説明

被検査体の放射線検査装置

【課題】被検査体の観察に好適な断面画像が得られる放射線検査装置を提供する。
【解決手段】撮像部は、基板および電子部品を含む被検査体の複数の箇所に複数方向から放射線を照射し、複数の放射線透過画像を撮像する。断面画像生成部38は、前記複数の放射線透過画像に基づいて前記被検査体の複数の断面画像を再構成する。検査画像特定部74は、前記複数の断面画像に基づいて検査画像を取得する。補助画像特定部76は、前記被検査体の少なくとも一部が映し出されている補助画像を取得する。周波数解析部42は、前記検査画像と前記補助画像とが共通に含む周波数成分を特定する。周波数成分除去部44は、前記共通に含む周波数成分の影響を前記検査画像から軽減する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は被検査体の検査装置に関し、特に放射線を照射することにより得られる被検査体の透過画像を利用して被検査体を検査する検査装置に関する。
【背景技術】
【0002】
電子部品が実装された基板(以下「基板」という。)には、BGA(Ball Grid Array)やLGA(Land Grid Array)が実装されているものがある。これらの基板では、部品の電気接続部である端子は基板と部品との間に位置し、カメラを用いた従来の外観検査装置では部品と基板とを接合するはんだの状態を観察することが困難である。このため、基板に複数の異なる方向からX線を照射し、その透過画像に基づいて接合部分のはんだの立体形状を画像に再構成し、そこから任意断面を切り出した断面画像を用いて検査する技術が提案されている(特許文献1参照)。
【0003】
上記のような技術においては、生産ラインに検査装置を設置することが望まれる。検査効率の観点から透過画像の撮像に時間をかけられず、また生産ライン内に大がかりな装置を設置することは難しい。このため、X線を照射できる方向は基板表面に垂直な方向を基準として比較的狭い範囲内となり、基板の側面の方向からX線を照射して透過画像を撮像することが困難である。接合部分のはんだの立体形状を画像に再構成するに際し、X線の照射角度が基板表面に垂直な方向の狭い範囲に制限された透過画像を用いると、基板の厚み方向の分解能が低くなる。この結果、検査に用いるはんだ接合部が撮像されている基板表面の断面画像には、基板裏面の部品やパターン等、検査に不要な情報が靄のようになって画像内に残ることがある。この問題を解決するために、X線を発生するために印加される電圧を変化させた2枚の透過画像の差分を取ることではんだ部分の画像を抽出する手法(特許文献2参照)や、表裏面に部品がはんだ付けされた基板のX線透過画像を撮像し、裏面のみ部品がはんだ付けされた基板のX線透過画像との差分を取ることで、基板表面にはんだ付けされた部品の透過画像を抽出する手法(特許文献3参照)が提案されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−226875号公報
【特許文献2】特開平10−253550号公報
【特許文献3】特開2002−158500号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記の技術は裏面の部品やパターン等、特定の対象物を不要な情報として設定しており、その対象物に応じたX線透過画像の撮像が必要となる。検査に用いる画像には複数の対象物による不要な情報が残っているため、その全てに対応しようとする場合、それぞれの対象物に合わせたX線透過画像の撮像が必要となり、検査工数が増加することとなる。
【0006】
本発明はこうした状況に鑑みてなされたものであり、その目的は、検査工数の増加を抑えつつ、被検査体の観察に好適な画像が得られる放射線検査装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明のある態様は放射線検査装置に関する。この装置は、基板および電子部品を含む被検査体の複数の箇所に複数方向から放射線を照射し、複数の放射線透過画像を撮像する撮像部と、前記複数の放射線透過画像に基づいて前記被検査体の複数の断面画像を再構成する断面画像生成部と、前記複数の断面画像に基づいて検査画像を取得する検査画像特定部と、前記被検査体の少なくとも一部が映し出されている補助画像を取得する補助画像特定部と、前記検査画像と前記補助画像とが共通に含む周波数成分を特定する周波数解析部と、前記共通に含む周波数成分の影響を前記検査画像から軽減する周波数成分除去部とを含む。
【0008】
なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システム、コンピュータプログラム、データ構造、記録媒体等の間で変換したものもまた、本発明の態様として有効である。
【発明の効果】
【0009】
本発明によれば、検査工数の増加を抑えつつ、被検査体の観察に好適な画像が得られる放射線検査装置を提供することができる。
【図面の簡単な説明】
【0010】
【図1】本発明の実施の形態に係る放射線検査装置の構成を模式的に示す図である。
【図2】図1のPCが処理する各機能ブロックを図示したものである。
【図3】透過画像の撮像からノイズ成分の影響を軽減した画像を格納するまでの流れを示したフローチャートである。
【図4】実施形態1に係る周波数成分を軽減する原理を説明する図である。
