる。そのため、タービンの羽根に与えるトルクが大きなり蒸気タービン出力が大きくなり蒸気から駆動力に変換するタービン性能が向上する。
【0012】
すなわち、圧力を速度に変換してタービンの羽根を回転するため、ノズルで高圧から低圧にして運動量を得るため、耐熱を加味して出来るだけ高温とした蒸気をノズルから噴出させても、ノズルからでる蒸気は断熱状態で膨張する為、非常に低温となる(例えば、空気を用いて0.4Mpaの圧力から大気圧にすると−76℃)。
【0013】
そのため、ボイルシャルルに示されるように体積が収縮し、体積低下した分に相当する速度で羽根に入っていく。故に、質量×速度=で得られる運動量が小さくなり、蒸気により生じるタービン出力も小さい。
【0014】
そこで、断熱膨張により温度が低下し、高速でノズルから噴出した蒸気を加熱手段によって熱を与えてより高温にする。加熱によって蒸気の体積は増し、体積を通路面積で割った蒸気流速はより高速となる。よって、流量×速度で表される運動量は増大しタービンに与えるトルクが大きくなり、蒸気タービンの出力は大きくなり蒸気から駆動力に変換するタービン性能が向上する。そして、向上した性能を利用して蒸気タービンのコンパクト化や簡素化を可能とできる。
【0015】
第2の発明は、特に、第1の発明のノズルは、絞り部と、のど部と、ディフィーザ部とで構成し、加熱手段の加熱面は前記ディフィーザ部に構成したことにより、蒸気の流れを邪魔することなく加熱する事が可能であり、蒸気の流速を最大にして、羽根に導き、タービンの出力を大きくできる。
【0016】
すなわち、高圧の蒸気は、絞り部からのど部へ流し、流路の断面積を著しく小さくして流速を早くする。この時、蒸気は断熱圧縮状態となり蒸気の温度は上昇する。この後、ディフィーザ部で流路の断面積を少しずつ拡大して静圧を下げさらに動圧を高くして流速を上げていくが、蒸気は断熱膨張状態で非常に低温となる。
【0017】
この蒸気に加熱面から熱を供給して加熱することにより、蒸気の温度を一度下げること無く温度を維持しながら速度を上げることが可能となる。
【0018】
また、加熱面と蒸気の距離が短く熱伝達が蒸気の中心まで容易である。そのため、加熱面と蒸気の温度差が小さくなり、蒸気の温度が均一に高温となるので、蒸気の体積が最も大きくなり、流量×速度で表される運動量は増大しタービンに与えるトルクが大きくなり、蒸気タービンの出力は大きくなり蒸気から駆動力に変換するタービン性能が向上する。
【0019】
さらに、ディフィーザ内は蒸気の流速が早く容易に加熱面と蒸気が熱交換するため、加熱装置が小さくできる。
【0020】
第3の発明は、特に、第1または第2の発明の加熱手段として、蒸気タービン外部の雰囲気空気と熱交換する熱交換器と、この熱を搬送する熱搬送部と、加熱面からなり、前記加熱面より加熱する構成とした。
【0021】
このことにより、簡単に熱を受けることができる。すなわち、蒸気を加熱する加熱手段
は、ノズルから噴出した蒸気を加熱する熱量をタービン外部の雰囲気空気から熱交換器で受ける。この熱を搬送する熱搬送部により、加熱面に搬送し、加熱面から蒸気に放熱する。そのため、蒸気タービン外部の雰囲気空気中に熱交換する熱交換器の受熱熱交換器を設け、ノズルと羽根の間に熱を受け蒸気に放熱するための加熱面である放熱熱交換器を設け、受熱熱交換器と放熱熱交換器を熱搬送する熱搬送部を構成している。
【0022】
タービンの雰囲気空気の温度は常温に加えてタービンからの熱により温まっている。このため、特別な加熱源が無くてもノズルからでた蒸気を加熱する事が可能となるため、簡単な構成で、タービン効率が向上する。
【0023】
また、熱交換器は、ケーシングと熱交換して加熱する構成とすると、より簡単な構成となる。すなわち、ケーシングは、高温の蒸気がノズルに入るまでの場所から伝導熱を受けて温度上昇する。
【0024】
加熱手段をケーシングと熱交換してこの熱を受けてノズルから出た蒸気を加熱する構成としたことにより、ノズルから出た蒸気は加熱されたことによりより高速となり、羽根で運動量をトルクに変換できるため、より簡単な構成で、タービン出力が大きくできる。
【0025】
