説明

複屈折パターンを有する物品の製造方法

【課題】高解像度で耐熱性に優れた複屈折パターンを有する物品の簡便な作製に有用な方法の提供。
【解決手段】少なくとも次の[1]〜[3]の工程をこの順に含む、複屈折パターンを有する物品の製造方法:[1]高分子を含む光学異方性層を有する複屈折パターン作製材料を用意する工程;[2]該複屈折パターン作製材料の2つ以上の領域にそれぞれ互いに露光条件の異なる露光を行う工程;[3]工程[2]後に得られる積層体を50℃以上400℃以下に加熱する工程。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は複屈折パターンを有する物品の製造方法の製造方法および該方法により得られる物品に関する。
【背景技術】
【0002】
複屈折パターンの作製方法としては、これまでにいくつかの手法が提案されている。特許文献1においては、2枚の偏光板で挟むことによって可視化できる複屈折パターンの画像記録の方法として利用することが開示されているが、本文献においては異方性フィルムに対してヒートモードレーザーやサーマルヘッドを用いて画像形成部分に熱を加え、完全にあるいは不完全に異方性を低下させる手法が用いられている。
【0003】
しかし、上記のように熱を用いて複屈折性を低下させる手法で作製されたパターンはいずれも耐熱性に劣るという欠点がある。すなわち、複屈折性が残っている部分に熱が加わった場合、その部分の複屈折性が低下してしまう恐れがある。また、サーマルヘッド等を用いる手法では膜厚方向の伝熱と面内方向の伝熱で差をつけることが難しいため、膜厚以下の解像度のパターンを描くことが極めて困難である。レーザーを用いた加熱では高解像度のパターン描画が可能だが、細かいパターンをレーザー走査で描くために加工が長時間になるという問題がある。
【0004】
特許文献1においては、光崩壊性フォトポリマーや光異性化ポリマーを用いて光によって複屈折性を低下させる手法も提案されている。しかしこの手法の場合には作製されたパターンの耐光性が低くなり、特に光学素子として利用する複屈折パターンとしては不適である。
【0005】
複屈折パターンを作製する別の手法として、配向膜を有する支持体上に重合性液晶と重合開始剤を含む塗布液を塗布して配向させた状態でフォトマスクを介したパターン露光を行い露光部の配向を重合固定化、さらに加熱して未露光部を等方相化した上で再度露光を行い、一度目に露光された部分のみに光学異方性を現出させる方法が提案されている(特許文献2、非特許文献1)。しかしながらこの手法では固定前の液晶の配向状態を制御するために系全体の温度を絶妙に制御しながら複数回の露光を行う必要があり、製造プロセスにかかる手間が大きいという問題がある。
【特許文献1】特開平3−141320号公報
【特許文献2】英国特許2394718A号
【非特許文献1】Advanced Functional Materials,791-798,16,2006
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、高解像度で耐熱性に優れた複屈折パターンを有する物品の簡便な作製に有用な方法を提供することを課題とする。
【課題を解決するための手段】
【0007】
すなわち、本発明は下記(1)〜(14)を提供するものである。
(1)少なくとも次の[1]〜[3]の工程をこの順に含む、複屈折パターンを有する物品の製造方法:
[1]高分子を含む光学異方性層を有する複屈折パターン作製材料を用意する工程;
[2]該複屈折パターン作製材料の2つ以上の領域にそれぞれ互いに露光条件の異なる露光を行う工程;
[3]工程[2]後に得られる積層体を50℃以上400℃以下に加熱する工程。
(2)前記露光条件が、露光照度、露光量、露光時間、及び露光ピーク波長からなる群より選択される1つ以上である(1)に記載の製造方法
【0008】
(3)前記の2つ以上の領域に対する露光がそれぞれ異なるパターンを有する露光マスクを用いて行われる(1)又は(2)に記載の製造方法。
(4)前記工程[2]が互いに異なる透過スペクトルを示す2つ以上の領域を有する露光マスクを用いた一回の露光により行われる(1)に記載の方法。
(5)前記光学異方性層の20℃時の面内レターデーションが10nm以上である(1)〜(4)のいずれか1項に記載の製造方法。
【0009】
(6)前記高分子が未反応の反応性基を有する(1)〜(5)のいずれか1項に記載の製造方法。
(7)前記光学異方性層が少なくとも1つの反応性基を有する液晶性化合物を含む溶液を塗布乾燥して液晶相を形成した後、熱または電離放射線照射して重合固定化したものである(1)〜(6)のいずれか1項に記載の製造方法。
(8)前記液晶性化合物が重合条件の異なる2種類以上の反応性基を有する(7)に記載の製造方法。
(9)前記液晶性化合物が少なくともラジカル性の反応性基とカチオン性の反応性基とを有する(8)に記載の製造方法。
(10)前記ラジカル性の反応性基がアクリル基および/またはメタクリル基であり、かつ前記カチオン性基がビニルエーテル基、オキセタン基および/またはエポキシ基である(9)に記載の製造方法。
【0010】
(11)前記光学異方性層が延伸フィルムからなる(1)〜(6)のいずれか1項に記載の製造方法。
(12)前記工程[1]が、光学異方性層を含む転写材料を、被転写材料上に転写することにより行われる(1)〜(11)のいずれか1項に記載の製造方法。
(13)200℃で30分焼成したときの位相差変動が10%以下である(1)〜(12)のいずれか1項に記載の製造方法により得られる物品。
(14)偽造防止手段として用いられる(1)〜(12)のいずれか1項に記載の製造方法により得られる物品。
(15)光学素子として用いられる(1)〜(12)のいずれか1項に記載の製造方法により得られる物品。
【発明の効果】
【0011】
本発明の材料および方法を用いることによって、耐熱性のある高解像度の複屈折パターンを有する物品を得ることができる。複屈折パターンは偏光板を介さない状態ではほぼ無色透明であるが偏光板を介することによって容易に識別可能であり、偽造防止や視覚的効果付与などに効果がある。特に転写材料を用いると工程数減によるコストダウンを図ることができる。
【発明を実施するための最良の形態】
【0012】
以下、本発明を詳細に説明する。
なお、本明細書において「〜」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
【0013】