【図5】実施形態1に係る周波数成分を軽減する処理の流れを説明するフローチャートである。
【図6】実施形態2に係る周波数成分を軽減する原理を説明する図である。
【図7】実施形態2に係る周波数成分を軽減する処理の流れを説明するフローチャートである。
【図8】実施形態3に係る注目画像取得部40を模式的に示す図である。
【発明を実施するための形態】
【0011】
本発明の実施の形態(以下、「実施形態」という。)の説明に先立って、まず概要を述べる。実施形態は、基板と基板に実装されている部品とを接合するはんだが映し出されている基板表面を含む画像(以下、「表面画像」という。)に注目し、その表面画像に映し出されているノイズ成分を特定して除去する、というものである。主にノイズ成分の特定に利用する画像の違いにより、実施形態1、実施形態2、実施形態3、実施形態4の4つの形態があり、以下それぞれの概要を述べる。
【0012】
実施形態1は、基板の裏面を含む画像(以下、「裏面画像」という。)や基板内部の断面画像(以下、「内部画像」という。)を用いてノイズ成分を特定する。実施形態2は、ノイズ成分の特定のために表面画像以外の画像を利用せず、表面画像そのものからノイズ成分を特定する。実施形態3は、複数枚の裏面画像や内部画像を基板表面に対して垂直な方向に投影して生成された疑似的な透過画像(以下、「疑似透過画像」という)を用いてノイズ成分を特定する。実施形態4は、基板に実装される前の部品単独で撮像された画像を用いてノイズ成分を特定する。
【0013】
なお、「ノイズ成分」とは、表面画像に存在する検査に不要な画像成分のことをいい、例えば基板に実装された部品の配線パターン等、所定の周波数成分を含む画像のことをいう。また「所定の周波数」とは、ノイズ成分特有の空間周波数であり、例えばBGAの実装されている部分の基板裏面の配線パターン等が持つ空間周波数である。通常、部品とBGA基板とを接合するはんだは周期的に配置されているため、それらは特有の空間周波数成分を持つ。また、基板ごとに部品の搭載位置やパターンが異なるため、基板は特有の周波数を持つ。以後、部品の搭載位置や配線パターン、はんだを配置するためのランドを併せて単に「パターン」という。
【0014】
(実施形態1)
図1は実施形態1における放射線検査装置100を模式的に表した図である。放射線検査装置100は、PC(Personal Computer)10、モニタ12、線質変更部14、放射線発生器駆動部16、基板保持部駆動部18、検出器駆動部20、放射線発生器22、基板保持部24、検出器26を含む。
【0015】
放射線発生器22はX線等の放射線を発生させる部分であり、これは例えば加速させた電子をタングステンやダイアモンド等のターゲットに衝突させることで放射線を発生する。
【0016】
基板保持部24は被検査体である基板を保持する。基板保持部24に保持された基板に放射線発生器22で発生させた放射線を照射し、基板を透過した放射線を検出器26で画像として撮像する。以下、検出器26で撮像された基板の放射線透過画像を「透過画像」という。
【0017】
透過画像はPC10に送られ、例えばフィルタ補正逆投影法(Filtered−Backprojection法、FBP法)等の既知の技術を用いて、接合部分のはんだの立体形状を含む画像に再構成される。再構成された画像や透過画像は、PC10内のストレージや、図示しない外部のストレージに記憶される。以下、透過画像に基づいて接合部分のはんだの立体形状を含む3次元画像に再構成された画像を「再構成画像」という。また、再構成画像から任意の断面を切り出した画像を「断面画像」という。再構成画像および断面画像はモニタ12に出力される。
【0018】
線質変更部14は放射線発生器22で発生される放射線の線質を変更する。放射線の線質は、ターゲットに衝突させる電子を加速するために印加する電圧(以下「管電圧」という)や、電子の数を決定する電流(以下「管電流」という)によって定まる。線質変更部14は、これら管電圧と管電流とを制御する部分である。これは変圧器や整流器等、既知の技術を用いて実現できる。
【0019】
ここで、放射線の線質は、放射線の輝度と硬さ(放射線のスペクトル分布)とで定まる。管電流を大きくすればターゲットに衝突する電子の数が増え、発生する放射線の光子の数も増える。その結果、放射線の輝度が大きくなる。例えばコンデンサ等の部品の中には他の部品と比較して厚みがあるものもあり、これらの部品の透過画像を撮像するには輝度の大きな放射線を照射する必要がある。このような場合に管電流を調整することで放射線の輝度を調整する。また、管電圧を高くするとターゲットに衝突する電子のエネルギーが大きくなり、発生する放射線のエネルギー(スペクトル)が大きくなる。一般に、放射線のエネルギーが大きいほど物質の貫通力が大きくなり、物質に吸収されにくくなる。そのような放射線を用いて撮像した透過画像はコントラストは低くなる。このため、管電圧は透過画像のコントラストを調整するのに利用できる。
【0020】
放射線発生器駆動部16は図示しないモータ等の駆動機構を有しており、放射線発生器22をその焦点を通る軸に沿って上下に移動することができる。これにより放射線発生器22と基板保持部24に保持される被検査対象との距離を変えて照射野を変更し、検出器26に撮像される透過画像の拡大率を変更することが可能となる。
【0021】