第4の発明は、特に、第1〜2のいずれか1つの発明の加熱手段として、前記蒸気の出口の蒸気と熱交換する熱交換器と、この熱を搬送する熱搬送部と、加熱面からなり、前記加熱面より加熱する構成としたことにより、タービンから出る蒸気の熱をノズルから出る蒸気に供給して、ノズルから出る蒸気の温度を上昇させて蒸気の運動量を増大させ、タービン性能を向上できる。
【0026】
すなわち、ノズルから出た蒸気は、羽根の中を流れながら羽根を回転させて蒸気の出口から排出されるが、蒸気が羽根を押してトルクを発生する時は、100%トルクに変換できない。この変換するタービン効率は一般には20〜80%であり、この損失は、熱となり蒸気温度を上昇させる。そのため、蒸気はノズルを出て羽根に入る時より羽根から出た時の方が温度が高くなる。
【0027】
故に、蒸気の出口の蒸気と熱交換する熱交換器により熱を受け、この熱を熱搬送部で搬送して加熱面を加熱して、この加熱面により蒸気を加熱することにより、ノズルから出た蒸気の温度を上昇できる。
【0028】
そして、ノズルから出た蒸気は加熱されたことによりより高速となり、羽根で運動量をトルクに変換できるため、より簡単な構成で、タービン出力が大きくでき、蒸気の出口から出る蒸気を熱源とするため、特別な熱源を必要としなく装置が簡単となり、部品の簡略化と耐久信頼性を確保できるものである。
【0029】
第5の発明は、特に、第3〜4のいずれか1つの発明の加熱手段の熱搬送部として、ヒートパイプを用いて構成したことにより、コンパクト且つ、装置が簡単にできる。
【0030】
すなわち、ヒートパイプは、気液相変化で熱搬送を行うため、単位搬送量当りの搬送熱量が多くでき、搬送量を小さく設定でき、また、熱を受け蒸発したガスが上昇して放熱で液化し再び元に戻るため、循環用のポンプ等特別な機器を必要としない。
【0031】
故に、簡単な構成となり、部品の簡略化と耐久信頼性を確保できるものである。
【0032】
第6の発明は、特に、第1〜5のいずれか1つの発明の蒸気タービンを太陽熱ランキンシステムに搭載して、発電と給湯・暖房のコージェネレーションのシステムを実現できる
ようにした。
【0033】
以下本発明の実施の形態を図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されることはない。
【0034】
(実施の形態1)
図1、図2において、1は蒸気入口2から入った蒸気を噴出するノズルで、このノズル1から噴出する蒸気の運動エネルギを受けて回転する羽根3を回転軸(出力軸)4の周囲に複数個重ね合わせて設けている。蒸気は、高温のフロンや水の蒸気、または高温のCO2や空気等のガス体のこともある。
【0035】
羽根3は、ノズル1から噴出する蒸気を案内するため板状のディスクであるブレード5を複数枚を重ね合わせて構成し、それらブレード5には、ノズル1から噴出する蒸気が通る通路6(本実施の形態では4個)を切欠きにより形成している。そして、蒸気の速度エネルギをトルクに変換する衝動面として、複数個重ね合わせた構成とし、板状の円板の一部を成型加工するか、あるいは別部品を接着、溶接して構成する。
【0036】
ノズル1は、蒸気入口2に構成し、羽根3の外周部分に対して接線方向から蒸気が衝突するように設けてある。
【0037】
また、ノズル1の形状は、普通の蒸気タービンで使用されている単孔ノズルや先細ノズルや末広ノズル等を使用し、後述するケーシング20に予め作成したノズル1をカシメ加工等で取り付けても良いし、また一体に成型してもよい。
【0038】
ノズル1は、絞り部7と、のど部8と、ディフィーザ部9とを連通させて構成しているもので、前記絞り部7は蒸気の流れる通路断面積を順次小さくし、のど部8は通路断面積を最小とし、ディフィーザ部9は逆に通路断面積を順次拡大している。
【0039】
そのため、流れる蒸気は、ノズル1の絞り部7から流入し断面積が小さくなるに従って蒸気速度が速くなりのど部8で最大となる。ディフィーザ部9では、周囲での流れの剥離を生じない程度に通路断面積を大きくすることにより、静圧成分を動圧に取り込みさらに蒸気流速を加速する。
【0040】