本明細書において、レターデーション又はReは面内のレターデーションを表す。面内のレターデーション(Re(λ))はKOBRA 21ADHまたはWR(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。本明細書におけるレターデーション又はReは、R、G、Bに対してそれぞれ611±5nm、545±5nm、435±5nmの波長で測定されたものを意味し、特に色に関する記載がなければ545±5nmまたは590±5nmの波長で測定されたものを意味する。
【0014】
本明細書において、角度について「実質的に」とは、厳密な角度との誤差が±5°未満の範囲内であることを意味する。さらに、厳密な角度との誤差は、4°未満であることが好ましく、3°未満であることがより好ましい。レターデーションについて「実質的に」とは、レターデーションが±5%以内の差であることを意味する。さらに、Reが実質的に0でないとは、Reが5nm以上であることを意味する。また、屈折率の測定波長は特別な記述がない限り、可視光域の任意の波長を指す。なお、本明細書において、「可視光」とは、波長が400〜700nmの光のことをいう。
【0015】
[複屈折パターン作製材料]
図1は複屈折パターン作製材料のいくつかの例の概略断面図である。複屈折パターン作製材料は複屈折パターンを作製する為の材料であり、所定の工程を経ることで複屈折パターンを有する物品を作成することができる材料である。図1(a)に示す複屈折パターン作製材料は支持体(基板)11上に光学異方性層12を有する例である。図1(b)に示す複屈折パターン作製材料は配向層13を有する例である。配向層13は、光学異方性層12として液晶性化合物を含む溶液を塗布乾燥して液晶相を形成した後、熱または電離放射線照射して重合固定化したものを用いる場合に、液晶性化合物の配向を助けるための層として機能する。
【0016】
図1(c)に示す複屈折パターン作製材料はさらに支持体11の上に反射層35を有する例である。図1(d)に示す複屈折パターン作製材料は支持体11の下に反射層35を有する例である。図1(e)に示す複屈折パターン作製材料はさらに複屈折パターン作成後に別の物品の上に貼り付けるために支持体の下に後粘着層16と剥離層17を有する例である。図1(f)に示す複屈折パターン作製材料は転写材料を用いて作られたために支持体11と光学異方性層12の間に転写接着層14を有する例である。図1(g)に示す複屈折パターン作製材料は光学異方性層を複数(12F、12S)有する例である。図1(h)に示す複屈折パターン作製材料は自己支持性の光学異方性層12の下に反射層35を有する例である。図1(i)に示す複屈折パターン作製材料はさらにパターン作成後に別の物品の上に貼り付けるために反射層35の下に後粘着層16と剥離層17を有する例である。
【0017】
[転写材料として用いられる複屈折パターン作製材料]
図2は転写材料として用いられる本発明の複屈折パターン材料のいくつかの例の概略断面図である。複屈折パターン作製材料を転写材料として用いることによって、所望の支持体上に光学異方性層を有する複屈折パターン作製材料、複数の光学異方性層を有する複屈折パターン作製材料、または複屈折パターンを有する層を複数有する物品の作製を容易に行うことができる。
【0018】
図2(a)に示す複屈折パターン作製材料は仮支持体21上に光学異方性層12を有する例である。図2(b)に示す複屈折パターン作製材料はさらに光学異方性層12の上に転写接着層14を有する例である。図2(c)に示す複屈折パターン作製用材料はさらに転写接着層14の上に表面保護層18を有する例である。図2(d)に示す複屈折パターン作製材料はさらに仮支持体21と光学異方性層12の間に仮支持体上配向層22を有する例である。図2(e)に示す複屈折パターン作製材料はさらに仮支持体21と仮支持体上配向層22の間に力学特性制御層23を有する例である。図2(f)に示す複屈折パターン作製材料は光学異方性層を複数(12F、12S)有する例である。
【0019】
[複屈折パターンを有する物品]
本明細書において、「複屈折パターンを有する物品」とは、複屈折性の異なる領域を2つ以上有する物品を意味する。複屈折パターンを有する物品は複屈折性の異なる領域を3つ以上有することがさらに好ましい。複屈折性が同一である個々の領域は連続的形状であっても非連続的形状であってもよい。
図3は複屈折パターン作製材料を用いた製造方法により得られる複屈折パターンを有する物品のいくつかの例の概略断面図である。本発明の方法により得られる複屈折パターンを有する物品は少なくとも一層のパターン化光学異方性層112を有する。本明細書において「パターン化光学異方性層」とは「複屈折性が異なる領域をパターン状に有する光学異方性層」を意味する。
【0020】
図3(a)に示す複屈折パターンを有する物品はパターン化光学異方性層112のみから成る例である。本発明の製造方法により作製される複屈折パターンを有する物品は互いに異なる露光条件で露光された複数の露光部(図3(a)においては第1露光部112−Aと第2露光部112−B)を有し、かつそれらの“互いに異なる露光条件で露光された複数の露光部”は異なる複屈折性を有する。図3(b)に示す複屈折パターンを有する物品は異なる露光条件で露光された複数の露光部(第1露光部112−Aおよび第2露光部112−B)の他に未露光部112−Nを有する例である。この場合、未露光部112−Nはいずれの露光部とも異なる複屈折性を有する。図3(c)に示す複屈折パターンを有する物品は支持体11上に支持体側から順に反射層35、転写接着層14およびパターン化光学異方性層112を有する例である。
【0021】
複屈折パターンを有する物品はパターン化光学異方性層を複数層有していてもよく、光学異方性層を複数有することによってはさらに多彩な機能を発揮することができる。図3(d)に示す複屈折パターンを有する物品は光学異方性層を複数層積層した後にパターン露光を行った例である。このような例は例えば一層の光学異方性層では出せないような大きなレターデーションを有する領域を含むパターンを作製するのに有用である。図3(e)に示す複屈折パターンを有する物品は“光学異方性層形成(転写含む)→パターン露光→ベーク”を複数回繰り返して複数の光学異方性層に互いに独立したパターンを与えた例である。例えばレターデーションあるいは遅相軸の向きが互いに異なる光学異方性層を2層以上設け、それぞれに独立したパターンを与えたい時に有用な例である。この際、互いに露光条件の異なる露光を行うパターン露光は、図に示したように単一露光条件のパターン露光と組み合わせて用いられていてもよく、全面ベタ露光と組み合わせて用いられていてもよい。
【0022】
以下、複屈折パターン作製材料、それを用いた複屈折パターンを有する物品の作製方法および複屈折パターンを有する物品の材料、作製方法等について、詳細に説明する。ただし、本発明はこの態様に限定されるものではなく、他の態様についても、以下の記載および従来公知の方法を参考にして実施可能であって、本発明は以下に説明する態様に限定されるものではない。