検出器駆動部20も図示しないモータ等の駆動機構を有しており、検出器回転軌道30に沿って検出器26を回転移動する。また、基板保持部駆動部18も図示しないモータ等の駆動機構を有しており、基板回転軌道28が張る平面上を、基板保持部24を平行移動させる。基板保持部24は、検出器26の回転移動と連動して、基板回転軌道28上を回転移動する構成となっている。これにより、基板保持部24が保持する基板と放射線発生器22との相対的な位置関係を変更させながら透過画像を撮像することが可能となる。
【0022】
ここで、基板回転軌道28と検出器回転軌道30との回転半径は固定ではなく、自由に変更できる構成となっている。これにより、基板に配置される部品に照射する放射線の照射角度を変更することが可能となる。
【0023】
PC10は、上記の放射線検査装置100の全動作を制御する。以下、PC10の諸機能について図を用いて説明する。なお、図示されていないが、PC10にはキーボードやマウス等の入力装置が接続されている。
【0024】
図2は、PC10が処理する各機能ブロックを図示したものである。PC10は、撮像制御部34、情報記憶部36、断面画像生成部38、注目画像取得部40、周波数解析部42、周波数成分除去部44を含む。これらの各機能ブロックは、各種演算処理を実行するCPU、データの格納やプログラム実行のためのワークエリアとして利用されるRAMなどのハードウェア、およびソフトウェアの連携によって実現される。したがって、これらの機能ブロックはハードウェアおよびソフトウェアの組み合わせによって様々な形で実現することができる。
【0025】
情報記憶部36は基板の透過画像を撮像するための撮像条件や、被検査体である基板の設計等の情報、基板に実装する部品自体の設計情報を記憶する。情報記憶部36はまた、基板の透過画像や再構成画像、断面画像を記憶する。
【0026】
ここで「基板の設計情報」とは、ガーバーデータ(Gerber data)およびCAD(Computer Aided Design)データのことをいう。基板と部品とを接合するはんだの接合部分の座標を記録した情報をガーバーデータといい、搭載部品の種類および搭載位置の座標を記録した情報をCADデータという。はんだの接合部分および部品の搭載位置の座標は基板上に設定されたXY座標系の座標として記載される。ガーバーデータおよびCADデータを参照することで、基板上に存在する部品の種類やその大きさ、部品やはんだ接合部分の位置、基板表面の配線パターンを得ることができる。また、「撮像条件」とは、ある部品と基板とを接合するはんだの再構成画像を計算するのに必要な透過画像を撮像するに際して、放射線検査装置100に設定されるパラメータのことをいう。これは例えば、基板上に実装された部品から見た放射線発生器22の仰角、再構成に要する透過画像の枚数、透過画像の拡大率、照射すべき放射線の線質等である。
【0027】
「部品の設計情報」とは、基板に実装する部品単位の情報で、BGAのはんだボールピッチやICのリードピッチ、部品内部の配線パターン等の情報のことをいう。BGAのはんだボールのピッチは1mm前後のピッチ(例えば0.8mmや1.4mm)である。また、ICのリードピッチは0.5mm前後である。
【0028】
撮像条件によって再構成画像が含む基板の領域や再構成画像の分解能が定まる。例えば、透過画像の拡大率を大きくすれば再構成画像に含まれる基板の領域は狭くなり、放射線を透過する角度が狭いと基板に対して垂直な方向の分解能が下がる。
【0029】
撮像制御部34は、情報記憶部36から取得した撮像条件に基づいて、線質変更部14に管電圧および管電流の変更を指示し、放射線発生器駆動部16、基板保持部駆動部18、検出器駆動部20を制御して再構成画像の生成に必要な透過画像を撮像する。撮像された透過画像は情報記憶部36に記憶される。
【0030】
断面画像生成部38は、再構成画像生成部46と任意断面生成部48とを含む。
【0031】
再構成画像生成部46は、情報記憶部36に記憶された透過画像を読み出して、再構成画像を生成する。これは、例えばFBP法や最尤推定法等、既知の技術を用いて実現できる。再構成アルゴリズムが異なると、得られる再構成画像の性質や再構成に要する時間も異なる。そこで、あらかじめ複数の再構成アルゴリズムやアルゴリズムに用いられるパラメータを用意しておき、ユーザに選択させる構成としてもよい。これにより、再構成に要する時間が短くなることを優先したり、時間はかかっても画質のよさを優先したりするなどの選択の自由度をユーザに提供することができる。
【0032】
任意断面生成部48は再構成画像生成部46が生成した再構成画像から、任意の断面を切り出した断面画像を生成する。断面の例としては、例えば基板面に対して平行な断面があげられる。任意断面生成部48は、生成する断面画像間の間隔(以後「スライス間隔」という。)や、一枚の断面画像の厚さ(以後「スライス厚」という。)を自由に変更することができる。これらは、図示しないキーボードやマウス等の入力ディバイスを用いてユーザが設定を変更することもできるし、情報記憶部36に記憶された撮像条件に基づいて任意断面生成部48がアルゴリズムにより決定することもできる。例えば、撮像条件に基づいて計算される分解能にスライス間隔を合わせる等である。
【0033】
注目画像取得部40は、検査の対象として注目する表面画像を特定する検査画像特定部74と、ノイズ成分の抽出のために注目する裏面画像や内部画像を特定する補助画像特定部76とを含む。