そして、蒸気タービン外部の雰囲気空気と熱交換する受熱熱交換器10と、この熱を搬送するポンプ、および搬送通路よりなる熱搬送部11と、放熱熱交換器となる加熱面12からなる加熱手段13を構成している。
【0041】
受熱熱交換器10は、回りの空気との熱交換を促進するためファンを用いた強制型であるが、パネル等の自然対流型でも良い。加熱面12は、ノズル1と羽根3の間に位置するディフィーザ部9に設け、蒸気と接触する様に臨ませてある。
【0042】
本実施の形態では、搬送部11の通路をディフィーザ部9に埋め込み、そのディフィーザ部9の蒸気と接する表面を加熱面12としている。
【0043】
また、別の構成としては、図3に示すようにディフィーザ部9と羽根3の間の空間に搬送部11に接続した放熱熱交換器12Bを構成し、これを加熱面12としている。
【0044】
そして、ブレード5の両端は端版14,15により保持し、回転軸4にはブレード5の回転時の接触を防止するスペーサ16,17を設けている。
【0045】
ブレード5、回転軸4、スペーサ16,17は、耐熱性、耐腐食性の材料、例えば、ステンレスやチタンやアルミナ等の金属材料やセラミックや樹脂で構成されている。
【0046】
羽根3を構成するブレード5の厚みは、重量の軽減のため、薄く(例えば、1mm以下)構成している。
【0047】
また、ブレード5の回転軸4の周囲に複数個の蒸気の排出口18を設けている。ブレード5、回転軸4、蒸気入口2、蒸気出口19はケーシング20に内包してある。
【0048】
スペーサ16,17の両端に設けた各ブレード5よりも厚みのある端版14,15は、ブレード5と回転軸4を固定するときにブレード5を締め付けて剛性を高めて、そのたわみを防止するようにしている。また、各ブレード5に設けた複数個の排出口18が同軸上に連通するように設けている。
【0049】
蒸気は、蒸気入口2からノズル1を通り、羽根3のブレード5の外周から通路6に沿って旋回しながら移動し、回転軸4の近傍に集束し、排出口18から蒸気出口19に出るようにしている。
【0050】
ノズル1、ブレード5及び回転軸4を内包し、蒸気入口2と蒸気出口19を構成したケーシング20は、回転軸4の回転を支えるための軸受け21,22を有するものである。軸受け21,22は、シール性のあるベアリング軸受け、または非接触の流体軸受けを使用することが望ましい。
【0051】
このケーシング20の材質は、耐熱性、耐腐食性の材料、例えばステンレスやチタンやアルミナ等の金属材料やセラミックが選ばれる。また、ケーシング20は、ブレード5が回転軸4に集束する側に環状の排出溝24を設け、この排出溝24の一部から蒸気出口19が導出されている。
【0052】
蒸気タービン23の一方の軸受け21の外側には、回転軸4の回転を受けて発電する発電機25が連結されている。
【0053】
この発電機25は、例えばアウターローター式三相交流発電機を用い、その交流出力は全波整流されたのちにインバータ(図示なし)により、電流制御を行うようにして安定した電流を得るようにしている。
【0054】
図4において、26は太陽熱を受けて回収する集熱器で、この集熱器26の熱を蓄熱槽27に蓄熱するために、循環ポンプ28を途中に設けた回路29(閉回路)を設けている。
【0055】
集熱器26は、管状集熱器や真空ガラス管式集熱器やヒートパイプ式集熱器等で構成している。回路29内を循環する熱媒体30は、フロンや水のような液体、あるいは超臨界状態のCO2や液体空気などが考えられる。
【0056】
そして、前記熱媒体30は集熱器26で加熱されて蒸気になって蓄熱槽27に送られ、そこで熱交換することで凝縮し液体となり、その後、循環ポンプ28で再度集熱器26に循環する。この動作を繰り返すことで、蓄熱槽27に熱を貯める。
【0057】
蓄熱槽27は、融点の高い溶融塩の相変化を利用した潜熱型や溶融塩や油等を用いた顕熱型や蒸気を圧力水の形で蓄える蒸気アキュムレイタ等を用いることで100℃以上の高温の熱を貯めることができる。
【0058】
31は蓄熱槽27で加熱される蒸気である熱媒体32を蒸気タービン23のノズル1に供給し、その後、再度蓄熱槽27に還流させる回路(閉回路)33の途中に接続した供給ポンプである。
【0059】