【0023】
[光学異方性層]
複屈折パターン作製材料における光学異方性層は、位相差を測定したときにReが実質的に0でない入射方向が一つでもある、即ち等方性でない光学特性を有する層である。
【0024】
複屈折パターン作製材料における光学異方性層は高分子を含む。高分子を含むことにより、複屈折性、透明性、耐溶媒性、強靭性および柔軟性といった異なった種類の要求を満たすことができる。該光学異方性層中の高分子は未反応の反応性基を有することが好ましい。露光により未反応の反応性基が反応して高分子鎖の架橋が起こるが、露光条件の異なる露光によって高分子鎖の架橋の程度が異なり、その結果としてレターデーション値が変化して複屈折パターンが形成しやすくなると考えられるためである。
【0025】
光学異方性層は好ましくは20℃において、より好ましくは30℃において、さらに好ましくは40℃において固体であればよい。20℃において固体であると、他の機能性層の塗布や、支持体上への転写や貼合が容易であるからである。
他の機能性層の塗布を行う為、本発明の光学異方性層は耐溶媒性を有することが好ましい。本明細書において、「耐溶媒性を有する」とは対象の溶媒に2分間浸漬した後のレターデーションが浸漬前のレターデーションの30%から170%の範囲内に、より好ましくは50%から150%の範囲内に、最も好ましくは80%から120%の範囲内にあることを意味する。対象の溶媒としては水、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、N−メチルピロリドン、ヘキサン、クロロホルム、酢酸エチルの中から、好ましくはアセトン、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、N−メチルピロリドンの中から、最も好ましくはメチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、またはこれらの混合溶媒等があげられる。
【0026】
光学異方性層は20℃においてレターデーションが5nm以上であればよく、10nm以上10000nm以下であることが好ましく、20nm以上2000nm以下であることが最も好ましい。レターデーションが5nm以下では複屈折パターンの形成が困難である場合がある。レターデーションが10000nmを越えると、誤差が大きくなり実用できる精度を達成することが困難である場合がある。
【0027】
光学異方性層の製法としては特に限定されないが、少なくとも1つの反応性基を有する液晶性化合物を含んでなる溶液を塗布乾燥して液晶相を形成した後、熱または電離放射線照射して重合固定化して作製する方法;少なくとも2つ以上の反応性基を有するモノマーを重合固定化した層を延伸する方法;高分子からなる層にカップリング剤を用いて反応性基を導入した後に延伸する方法;または高分子からなる層を延伸した後にカップリング剤を用いて反応性基を導入する方法などが挙げられる。
また、後述するように、本発明の光学異方性層は転写により形成されたものであってもよい。
前記光学異方性層の厚さは、0.1〜20μmであることが好ましく、0.5〜10μmであることがさらに好ましい。
【0028】
[液晶性化合物を含有する組成物を重合固定化してなる光学異方性層]
光学異方性層の製法として少なくとも1つの反応性基を有する液晶性化合物を含んでなる溶液を塗布乾燥して液晶相を形成した後、熱または電離放射線照射して重合固定化して作製する場合について以下に説明する。本製法は、後述する高分子を延伸して光学異方性層を得る製法と比較して、薄い膜厚で同等のレターデーションを有する光学異方性層を得ることが容易である。
【0029】
[液晶性化合物]
一般的に、液晶性化合物はその形状から、棒状タイプと円盤状タイプに分類できる。さらにそれぞれ低分子と高分子タイプがある。高分子とは一般に重合度が100以上のものを指す(高分子物理・相転移ダイナミクス,土井 正男 著,2頁,岩波書店,1992)。本発明では、いずれの液晶性化合物を用いることもできるが、棒状液晶性化合物または円盤状液晶性化合物を用いるのが好ましい。2種以上の棒状液晶性化合物、2種以上の円盤状液晶性化合物、又は棒状液晶性化合物と円盤状液晶性化合物との混合物を用いてもよい。温度変化や湿度変化を小さくできることから、反応性基を有する棒状液晶性化合物または円盤状液晶性化合物を用いて形成することがより好ましく、少なくとも1つは1液晶分子中の反応性基が2以上あることがさらに好ましい。液晶性化合物は二種類以上の混合物でもよく、その場合少なくとも1つが2以上の反応性基を有していることが好ましい。
【0030】
液晶性化合物が重合条件の異なる2種類以上の反応性基を有することもまた好ましい。この場合、条件を選択して複数種類の反応性基の一部種類のみを重合させることにより、未反応の反応性基を有する高分子を含む光学異方性層を作製することが可能となる。用いる重合条件としては重合固定化に用いる電離放射線の波長域でもよいし、用いる重合機構の違いでもよいが、好ましくは用いる開始剤の種類によって制御可能な、ラジカル性の反応基とカチオン性の反応基の組み合わせがよい。前記ラジカル性の反応性基がアクリル基および/またはメタクリル基であり、かつ前記カチオン性基がビニルエーテル基、オキセタン基および/またはエポキシ基である組み合わせが反応性を制御しやすく特に好ましい。
【0031】
棒状液晶性化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。以上のような低分子液晶性化合物だけではなく、高分子液晶性化合物も用いることができる。上記高分子液晶性化合物は、低分子の反応性基を有する棒状液晶性化合物が重合した高分子化合物である。特に好ましく用いられる上記低分子の反応性基を有する棒状液晶性化合物としては、下記一般式(I)で表される棒状液晶性化合物である。
一般式(I):Q1−L1−A1−L3−M−L4−A2−L2−Q2
式中、Q1およびQ2はそれぞれ独立に、反応性基であり、L1、L2、L3およびL4はそれぞれ独立に、単結合または二価の連結基を表す。A1およびA2はそれぞれ独立に、炭素原子数2〜20のスペーサ基を表す。Mはメソゲン基を表す。
以下に、上記一般式(I)で表される反応性基を有する棒状液晶性化合物についてさらに詳細に説明する。式中、Q1およびQ2は、それぞれ独立に、反応性基である。反応性基の重合反応は、付加重合(開環重合を含む)または縮合重合であることが好ましい。換言すれば、反応性基は付加重合反応または縮合重合反応が可能な反応性基であることが好ましい。以下に反応性基の例を示す。
【0032】
【化1】