【0034】
基板と部品とを接合するはんだは基板表面にあるので、表面画像を検査することで、はんだが基板と部品とを適切に接合しているか否かが判断できる。ところが、前述したように、検査に用いるはんだ接合部が撮像されている表面画像には、基板裏面の部品やパターン等、検査に不要な情報が靄のようになって画像内に残ることがある。そこで、裏面画像に映し出されている部品やはんだのパターン等の情報を特定して表面画像から差し引くことにより、検査に不要な情報を軽減する。周波数解析部42は、表面画像から除去するためのノイズ成分を、裏面画像に基づいて特定する。
【0035】
周波数成分除去部44は、検査画像特定部74が特定した表面画像から、周波数解析部42が特定したノイズ成分の影響を減ずる。周波数成分除去部44はさらに、ノイズ成分の影響が減ぜられた画像を情報記憶部36に格納する。
【0036】
図3は透過画像の撮像から、ノイズ成分の影響を軽減した断面画像を格納するまでの流れを示したフローチャートである。本フローチャートにおける処理は、例えば生産ラインの中で基板が放射線検査装置100の基板保持部24にセットされたときに開始する。
【0037】
撮像部32は撮像制御部34の制御の下、線質変更部14で線質を設定して、放射線発生器22、基板保持部24、検出器26を動かし、再構成画像の生成に必要な複数の透過画像を撮像する(S10)。再構成画像生成部46は撮像部32が撮像し、情報記憶部36に格納された透過画像に基づいて再構成画像を生成する(S12)。任意断面生成部48は再構成画像生成部46が生成した再構成画像から断面を切り出すことで断面画像を生成する(S14)。検査画像特定部74は任意断面生成部48が生成した断面から、表面画像を特定する(S16)。周波数解析部42は補助画像特定部76が特定した裏面画像を周波数解析することにより、ノイズ成分を含む画像を抽出する(S18)。周波数成分除去部44は、表面画像から周波数解析部42が抽出したノイズ成分の影響を軽減させる(S20)。その後、周波数成分除去部44は、ノイズ成分の影響が軽減された画像を情報記憶部36に格納する(S22)。ノイズ成分の影響が軽減された画像が情報記憶部36に格納されたら処理は終了である。
【0038】
図4は、実施形態1に係る周波数成分を軽減する原理を説明する図である。
【0039】
検査画像特定部74は表面画像50を特定し、補助画像特定部76はノイズの特定に用いる裏面画像56を特定する。表面画像50を特定するには、例えば、情報記憶部36に記憶されている基板の設計情報からパターンを取得し、パターンマッチングの手法を用いてそれらのパターンに最も適合する断面画像を取得することで実現できる。あるいは、情報記憶部36に記憶されている基板の設計情報から基板表面のパターンを取得してその空間周波数を求め、当該空間周波数成分を最も多く持つ断面画像を取得することでも実現できる。空間周波数の解析には例えば2次元高速フーリエ変換(Fast Fourier Transform、FFT)のアルゴリズムが利用できる。以下、2次元高速フーリエ変換を単に2次元フーリエ変換という。
【0040】
裏面画像56を特定するには、基板の設計情報から基板裏面のパターンを取得し、表面画像50を特定する場合と同様の手法を利用することができる。あるいは、表面画像50が特定できれば、基板の設計情報から基板の厚みを取得し、スライス間隔を勘案して裏面画像56を特定することもできる。具体的には、基板の厚みが例えば2mmであり、スライス間隔が例えば0.5mmであるならば、表面画像50から数えて4枚目の断面画像が裏面画像56となる。この場合、表面画像50と裏面画像56との特定の順序を逆にすることもできる。また、表面画像50や裏面画像56、空間周波数はユーザが手動で設定するようにすることもできる。
【0041】
周波数解析部42は、補助画像特定部76が特定した裏面画像56から基板裏面のパターンの持つ周波数成分を抽出する。具体的には、基板の設計情報から基板裏面のパターンを取得し、そのパターンが持つ空間周波数のみを通過する成分抽出フィルタ58を裏面画像56に適用することで実現できる。または、部品の設計情報から基板裏面のパターンを取得することでも実現できる。裏面画像を2次元フーリエ変換し、パターンが持つ周波数成分のみを残して2次元逆フーリエ変換すれば、基板裏面のパターンが持つ周波数成分の画像(以後、「成分画像」という。)が得られる。
【0042】
周波数成分除去部44は、表面画像50から周波数解析部42で取得した成分画像を減算することで、検査に不要な成分画像の影響を軽減したノイズ成分軽減画像54を得る。
【0043】
図5は実施形態1に係る周波数成分を軽減する処理の流れを説明するフローチャートである。本フローチャートにおける処理は、図3のステップS16、S18、S20の処理の一例を詳細に説明するものである。
【0044】
検査画像特定部74は表面画像を特定し(S24)、補助画像特定部76は裏面画像を特定する(S26)。周波数解析部42は、基板の設計情報に基づいて補助画像特定部76が特定した裏面画像から基板裏面のパターンが持つ周波数成分を特定する(S28)。周波数解析部42は裏面画像から成分画像を取得する(S30)。周波数成分除去部44は表面画像から成分画像を減算することで、表面画像から検査に不要な成分画像を除去したノイズ成分軽減画像を取得する(S20)。