前記回路33内を循環する熱媒体32は、フロンや水のような液体とその蒸気で構成している。(勿論、超臨界状態のCO2や液体空気を用いる場合もある)。
【0060】
また、回路33の蒸気タービン23と供給ポンプ31の途中に貯湯タンク34を設けて、蒸気タービン23に運動エネルギを与えた後の高温の蒸気の熱を利用して、貯湯タンク34に湯を貯めるようにもしている。
【0061】
熱媒体32は、この貯湯タンク34に熱を伝えるときに凝縮して液体となり、蓄熱槽27に送られて再度加熱され蒸気となる。この動作を繰り返すことにより、蒸気タービン23に設けた発電機25により発電しながら貯湯タンク34にお湯を貯めるようにしている。貯湯タンク34に貯められたお湯は、給水ポンプ35により給湯用や暖房用に供給されるようにしている。
【0062】
以上のように構成において、まず、蒸気タービン23のノズル1に供給する蒸気を形成するためには、循環ポンプ28を作動し、熱媒体30を回路29内に循環させ、太陽の熱を受けた集熱器26で加熱し、高温の蒸気(または液体や蒸気と液体が混ざった二相状態等)を形成して蓄熱槽27に送る。
【0063】
熱媒体30の蒸気は、蓄熱槽27で凝縮して液体となり、循環ポンプ28により再度、集熱器26に送られ、加熱される。この動作を繰り返しにより必要な熱量を蓄熱槽27に保持できることとなる。
【0064】
蓄熱槽27に所定の熱量が蓄積されると、供給ポンプ31を駆動して熱媒体32を回路33に循環させ、前記蓄熱槽27で200℃程度の熱媒体32の蒸気をつくり、蒸気タービン23のノズル1から噴出する。
【0065】
ノズル1から噴出する蒸気は、高速の運動エネルギを持ち、蒸気タービン23のブレード5に構成する衝動面に衝突しながら、各ブレード5の通路6を衝動面に沿いながら旋廻し、回転軸4の周囲に設けた排出口18から排出される。
【0066】
この時、蒸気の粘性力や付着力により、ブレード5が回転し、回転軸4にトルクとして伝えられる。この回転軸4のトルクを利用し発電機25を回転させて、発電を行うようにしている。
【0067】
蒸気タービン23から排出した熱媒体32の蒸気は、貯湯タンク34に送られ、水と熱交換を行い、その熱は貯湯タンク34内にお湯として貯められる。
【0068】
蒸気は貯湯タンク34内で凝縮し、液体となって供給ポンプ31を介して蓄熱槽27に還流され、再度加熱され蒸気を形成するようにしている。
【0069】
この動作を繰り返すことにより、蒸気タービン23で発電しながら貯湯タンク34にお湯を貯め、給湯や暖房の必要なときに給水ポンプ35を作動しお湯を使用することでコージェネレーションのシステムを構成するようにしている。
【0070】
以上のように、本実施の形態においては、蒸気を噴出するノズル1と、このノズル1か
ら噴出する蒸気を案内する複数のブレード5を重ね合わせて構成した羽根3とし、ケーシング20はノズル1と羽根3と回転軸4を内包し蒸気入口2と蒸気出口19を構成し、ノズル1から噴出した蒸気を加熱する加熱手段13はノズル1と羽根3の間に構成したことにより、ノズル1から噴出した蒸気は、加熱手段13によって高温化でき、この蒸気の体積が増加するため蒸気流速はさらに高速となる。
【0071】
そのため、タービンの羽根3に与えるトルクが大きなり蒸気タービン23の出力が大きくなり蒸気から駆動力に変換するタービン性能が向上する。
【0072】
蒸気タービン23は圧力を速度に変換して羽根3を回転する。ノズル1で高圧から低圧にして運動量を得るため、耐熱を加味して出来るだけ高温とした蒸気をノズル1から噴出させても、同ノズル1からでる蒸気は断熱状態で膨張するので、非常に低温となる(例えば、空気を用いて0.4mpaの圧力から大気圧にすると−76℃)。
【0073】
そのため、ボイルシャルルに示されるように体積が収縮し、体積低下した分に相当する速度で羽根に入っていく。このため、質量×速度=で得られる運動量が小さくなり、蒸気により生じるタービン出力も小さい。
【0074】
そこで、本実施の形態に示すとおり、断熱膨張により温度が低下し、高速でノズル1から噴出した蒸気を加熱手段13によって熱を与えてより高温にする。加熱によって蒸気の体積は増し、体積を通路面積で割った蒸気流速はより高速となる。このため、流量×速度で表される運動量は増大しタービンに与えるトルクが大きくなり、蒸気タービン23の出力は大きくなり、蒸気から駆動力に変換するタービン性能が向上する。