【0033】
1、L2、L3およびL4で表される二価の連結基としては、−O−、−S−、−CO−、−NR2−、−CO−O−、−O−CO−O−、−CO−NR2−、−NR2−CO−、−O−CO−、−O−CO−NR2−、−NR2−CO−O−、およびNR2−CO−NR2−からなる群より選ばれる二価の連結基であることが好ましい。上記R2は炭素原子数が1〜7のアルキル基または水素原子である。前記式(I)中、Q1−L1およびQ2−L2−は、CH2=CH−CO−O−、CH2=C(CH3)−CO−O−およびCH2=C(Cl)−CO−O−CO−O−が好ましく、CH2=CH−CO−O−が最も好ましい。
【0034】
1およびA2は、炭素原子数2〜20を有するスペーサ基を表す。炭素原子数2〜12のアルキレン基、アルケニレン基、およびアルキニレン基が好ましく、特にアルキレン基が好ましい。スペーサ基は鎖状であることが好ましく、隣接していない酸素原子または硫黄原子を含んでいてもよい。また、前記スペーサ基は、置換基を有していてもよく、ハロゲン原子(フッ素、塩素、臭素)、シアノ基、メチル基、エチル基が置換していてもよい。
Mで表されるメソゲン基としては、すべての公知のメソゲン基が挙げられる。特に下記一般式(II)で表される基が好ましい。
一般式(II):−(−W1−L5n−W2
式中、W1およびW2は各々独立して、二価の環状アルキレン基もしくは環状アルケニレン基、二価のアリール基または二価のヘテロ環基を表し、L5は単結合または連結基を表し、連結基の具体例としては、前記式(I)中、L1〜L4で表される基の具体例、−CH2−O−、および−O−CH2−が挙げられる。nは1、2または3を表す。
【0035】
1およびW2としては、1,4−シクロヘキサンジイル、1,4−フェニレン、ピリミジン−2,5−ジイル、ピリジン−2,5ジイル、1,3,4−チアジアゾール−2,5−ジイル、1,3,4−オキサジアゾール−2,5−ジイル、ナフタレン−2,6−ジイル、ナフタレン−1,5−ジイル、チオフェン−2,5−ジイル、ピリダジン−3,6−ジイルが挙げられる。1,4−シクロヘキサンジイルの場合、トランス体およびシス体の構造異性体があるが、どちらの異性体であってもよく、任意の割合の混合物でもよい。トランス体であることがより好ましい。W1およびW2は、それぞれ置換基を有していてもよい。置換基としては、ハロゲン原子(フッ素、塩素、臭素、ヨウ素)、シアノ基、炭素原子数1〜10のアルキル基(メチル基、エチル基、プロピル基など)、炭素原子数1〜10のアルコキシ基(メトキシ基、エトキシ基など)、炭素原子数1〜10のアシル基(ホルミル基、アセチル基など)、炭素原子数1〜10のアルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基など)、炭素原子数1〜10のアシルオキシ基(アセチルオキシ基、プロピオニルオキシ基など)、ニトロ基、トリフルオロメチル基、ジフルオロメチル基などが挙げられる。
前記一般式(II)で表されるメソゲン基の基本骨格で好ましいものを、以下に例示する。これらに上記置換基が置換していてもよい。
【0036】
【化2】