【0045】
以上のように、実施形態1によれば、表面画像に残った裏面画像上に存在する検査に不要な情報を軽減することができる。当該情報を裏面画像を解析して抽出するので、抽出精度が高くなる点で有利である。
【0046】
(実施形態2)
実施形態2は、表面画像を特定しその表面画像に基づいて検査に不要な情報を軽減する。実施形態1とは異なり、ノイズ成分の特定に裏面画像は用いないという違いがある。以下は、実施形態1との相違点を中心に説明する。
【0047】
実施形態2は裏面画像を用いないため、補助画像特定部76を有しない。また、周波数解析部42および周波数成分除去部44の動作が実施形態1と異なる。
【0048】
図6は実施形態2に係る周波数成分を軽減する原理を説明する図である。
【0049】
検査画像特定部74は実施形態1と同じ方法で表面画像50を特定する。周波数解析部42は、情報記憶部36に格納されている設計情報から基板裏面のパターンを取得し、当該パターンが持つ周波数成分を計算する。次いで周波数解析部42は、表面画像50のガウシアン−ラプラシアンピラミッドを生成する。
【0050】
ここでガウシアン−ラプラシアンピラミッドとは、ある基準画像とその基準画像に強さの異なるローパスフィルタをかけた画像、および、それらの画像の差分画像の集合のことをいう。例えば、図6において表面画像50を基準画像とする。基準画像に適当な強さのローパスフィルタの一種であるガウシアンフィルタをかけることで基準画像をぼかし、ダウンサンプリングすることで第1の低解像度画像62aを得る。第1の低解像度画像62aをさらにガウシアンフィルタをかけることでぼかした後、ダウンサンプリングすることで第2の低解像度画像62bを得る。同様にして、第3の低解像度画像62cを得る。この場合、第2の低解像度画像62bは第1の低解像度画像62aにガウシアンフィルタをかけたものであるから、基準画像に対して2回のガウシアンフィルタをかけたことになる。したがって、第1の低解像度画像62aと第2の低解像度画像62bとを比較すると、両者はそれぞれ基準画像に対して強さの異なるローパスフィルタをかけることで得られた画像ということができる。すなわち、第2の低解像度画像62bの方が第1の低解像度画像62aよりも強いローパスフィルタがかかり、よりぼけた画像(低周波画像)となる。
【0051】
さて、基準画像から第1の低解像度画像62aを減じることで、第1の差分画像64aが得られる。ここで、第1の低解像度画像62aは基準画像にローパスフィルタであるガウシアンフィルタをかけることで得られた画像であることを考えると、第1の差分画像64aは基準画像の高周波成分を含んだ画像と考えることができる。なお、基準画像から第1の低解像度画像62aを減じる際には、第1の低解像度画像62aをアップサンプリングをする等、基準画像と同一の画素数とする処置を講じる。
【0052】
第2の差分画像64bは、第1の低解像度画像62aから第2の低解像度画像62bを減じることで得る。第1の低解像度画像62aに含まれる周波数成分は、基準画像に含まれる周波数成分よりも低い。また、第2の低解像度画像62bに含まれる周波数成分は、第1の低解像度画像62aに含まれる周波数成分よりもさらに低い。したがって、第2の差分画像64bは第1の差分画像64aよりは低い高周波成分を含む画像となる。
【0053】
同様に、第3の差分画像64cは第2の低解像度画像62bから第3の低解像度画像62cを減じることで得る。第3の差分画像64cに含まれる周波数成分は、第2の差分画像64bに含まれる周波数成分よりも低い。
【0054】
このように、基準画像、第1の低解像度画像62a、第2の低解像度画像62b、第3の低解像度画像62cのようにガウシアンフィルタをかけることで得られる画像の系列は、「ガウシアンピラミッド」と呼ばれることがある。また、基準画像と第1の低解像度画像62aとの差分画像である第1の差分画像64a、第1の低解像度画像62aと第2の低解像度画像62bとの差分画像64b、第2の低解像度画像62bと第3の低解像度画像62cとの差分画像64cのように、ピラミッド画像の差分画像から生成された異なる周波数成分を含む画像の系列は、「ラプラシアンピラミッド」と呼ばれることがある。ガウシアンピラミッドとラプラシアンピラミッドを合わせて、「ガウシアン−ラプラシアンピラミッド」と呼ばれることがある。
【0055】
なお、最も解像度の低い画像である第3の低解像度画像62cに第3の差分画像64c、第2の差分画像64b、第1の差分画像64aを順に加算することで、基準画像を復元することができる。したがって、第3の低解像度画像62c、第3の差分画像64c、第2の差分画像64b、第1の差分画像64aは基準画像の情報を全て含み、またそれぞれの画像に含まれる周波数成分は全て異なる。この意味で、第3の低解像度画像62c、第3の差分画像64c、第2の差分画像64b、第1の差分画像64aは基準画像を互いに異なる周波数成分を含む画像に分解した画像といえる。以後、このように画像を複数の周波数成分に分解することを「多重周波数解析」と呼ぶことがある。
【0056】
前述したとおり、ラプラシアンピラミッドは基準画像を様々な周波数成分に分解した画像といえる。画像の裏面に含まれるはんだ等のパターンは特有な周波数成分を持つから、いずれか、あるいは複数のラプラシアンピラミッド画像にまたがって、当該パターンが現れるはずである。そこで、画像を復元するに際し、当該パターンが現れたラプラシアンピラミッド画像を除くか、あるいは画素値に1以下の係数を乗じることにより、復元画像からその影響を軽減することができる。