【0075】
その結果、向上した性能を利用して蒸気タービンのコンパクト化や簡素化を可能とできる。
【0076】
また、ノズル1は、絞り部7と、のど部8と、ディフィーザ部9より成り、加熱手段13の加熱面12はディフィーザ部9に構成していることにより、高速で流れる蒸気の流れを邪魔することなく加熱する事が可能であり、蒸気の流速を最大にして、羽根3のブレード5に導き、タービンの出力を大きくできる。
【0077】
すなわち、高圧の蒸気は、蒸気入口2から絞り部6、のど部8へ流し、流路の断面積を著しく小さくして流速を早くする。この時、蒸気は断熱圧縮状態となり蒸気の温度は上昇する。この後、ディフィーザ部8で流路の断面積を少しずつ拡大して静圧を下げることによりさらに動圧を高くして流速を上げていくが、蒸気は断熱状態での膨張で非常に低温となる。
【0078】
そこで、この蒸気に加熱面12から熱を供給して加熱することにより、蒸気の温度を一度下げること無く温度を維持しながら速度を上げることが可能となる。
【0079】
また、加熱面12と蒸気の距離が短いため熱伝達が良くでき、熱が蒸気の中心まで容易に伝わる。したがって、加熱面12と蒸気の温度差が小さくなり、蒸気の温度が均一に高温とできるところから、蒸気全体の温度が高く、蒸気の体積が最も大きくなり、流量×速度で表される運動量は増大しタービンに与えるトルクが大きくなり、蒸気タービン23の出力が大きくなり、蒸気から駆動力に変換するタービン性能が向上する。
【0080】
また、ディフィーザ9内は蒸気の流速が早く容易に加熱面12と蒸気が熱交換するため、加熱装置は小さくできる。
【0081】
そして、加熱手段13は、この蒸気タービン23の外部である雰囲気空気と熱交換する熱交換器10と、この熱を搬送する熱搬送部11と、加熱面12からなり、加熱面12から蒸気に加熱する構成としてある。
【0082】
このことにより、熱交換器10は簡単に熱を受けることができる。すなわち、蒸気を加熱する加熱手段13は、ノズル1から噴出した蒸気を加熱する熱量をタービンの外部である雰囲気空気から熱交換器10で受け、この熱を搬送する熱搬送部10により加熱面12に搬送し、熱は加熱面12から蒸気に放熱する。
【0083】
そのため、蒸気タービン23の外部である雰囲気空気中に熱交換する熱交換器10の受熱熱交換器を設け、ノズル1と羽根3の間で熱を受け蒸気に放熱するための加熱面12である放熱熱交換器を設け、受熱熱交換器と放熱熱交換器を熱搬送する熱搬送部10を構成している。
【0084】
タービンの雰囲気空気の温度は常温に加えてタービンからの熱により温まっている。このため、特別な加熱源が無くてもノズル1からでた断熱膨張で低い温度になった蒸気を加熱する事が可能となるため、簡単な構成で、タービン効率が向上する。
【0085】
また、熱交換器10は、ケーシング20と熱交換して加熱する構成とすると、より簡単な構成となる。すなわち、ケーシング20は、高温の蒸気がノズル1に入るまでの場所から伝導熱を受けて温度上昇する。
【0086】
加熱手段13をケーシング20と熱交換してこの熱を受けてノズル1から出た蒸気を加熱する構成としたことにより、ノズル1から出た蒸気は加熱されたことによりより高速となり、羽根3で運動量をトルクに変換できるため、より簡単な構成で、タービン出力が大きくできる。そのため、向上した性能を利用して蒸気タービンのコンパクト化や簡素化を可能とできる。
【0087】
また、ブレード5は円板形状の板を重ね合わせて回転軸4上に固定した簡単な加工で精度が維持でき、また、ブレード5の数を選定することにより、能力変更も容易となる。すなわち、平板を円形と穴加工に作成するブレード5は、簡単に高精度加工が容易であり、また動バランスもとれ高速で回転しても振動や振れを生じることがなく動作回転数を高くして全体を小さくできる。
【0088】