【0037】
以下に、前記一般式(I)で表される化合物の例を示すが、本発明はこれらに限定されるものではない。なお、一般式(I)で表される化合物は、特表平11−513019号公報(WO97/00600)に記載の方法で合成することができる。
【0038】
【化3】

【0039】
【化4】

【0040】
【化5】

【0041】
【化6】

【0042】
【化7】

【0043】
【化8】

【0044】
本発明の他の態様として、前記光学異方性層にディスコティック液晶を使用した態様がある。前記光学異方性層は、モノマー等の低分子量の液晶性ディスコティック化合物の層または重合性の液晶性ディスコティック化合物の重合(硬化)により得られるポリマーの層であるのが好ましい。前記ディスコティック(円盤状)化合物の例としては、C.Destradeらの研究報告、Mol.Cryst.71巻、111頁(1981年)に記載されているベンゼン誘導体、C.Destradeらの研究報告、Mol.Cryst.122巻、141頁(1985年)、Physicslett,A,78巻、82頁(1990)に記載されているトルキセン誘導体、B.Kohneらの研究報告、Angew.Chem.96巻、70頁(1984年)に記載されたシクロヘキサン誘導体およびJ.M.Lehnらの研究報告、J.Chem.Commun.,1794頁(1985年)、J.Zhangらの研究報告、J.Am.Chem.Soc.116巻、2655頁(1994年)に記載されているアザクラウン系やフェニルアセチレン系マクロサイクルなどを挙げることができる。上記ディスコティック(円盤状)化合物は、一般的にこれらを分子中心の円盤状の母核とし、直鎖のアルキル基やアルコキシ基、置換ベンゾイルオキシ基等の基(L)が放射線状に置換された構造であり、液晶性を示し、一般的にディスコティック液晶とよばれるものが含まれる。ただし、このような分子の集合体が一様に配向した場合は負の一軸性を示すが、この記載に限定されるものではない。また、本発明において、円盤状化合物から形成したとは、最終的にできた物が前記化合物である必要はなく、例えば、前記低分子ディスコティック液晶が熱、光等で反応する基を有しており、結果的に熱、光等で反応により重合または架橋し、高分子量化し液晶性を失ったものも含まれる。
【0045】
本発明では、下記一般式(III)で表わされるディスコティック液晶性化合物を用いるのが好ましい。
一般式(III): D(−L−P)n
式中、Dは円盤状コアであり、Lは二価の連結基であり、Pは重合性基であり、nは4〜12の整数である。
前記式(III)中、円盤状コア(D)、二価の連結基(L)および重合性基(P)の好ましい具体例は、それぞれ、特開2001−4837号公報に記載の(D1)〜(D15)、(L1)〜(L25)、(P1)〜(P18)が挙げられ、同公報に記載される円盤状コア(D)、二価の連結基(L)および重合性基(P)に関する内容をここに好ましく適用することができる。
上記ディスコティック化合物の好ましい例を下記に示す。
【0046】
【化9】