【0057】
具体的には、図6において、第2の差分画像64bに当該パターンが現れたとする。この場合、周波数成分除去部44は、第3の差分画像64cに乗じる係数であるγ(符号66c)を1とし、まず第3の変調差分画像68cを生成する。γを1とするのは第3の差分画像64cには当該パターンの周波数成分はないからである。第3の変調差分画像68cに、アップサンプリングした第3の低解像度画像62cを加算することで第1の変調低解像度画像70aを得る。
【0058】
次いで、第2の差分画像64bに乗じる係数であるβ(符号66b)は1以下の係数(例えば0.1)とし、第2の変調差分画像68bを生成する。第2の変調差分画像68bにアップサンプリングした第1の変調低解像度画像70aを加算することで第2の変調低解像度画像70bを得る。係数βの値が1以下であるから、第2の変調差分画像68bは第2の差分画像64bの情報、すなわちパターンの情報が低減されている。
【0059】
第1の差分画像64aにはパターンの影響はないから、第3の変調差分画像68cの場合と同様に、第1の差分画像64aに乗じる係数α(符号66a)を1とし、第1の変調差分画像68aを作成する。第1の変調差分画像68aにアップサンプリングした第2の変調低解像度画像70bを加算することで、最終的にパターンに特有な周波数成分を軽減したノイズ成分軽減画像72が得られる。
【0060】
なお、ガウシアンピラミッドの段数やガウシアンフィルタの強度は自由に変更できる。特定のラプラシアン画像にパターンが現れるように、設計情報に基づいて段数やフィルタ強度を定めればよい。
【0061】
図7は実施形態2に係る周波数成分を軽減する処理の流れを説明するフローチャートである。本フローチャートにおける処理は、図3のステップS16、S18、S20の処理の一例を詳細に説明するものである。
【0062】
検査画像特定部74は、情報記憶部36から基板の設計情報を取得する(S32)。次いで、取得した基板の設計情報に基づいて表面画像を特定する(S34)。周波数解析部42も、まず情報記憶部36から基板の設計情報を取得する(S36)。裏面画像を用いるのではなく、取得した基板の設計情報に基づいた計算により、基板裏面のパターンが持つ周波数成分を特定する(S38)。次いで、周波数解析部42は表面画像のガウシアン−ラプラシアンピラミッド画像を生成する(S40)。周波数成分除去部44は基板裏面のパターンが持つ周波数成分を含む差分画像(ラプラシアン画像)を特定する(S42)。次いで、画像を復元するための係数(復元係数)を設定し(S44)、画像を復元する(S46)。
【0063】
以上のように、実施形態2によれば、表面画像に残った裏面画像上に存在する検査に不要な情報を軽減することができる。実施形態2に係る方法は、裏面画像を用いず、表面画像のみを特定すれば実施できるため、裏面画像の抽出にかかる時間が省略でき、また、裏面画像の抽出精度に影響されない点で有利である。
【0064】
(実施形態3)
実施形態3は、検査画像に存在する検査に不要な情報を補助画像から特定するものであるが、主に補助画像が疑似透過画像である点で実施形態1と異なる。
【0065】
図8は、実施形態3に係る注目画像取得部40を模式的に表した図である。注目画像取得部40は検査画像特定部74と補助画像特定部76とに加え、疑似透過画像生成部78を含む。
【0066】
前述したとおり、検査対象である表面画像には基板裏面側の構造がノイズとして含まれている。そこで、実施形態3における補助画像特定部76は、情報記憶部36に記憶されている基板の設計情報に基づいて、基板の裏面側に存在する複数の断面を特定する。
【0067】
疑似透過画像生成部78は、補助画像特定部76が特定した複数の断面画像に基づいて、その断面群に映し出されている基板や部品の構造の擬似的な透過画像を生成する。ここで、疑似透過画像は、複数の断面を基板面に垂直な方向に投影することで得られる、厚みを持たせた断面画像である。なお、疑似透過画像生成部78は複数枚の断面をさらに複数のサブセットに分割し、それぞれの疑似透過画像を生成することで、複数の疑似透過画像を生成することもできる。また、疑似透過画像生成部78は、断面画像が1枚だけ入力された場合は、生成される疑似透過画像は入力された断面画像そのものを出力する。
【0068】
実施形態1においては、周波数解析部42は補助画像特定部76が特定した断面画像に基づいて、基板裏面のパターンの持つ周波数成分を抽出するとした。実施形態3では、周波数解析部42は、補助画像特定部76が特定した断面画像に基づいて疑似透過画像生成部78が生成した疑似透過画像を補助画像とし、この補助画像から基板裏面のパターンの持つ周波数成分を抽出する。具体的な抽出の仕方は実施形態1の場合と同様である。
【0069】
実施形態3における検査画像特定部74は、基板の表面側に存在する複数の断面を特定することができる。疑似透過画像生成部78は、検査画像特定部74が特定した複数の断面に基づいて疑似透過画像を生成し検査画像とする。なお、検査画像特定部74および補助画像特定部76が断面を1枚のみ特定する場合には、疑似透過画像生成部78は、実施形態1と同じ動作となる。