さらに、加工は、金型多面プレス等により安価にできる。また、冷媒の種類に応じてブレード5の板厚さ選定により間隔を調整できることにより、粘性を最大に生かせる間隔の設定が容易となり、粘性により回転力を伝達できタービンの効率向上を図れ、そのため、タービン性能の高効率化と、同一形状に成型したブレードを容易に複数個重ね合わせることができ、均一な間隙の形成によりユニットの組み立て精度を向上できる。また蒸気タービン23全体のコンパクト化や簡素化を可能とできる。
【0089】
そして、最大発電量を増加するときは、複数個重ね合わせるブレード5の個数を増加することで可能であり、複雑な形状の追加がないので、コストの上昇を抑制することができる。また、ノズル1から噴出する蒸気をブレード5の衝動面に長時間滞留させ、粘性力と付着力を増大させて回転軸4に与えるトルクを上昇するので、低温度(200℃程度)で作動する蒸気タービン23を実現でき、同一形状に成型したブレードを容易に複数個重ね合わせることができるため、ユニットの組み立て精度を向上できる。
【0090】
また、独立した集熱用の回路29を構成して、集熱器26で得られた太陽熱を蒸気タービン23の動作に関係なく、常時蓄熱槽27に蓄えて維持できるので、発電の必要なとき
に蒸気タービン23で発電機25から必要な電気を随時取り出すことができる。
【0091】
そして、回路33の途中に貯湯タンク34を設けたので、発電に関係なく蓄熱槽27の熱をお湯として貯湯タンク34に貯めることが可能なので、給湯や暖房に必要なお湯を随時取り出せることができる。
【0092】
また、太陽熱を利用して蒸気を形成し、ノズル1より噴出して蒸気タービン23の発電機25を回転させて発電するので、CO2削減の有効な手段とすることができる。
【0093】
(実施の形態2)
図5は、本発明の実施の形態2を示し、実施の形態1と異なるところは、加熱手段13である。すなわち、実施の形態2の加熱手段13は、蒸気の出口である蒸気出口19に設けた熱交換器10と、ノズル1と羽根3の間に設けた加熱面12と、熱交換器10の熱を搬送する熱搬送部としてヒートパイプ36とで構成したものである。ヒートパイプ36は加熱面12と熱交換器10に接続してある。
【0094】
なお、加熱手段13以外の構成は実施の形態1と同じで、具体的説明は同実施の形態1のものを援用する。
【0095】
蒸気タービン23から排出される蒸気の熱を回収してノズル1を流動する蒸気に供給してその温度を上昇させ、運動量を増大させているので、タービン性能を向上できる。
【0096】
すなわち、ノズル1から出た蒸気は、羽根3の中を流れながら羽根3を回転させて蒸気出口19から排出されるが、蒸気が羽根3を押してトルクを発生する時は、100%トルクに変換できない。
【0097】
このトルクに変換するタービン効率は一般には20〜80%であり、この損失は、熱となり蒸気温度を上昇させる。
【0098】
そのため、蒸気はノズル1を出て羽根3に入る時より羽根3から出た時の方が温度が高くなる。
【0099】
本実施の形態では、蒸気出口19から排出される蒸気の熱を熱交換器10で回収して、ヒートパイプ36を介して加熱面12に搬送し、ノズル1を流動する蒸気に回収した熱を供給するようにした。
【0100】
したがって、ノズル1から出た蒸気は加熱されて高速となり、羽根3でトルクに変換できるため、タービン出力が大きくできる。そして、蒸気出口19から出る蒸気を熱源とするため、特別な熱源が不要で、構成が簡単となり、部品の簡略化と耐久信頼性を確保できるものである。
【0101】
加熱手段13の熱搬送部としてヒートパイプ36を用いたことにより、コンパクト、且つ、装置が簡単にできる。すなわち、ヒートパイプ36は密閉されたパイプであって高温側と低温側を繋ぎ、このパイプの中に真空状態にした後搬送媒体とウィックを注入してある。高温側で熱を受けると搬送媒体が蒸発し気体となって低温側に移動する。低温側では、高温の搬送媒体は熱を放出して液化し、液化した搬送媒体はウィックに含浸して高温側へと流れる。
【0102】
そのため、気液相変化で熱搬送を行うため、単位搬送量当りの搬送熱量が多く循環する搬送量を小さく設定でき、また、熱を受け蒸発したガスが上昇して放熱で液化し再び元に
戻るため、循環用のポンプ等特別な機器を必要としない。故に、簡単な構成となり、部品の簡略化と耐久信頼性を確保できるものである。