【0047】
【化10】

【0048】
【化11】

【0049】
【化12】

【0050】
【化13】

【0051】
【化14】

【0052】
光学異方性層は、液晶性化合物を含有する組成物(例えば塗布液)を、後述する配向層の表面に塗布し、所望の液晶相を示す配向状態とした後、該配向状態を熱又は電離放射線の照射により固定することで作製された層であるのが好ましい。
液晶性化合物として、反応性基を有する円盤状液晶性化合物を用いる場合、水平配向、垂直配向、傾斜配向、およびねじれ配向のいずれの配向状態で固定されていてもよい。尚、本明細書において「水平配向」とは、棒状液晶の場合、分子長軸と透明支持体の水平面が平行であることをいい、円盤状液晶の場合、円盤状液晶性化合物のコアの円盤面と透明支持体の水平面が平行であることをいうが、厳密に平行であることを要求するものではなく、本明細書では、水平面とのなす傾斜角が10度未満の配向を意味するものとする。傾斜角は0〜5度が好ましく、0〜3度がより好ましく、0〜2度がさらに好ましく、0〜1度が最も好ましい。
【0053】
液晶性化合物を含む組成物からなる光学異方性層を2層以上積層する場合、液晶性化合物の組み合わせについては特に限定されず、全て円盤状液晶性化合物からなる層の積層体、全て棒状性液晶性化合物からなる層の積層体、円盤状液晶性化合物を含む組成物からなる層と棒状性液晶性化合物を含む組成物からなる層の積層体であってもよい。また、各層の配向状態の組み合わせも特に限定されず、同じ配向状態の光学異方性層を積層してもよいし、異なる配向状態の光学異方性層を積層してもよい。
【0054】
光学異方性層は、液晶性化合物および下記の重合開始剤や他の添加剤を含む塗布液を、後述する所定の配向層の上に塗布することで形成することが好ましい。塗布液の調製に使用する溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N−ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2−ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
【0055】
[液晶性化合物の配向状態の固定化]
配向させた液晶性化合物は、配向状態を維持して固定することが好ましい。固定化は、液晶性化合物に導入した反応性基の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれるが、光重合反応がより好ましい。光重合反応としては、ラジカル重合、カチオン重合のいずれでも構わない。ラジカル光重合開始剤の例には、α−カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α−炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp−アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60−105667号公報、米国特許4239850号明細書記載)およびオキサジアゾール化合物(米国特許4212970号明細書記載)が含まれる。カチオン光重合開始剤の例には、有機スルフォニウム塩系、ヨードニウム塩系、フォスフォニウム塩系等を例示する事ができ、有機スルフォニウム塩系、が好ましく、トリフェニルスルフォニウム塩が特に好ましい。これら化合物の対イオンとしては、ヘキサフルオロアンチモネート、ヘキサフルオロフォスフェートなどが好ましく用いられる。
【0056】
光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.5〜5質量%であることがさらに好ましい。液晶性化合物の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、10mJ/cm2〜10J/cm2であることが好ましく、25〜800mJ/cm2であることがさらに好ましい。照度は10〜1000mW/cm2であることが好ましく、20〜500mW/cm2であることがより好ましく、40〜350mW/cm2であることがさらに好ましい。照射波長としては250〜450nmにピークを有することが好ましく、300〜410nmにピークを有することがさらに好ましい。光重合反応を促進するため、窒素などの不活性ガス雰囲気下あるいは加熱条件下で光照射を実施してもよい。
【0057】
[偏光照射による光配向]
前記光学異方性層は、偏光照射による光配向で面内のレターデーションが発現あるいは増加した層であってもよい。この偏光照射は上記配向固定化における光重合プロセスを兼ねてもよいし、先に偏光照射を行ってから非偏光照射でさらに固定化を行ってもよいし、非偏光照射で先に固定化してから偏光照射によって光配向を行ってもよいが、偏光照射のみを行うか先に偏光照射を行ってから非偏光照射でさらに固定化を行うことが望ましい。偏光照射が上記配向固定化における光重合プロセスを兼ねる場合であってかつ重合開始剤としてラジカル重合開始剤を用いる場合、偏光照射は酸素濃度0.5%以下の不活性ガス雰囲気下で行うことが好ましい。照射エネルギーは、20mJ/cm2〜10J/cm2であることが好ましく、100〜800mJ/cm2であることがさらに好ましい。照度は20〜1000mW/cm2であることが好ましく、50〜500mW/cm2であることがより好ましく、100〜350mW/cm2であることがさらに好ましい。偏光照射によって硬化する液晶性化合物の種類については特に制限はないが、反応性基としてエチレン不飽和基を有する液晶性化合物が好ましい。照射波長としては300〜450nmにピークを有することが好ましく、350〜400nmにピークを有することがさらに好ましい。
【0058】
[偏光照射後の紫外線照射による後硬化]
前記光学異方性層は、最初の偏光照射(光配向のための照射)の後に、偏光もしくは非偏光紫外線をさらに照射してもよい。最初の偏光照射の後に偏光もしくは非偏光紫外線をさらに照射することで反応性基の反応率を高め(後硬化)、密着性等を改良し、大きな搬送速度で生産できるようになる。後硬化は偏光でも非偏光でも構わないが、偏光であることが好ましい。また、2回以上の後硬化をすることが好ましく、偏光のみでも、非偏光のみでも、偏光と非偏光を組み合わせてもよいが、組み合わせる場合は非偏光より先に偏光を照射することが好ましい。紫外線照射は不活性ガス置換してもしなくてもよいが、特に重合開始剤としてラジカル重合開始剤を用いる場合は酸素濃度0.5%以下の不活性ガス雰囲気下で行うのが好ましい。照射エネルギーは、20mJ/cm2〜10J/cm2であることが好ましく、100〜800mJ/cm2であることがさらに好ましい。照度は20〜1000mW/cm2であることが好ましく、50〜500mW/cm2であることがより好ましく、100〜350mW/cm2であることがさらに好ましい。照射波長としては偏光照射の場合は300〜450nmにピークを有することが好ましく、350〜400nmにピークを有することがさらに好ましい。非偏光照射の場合は200〜450nmにピークを有することが好ましく、250〜400nmにピークを有することがさらに好ましい。
【0059】
[ラジカル性の反応性基とカチオン性の反応性基を有する液晶化合物の配向状態の固定化]
前述したように、液晶性化合物が重合条件の異なる2種類以上の反応性基を有することもまた好ましい。この場合、条件を選択して複数種類の反応性基の一部種類のみを重合させることにより、未反応の反応性基を有する高分子を含む光学異方性層を作製することが可能である。このような液晶性化合物として、ラジカル性の反応基とカチオン性の反応基を有する液晶性化合物(具体例としては例えば、前述のI−22〜I−25)を用いた場合に特に適した重合固定化の条件について以下に説明する。
【0060】
まず、重合開始剤としては重合させようと意図する反応性基に対して作用する光重合開始剤のみを用いることが好ましい。すなわち、ラジカル性の反応基を選択的に重合させる場合にはラジカル光重合開始剤のみを、カチオン性の反応基を選択的に重合させる場合にはカチオン光重合開始剤のみを用いることが好ましい。光重合開始剤の使用量は、塗布液の固形分の0.01〜20質量%であることが好ましく、0.1〜8質量%であることがより好ましく、0.5〜4質量%であることが特に好ましい。
【0061】
次に、重合のための光照射は紫外線を用いることが好ましい。この際、照射エネルギーおよび/または照度が強すぎるとラジカル性反応性基とカチオン性反応性基の両方が非選択的に反応してしまう恐れがある。したがって、照射エネルギーは、5mJ/cm2〜500mJ/cm2であることが好ましく、10〜400mJ/cm2であることがより好ましく、20mJ/cm2〜200mJ/cm2であることが特に好ましい。また照度は5〜500mW/cm2であることが好ましく、10〜300mW/cm2であることがより好ましく、20〜100mW/cm2であることが特に好ましい。照射波長としては250〜450nmにピークを有することが好ましく、300〜410nmにピークを有することがさらに好ましい。
【0062】
また光重合反応のうち、ラジカル光重合開始剤を用いた反応は酸素によって阻害され、カチオン光重合開始剤を用いた反応は酸素によって阻害されない。従って、液晶性化合物としてラジカル性の反応基とカチオン性の反応基を有する液晶化合物を用いてその反応性基の片方種類を選択的に重合させる場合、ラジカル性の反応基を選択的に重合させる場合には窒素などの不活性ガス雰囲気下で光照射を行うことが好ましく、カチオン性の反応基を選択的に重合させる場合には敢えて酸素を有する雰囲気下(例えば大気下)で光照射を行うことが好ましい。
【0063】
[水平配向剤]
前記光学異方性層の形成用組成物中に、下記一般式(1)〜(3)で表される化合物および一般式(4)のモノマーを用いた含フッ素ホモポリマーまたはコポリマーの少なくとも一種を含有させることで、液晶性化合物の分子を実質的に水平配向させることができる。
以下、下記一般式(1)〜(4)について、順に説明する。
【0064】
【化15】