【0070】
以上の実施形態3によれば、表面画像に残った裏面画像上に存在する検査に不要な情報を軽減することができる。実施形態3においては、基板裏面側の複数の断面画像に基づいて生成された1枚の疑似透過画像からノイズ成分を抽出する。この疑似透過画像には複数枚に渡って分布するノイズの情報が存在すると考えられ、このような広範囲のノイズ情報を1度の抽出作業で抽出できることから、計算コストの点で有利である。また、実施形態3においては、部品と基板とを接合するはんだ接合部分が映し出されている複数の表面側の断層画像の情報を1度に扱える点、および基板から離れていた位置で起きたクラック等のはんだ不良も検査することができる点でも有利である。
【0071】
(実施形態4)
実施形態4は、検査画像に存在する検査に不要な情報を補助画像から特定するものであるが、補助画像は、基板の断層画像や疑似透過画像ではなく、基板に実装される前の部品単独で撮像された画像に基づいて生成された断面画像である点で実施形態1と異なる。したがって、補助画像特定部76の動作以外は、実施形態1と同様である。
【0072】
実施形態4においては、補助画像特定部76は、情報記憶部36に記憶されている基板の設計情報に基づいて基板に実装されている部品を特定する。ついで、あらかじめ撮像された透過画像に基づいて生成され情報記憶部36に記憶されている部品単独の断層画像を取得する。周波数解析部42は部品単独の断層画像から基板裏面のパターンの持つ周波数成分を抽出する。具体的な抽出の仕方は実施形態1の場合と同様である。
【0073】
以上、実施形態4によれば、表面画像に映り込んでいる検査に不要な情報を軽減することができる。実施形態4においては、あらかじめ撮像され生成された部品単独の断層画像に基づいてノイズ成分を抽出する。この断層画像には基板等の部品以外の情報が存在しないので、ノイズ成分を精度良く抽出できる点で有利である。
【0074】
以上、4つの実施形態について説明した。これらの実施形態の組み合わせもまた、実施形態として有用である。
【0075】
実施形態1と実施形態2とを組み合わせ、実施形態1における周波数解析部42において実施形態2と同様の多重周波数解析を用いる場合、実施形態1の効果に加え、周波数成分をより細かく抽出できる効果もある。
【0076】
実施形態2と実施形態3とを組み合わせ、実施形態3における周波数解析部42において実施形態2と同様に多重周波数解析を用いる場合、実施形態3の効果に加え、周波数成分をより細かく抽出できる効果もある。また、別の組み合わせ方として、実施形態2の検査画像として疑似透過画像を採用した場合、実施形態2の効果に加え、1枚の断面画像よりも多くの情報を扱える点で有利である。
【0077】
実施形態3と実施形態4とを組み合わせ、補助画像としてあらかじめ撮像され生成された部品単独の断層画像に基づく疑似透過画像を用いた場合、組み合わせによって生じる新たな実施形態は、組み合わされる実施形態それぞれの効果を合わせ持つ。
【0078】
以上、本発明を実施形態をもとに説明した。実施形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
【0079】
実施形態1において、補助画像特定部76が補助画像として裏面画像を特定する場合について説明した。ここで裏面画像は1枚のみならず、基板裏面側に存在する複数枚の裏面側画像を特定してもよい。この場合、周波数解析部42および周波数成分除去部44は、複数の裏面側画像それぞれについて、同様の処理を行う。これにより、複数枚に渡って分布するノイズの成分を軽減できる点で有利である。
【0080】
上記実施形態1の変形例と上記実施形態3とを組み合わせ、補助画像として、複数枚の疑似透過画像を用いることとした場合、複数枚に渡って分布するノイズの成分を、全て断面画像単位で処理するよりも計算コストの点で有利である。また、検査画像として疑似透過画像を用い、補助画像として複数枚の断層画像や疑似透過画像を用いることとした場合も、全て断面画像単位で処理するよりも計算コストの点で有利である。
【0081】
上記の説明においては、表面画像に残るノイズ成分として基板裏面画像を主な対象として説明したが、表面画像に残るノイズ成分としては、部品内部の配線パターンも存在する。そこで、補助画像特定部76は、ノイズ成分を抽出する対象としての裏面画像に代えて、または裏面画像に加えて、部品内部の構造を含む画像を特定しても良い。この場合、表面画像に残るノイズ成分を含む画像の種類が増えることから、ノイズ成分抽出の精度が上がる点で有利である。
【0082】
上記の説明においては、表面画像に残るノイズ成分を軽減することについて説明したが、多重周波数解析を用いれば、検査に必要な表面画像のはんだ配置のパターンを強調して表示することもできる。
【0083】
BGAやLGAの下面には、基板と部品とを接合するためのはんだが周期的に配置されている。このはんだ配置の情報は設計情報から取得することができる。したがって、実施形態2を用いれば、設計情報に基づいてはんだ配置の周波数成分を計算し、その周波数成分が特定の(複数でもよい)ラプラシアン画像に出現するようにガウシアンピラミッドの段数やガウシアンフィルタの強度を調整すれば、はんだ配置の周波数成分が多く現れるラプラシアン画像を得ることができる。画像復元の際に、このラプラシアン画像に乗ずる係数を大きくすれば、表面画像のはんだ配置のパターンが強調された画像を得ることができる。係数の大きさは部品の種類や強調の度合いに応じて実験により定めればよい。