【0103】
(実施の形態3)
図6は本発明の実施の形態3における太陽熱ランキンシステムを示し、集熱器26で加熱された熱媒体30の蒸気を循環ポンプ28を介して回路29(閉回路)から直接蒸気タービン23に送るようにした点が実施の形態1の図4のものと異なるところである。
【0104】
回路29の蒸気タービン23と循環ポンプ28の途中に貯湯タンク34を設けて、蒸気タービン23に運動エネルギを与えた後の高温蒸気の熱を利用してこの貯湯タンク34に湯を貯める点は同じである。
【0105】
熱媒体30は、この貯湯タンク34の湯水に熱を伝えるときに凝縮して液体となり、再度集熱器26に送られて加熱され蒸気を形成する。この動作を繰り返すことで、蒸気タービン23に設けた発電機25により発電しながら貯湯タンク34にお湯を貯めるようにしている。貯湯タンク34に貯められたお湯は、給水ポンプ35により給湯用や暖房用に供給されるようにしている。
【0106】
なお、図7のように、集熱器26で加熱された熱媒体29の蒸気を循環ポンプ28により回路29(閉回路)で直接蒸気タービン23に送り、蒸気タービン23を回転させて発電機25により発電だけを行うことも可能である。
【0107】
以上のように、本実施の形態においては、蒸気タービン23を太陽熱ランキンシステムに搭載して、発電または給湯・暖房を併用したコージェネのシステムを実現することができるので、太陽熱という自然エネルギを活用し省エネ促進とCO2削減の有効な手段を得ることができる。
【産業上の利用可能性】
【0108】
以上のように、本発明は、エネルギ密度の低い太陽熱を利用して蒸気タービンを作動できるので、自動車や燃料電池の排熱回収等に適用することができる。
【図面の簡単な説明】
【0109】
【図1】本発明の実施の形態1における蒸気タービンの正断面図
【図2】図1のX-X側断面図
【図3】要部拡大断面図
【図4】太陽熱ランキンシステムの構成図
【図5】本発明の実施の形態2における蒸気タービンの側断面図
【図6】本発明の実施の形態3における太陽熱ランキンシステムの構成図
【図7】同実施の形態3における太陽熱ランキンシステムの変形例を示す構成図
【符号の説明】
【0110】
1 ノズル
2 蒸気入口
3 羽根
4 回転軸
5 ブレード
7 絞り部
8 のど部
9 ディフィーザ部
10 熱交換器
11 熱搬送部
12 加熱面
13 加熱手段
19 蒸気出口
20 ケーシング
25 発電機

【特許請求の範囲】
【請求項1】
蒸気を噴出するノズルと、このノズルから噴出する蒸気を案内する複数のブレードを重ね合わせて構成した羽根と、前記ノズルと前記羽根、及びこの羽根の回転軸を内包し、蒸気の入口と出口を構成したケーシングとを具備し、前記ノズルから噴出した蒸気を加熱する加熱手段を前記ノズルと前記羽根の間に配置した蒸気タービン。
【請求項2】
ノズルは、絞り部と、のど部と、ディフィーザ部とで構成し、加熱手段の加熱面を前記ディフィーザ部に設定した請求項1に記載の蒸気タービン。
【請求項3】
加熱手段は、外部の雰囲気空気と熱交換する熱交換器と、この熱を搬送する熱搬送部と、加熱面とから構成した請求項1または2に記載の蒸気タービン。
【請求項4】
加熱手段は、蒸気の出口の蒸気と熱交換する熱交換器と、この熱を搬送する熱搬送部と、加熱面とから構成した請求項1または2に記載の蒸気タービン。
【請求項5】
加熱手段の熱搬送部はヒートパイプを用いて構成した請求項3または4に記載の蒸気タービン。
【請求項6】
請求項1〜5いずれか1項記載の蒸気タービンを搭載し、発電と給湯・暖房のコージェネレーションのシステムを行うようにした太陽熱ランキンシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2008−88957(P2008−88957A)
【公開日】平成20年4月17日(2008.4.17)
【国際特許分類】
【出願番号】特願2006−273812(P2006−273812)
【出願日】平成18年10月5日(2006.10.5)
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】