【0065】
式中、R1、R2およびR3は各々独立して、水素原子又は置換基を表し、X1、X2およびX3は単結合又は二価の連結基を表す。R1〜R3で各々表される置換基としては、好ましくは置換もしくは無置換の、アルキル基(中でも、無置換のアルキル基またはフッ素置換アルキル基がより好ましい)、アリール基(中でもフッ素置換アルキル基を有するアリール基が好ましい)、置換もしくは無置換のアミノ基、アルコキシ基、アルキルチオ基、ハロゲン原子である。X1、X2およびX3で各々表される二価の連結基は、アルキレン基、アルケニレン基、二価の芳香族基、二価のヘテロ環残基、−CO−、−NRa−(Raは炭素原子数が1〜5のアルキル基または水素原子)、−O−、−S−、−SO−、−SO2−およびそれらの組み合わせからなる群より選ばれる二価の連結基であることが好ましい。二価の連結基は、アルキレン基、フェニレン基、−CO−、−NRa−、−O−、−S−およびSO2−からなる群より選ばれる二価の連結基又は該群より選ばれる基を少なくとも二つ組み合わせた二価の連結基であることがより好ましい。アルキレン基の炭素原子数は、1〜12であることが好ましい。アルケニレン基の炭素原子数は、2〜12であることが好ましい。二価の芳香族基の炭素原子数は、6〜10であることが好ましい
【0066】
【化16】

【0067】
式中、Rは置換基を表し、mは0〜5の整数を表す。mが2以上の整数を表す場合、複数個のRは同一でも異なっていてもよい。Rとして好ましい置換基は、R1、R2、およびR3で表される置換基の好ましい範囲として挙げたものと同じである。mは、好ましくは1〜3の整数を表し、特に好ましくは2又は3である。
【0068】
【化17】

【0069】
式中、R4、R5、R6、R7、R8およびR9は各々独立して、水素原子又は置換基を表す。R4、R5、R6、R7、R8およびR9でそれぞれ表される置換基は、好ましくは一般式(1)におけるR1、R2およびR3で表される置換基の好ましいものとして挙げたものである。本発明に用いられる水平配向剤については、特開2005−99248号公報の段落番号[0092]〜[0096]に記載の化合物を用いることができ、それら化合物の合成法も該明細書に記載されている。
【0070】
【化18】