【0084】
上記の説明において、実施形態1では、ノイズ成分の特定に裏面画像を用いたが、基板が多層の場合には、基板内部にある中間層のパターンに由来するノイズ成分が表面画像に写り込んでくることがある。この場合には、ノイズ成分の特定に基板内部の断面画像を用いてもよい。ノイズ成分の特定に際しては、設計情報を利用すればよい。
【符号の説明】
【0085】
10 PC、 12 モニタ、 14 線質変更部、 16 放射線発生器駆動部、 18 基板保持部駆動部、 20 検出器駆動部、 22 放射線発生器、 24 基板保持部、 26 検出器、 28 基板回転軌道、 30 検出器回転軌道、 32 撮像部、 34 撮像制御部、 36 情報記憶部、 38 断面画像生成部、 40 注目画像取得部、 42 周波数解析部、 44 周波数成分除去部、 46 再構成画像生成部、 48 任意断面生成部、 50 表面画像、 54 ノイズ成分軽減画像、 56 裏面画像、 58 成分抽出フィルタ、 62a 第1の低解像度画像、 62b 第2の低解像度画像、 62c 第3の低解像度画像、 64a 第1の差分画像、 64b 第2の差分画像、 64c 第3の差分画像、 68a 第1の変調差分画像、 68b 第2の変調差分画像、 68c 第3の変調差分画像、 70a 第1の変調低解像度画像、 70b 第2の変調低解像度画像、 72 ノイズ成分軽減画像、 74 検査画像特定部、 76 補助画像特定部、 78 疑似透過画像生成部、 100 放射線検査装置。

【特許請求の範囲】
【請求項1】
基板および電子部品を含む被検査体の複数の箇所に複数方向から放射線を照射し、複数の放射線透過画像を撮像する撮像部と、
前記複数の放射線透過画像に基づいて前記被検査体の複数の断面画像を再構成する断面画像生成部と、
前記複数の断面画像に基づいて検査画像を取得する検査画像特定部と、
前記被検査体の少なくとも一部が映し出されている補助画像を取得する補助画像特定部と、
前記検査画像と前記補助画像とが共通に含む周波数成分を特定する周波数解析部と、
前記共通に含む周波数成分の影響を前記検査画像から軽減する周波数成分除去部と、
を含むことを特徴とする放射線検査装置。
【請求項2】
前記補助画像特定部は、前記複数の断面画像の中から検査画像と鉛直方向に異なる位置の断面画像に基づいて補助画像を取得することを特徴とする請求項1に記載の装置。
【請求項3】
複数の断面画像を重ね合わせて擬似的な透過画像を生成する疑似透過画像生成部をさらに含み、
前記疑似透過画像生成部は、前記検査画像特定部が前記複数の断面画像の中から取得した1または複数枚の断面画像から生成した疑似透過画像を前記検査画像とし、かつ、前記補助画像特定部が前記複数の断面画像の中から取得した1または複数枚の断面画像から生成した疑似透過画像を前記補助画像とすることを特徴とする請求項1または2に記載の装置。
【請求項4】
前記疑似透過画像生成部は、前記補助画像特定部が前記複数の断面画像の中から取得した1または複数枚の断面画像を1または複数個のサブセットに分割し、前記サブセットから得られた1または複数枚の疑似透過画像を前記補助画像とし、
前記周波数解析部は、前記1または複数枚の疑似透過画像それぞれについて前記検査画像と共通に含む周波数成分を特定し、
前記周波数成分除去部は、前記共通に含む周波数成分それぞれの影響を前記検査画像から軽減することを特徴とする請求項3に記載の装置。
【請求項5】
前記検査画像特定部は、前記基板の一方の面側の断面画像を前記検査画像として取得し、
前記補助画像特定部は、前記基板の他方の面側ないし前記基板の内部の断面画像を前記補助画像として取得することを特徴とする請求項1から4のいずれかに記載の装置。
【請求項6】
前記検査画像特定部は、前記電子部品と前記基板とを接合するはんだが映し出されている断面画像および前記電子部品の内部が映し出されている断面画像の2種類の断面画像のいずれか一方の断面画像を前記検査画像として取得し、
前記補助画像特定部は、前記2種類の断面画像のうち前記検査画像とは異なる他方の断面画像を前記補助画像として取得することを特徴とする請求項1から4のいずれかに記載の装置。
【請求項7】
前記補助画像特定部は、あらかじめ単独で撮像されて再構成されている、前記電子部品と同種の部品の断面画像を前記補助画像として取得することを特徴とする請求項1に記載の装置。
【請求項8】
前記周波数解析部は、基板の設計情報に基づいて、前記検査画像と前記補助画像とが共通に含む周波数成分を特定することを特徴とする請求項1から7のいずれかに記載の装置。
【請求項9】
前記周波数解析部は、部品の設計情報に基づいて、前記検査画像と前記補助画像とが共通に含む周波数成分を特定することを特徴とする請求項1から7のいずれかに記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−95227(P2011−95227A)
【公開日】平成23年5月12日(2011.5.12)
【国際特許分類】
【出願番号】特願2009−252299(P2009−252299)
【出願日】平成21年11月2日(2009.11.2)
【出願人】(595039014)株式会社サキコーポレーション (31)
【Fターム(参考)】