【0071】
式中、Rは水素原子またはメチル基を表し、Xは酸素原子、硫黄原子を表し、Zは水素原子またはフッ素原子を表し、mは1以上6以下の整数、nは1以上12以下の整数を表す。一般式(4)を含む含フッ素ポリマー以外にも、塗布におけるムラ改良ポリマーとして特開2005−206638および特開2006−91205に記載の化合物を水平配向剤として用いることができ、それら化合物の合成法も該明細書に記載されている。
水平配向剤の添加量としては、液晶性化合物の質量の0.01〜20質量%が好ましく、0.01〜10質量%がより好ましく、0.02〜1質量%が特に好ましい。なお、前記一般式(1)〜(4)にて表される化合物は、単独で用いてもよいし、二種以上を併用してもよい。
【0072】
[延伸によって作製される光学異方性層]
光学異方性層は高分子の延伸によって作製されたものでもよい。光学異方性層は少なくとも1つの未反応の反応性基を持つ事が好ましいが、このような高分子を作製する際にはあらかじめ反応性基を有する高分子を延伸してもよいし、延伸後の光学異方性層にカップリング剤などを用いて反応性基を導入してもよい。延伸法によって得られる光学異方性層の特長としては、コストが安いこと、及び自己支持性を持つ(光学異方性層の形成及び維持に支持体を要しない)ことなどが挙げられる。
【0073】
[光学異方性の後処理]
作製された光学異方性層を改質するために、様々な後処理を行ってもよい。後処理としては例えば、密着性向上の為のコロナ処理や、柔軟性向上の為の可塑剤添加、保存性向上の為の熱重合禁止剤添加、反応性向上の為のカップリング処理などが挙げられる。また、光学異方性層中の高分子が未反応の反応性基を有する場合、該反応性基に対応する重合開始剤を添加することも有効な改質手段である。例えば、カチオン性の反応性基とラジカル性の反応性基を有する液晶性化合物をカチオン光重合開始剤を用いて重合固定化した光学異方性層に対してラジカル光重合開始剤を添加することで、後にパターン露光を行う際の未反応のラジカル性の反応性基の反応を促進することができる。可塑剤や光重合開始剤の添加手段としては、例えば、光学異方性層を該当する添加剤の溶液に浸漬する手段や、光学異方性層の上に該当する添加剤の溶液を塗布して浸透させる手段などが挙げられる。また、光学異方性層の上に他の層を塗布する際にその層の塗布液に添加剤を添加しておき、光学異方性層に浸漬させる方法もあげられる。本発明においては、この際に浸漬させる添加剤、特には光重合開始剤の種類や量により、後に述べる複屈折パターン材料へのパターン露光時の各領域への露光量と最終的に得られる各領域のレターデーションとの関係を調整し、所望する材料特性に近づけることが可能である。
【0074】
[複屈折パターン作製材料]
複屈折パターン作製材料は複屈折パターンを作製する為の材料であり、所定の工程を経る事で複屈折パターンを得る事ができる材料である。複屈折パターン作製材料は通常、フィルム、またはシート形状であればよい。複屈折パターン作製材料は前述の光学異方性層のほかに、様々な副次的機能を付与することが可能である機能性層を有していてもよい。機能性層としては、支持体、配向層、反射層、後粘着層などが挙げられる。また、転写材料として用いられる複屈折パターン作製用材料、又は転写材料を用いて作製された複屈折パターン作製材料などにおいて、仮支持体、転写接着層、または力学特性制御層を有していてもよい。
【0075】
[支持体]
複屈折パターン作製材料は力学的な安定性を保つ目的で支持体を有してもよい。複屈折パターン作製材料に用いられる支持体には特に限定はなく、剛直なものでもフレキシブルなものでもよい。剛直な支持体としては特に限定はないが表面に酸化ケイ素皮膜を有するソーダガラス板、低膨張ガラス、ノンアルカリガラス、石英ガラス板等の公知のガラス板、アルミ板、鉄板、SUS板などの金属板、樹脂板、セラミック板、石板などが挙げられる。フレキシブルな支持体としては特に限定はないがセルロースエステル(例、セルロースアセテート、セルロースプロピオネート、セルロースブチレート)、ポリオレフィン(例、ノルボルネン系ポリマー)、ポリ(メタ)アクリル酸エステル(例、ポリメチルメタクリレート)、ポリカーボネート、ポリエステルおよびポリスルホン、ノルボルネン系ポリマーなどのプラスチックフィルムや紙、アルミホイル、布などが挙げられる。取扱いの容易さから、剛直な支持体の膜厚としては、100〜3000μmが好ましく、300〜1500μmがより好ましい。フレキシブルな支持体の膜厚としては、3〜500μmが好ましく、10〜200μmがより好ましい。支持体は後に述べるベークで着色したり変形したりしないだけの耐熱性を有することが好ましい。後述する反射層の代わりに、支持体自体が反射機能を有することもまた好ましい。
【0076】
[配向層]
上記した様に、光学異方性層の形成には、配向層を利用してもよい。配向層は、一般に支持体もしくは仮支持体上又は支持体もしくは仮支持体上に塗設された下塗層上に設けられる。配向層は、その上に設けられる液晶性化合物の配向方向を規定するように機能する。配向層は、光学異方性層に配向性を付与できるものであれば、どのような層でもよい。配向層の好ましい例としては、有機化合物(好ましくはポリマー)のラビング処理された層、無機化合物の斜方蒸着層、およびマイクログルーブを有する層、さらにω−トリコサン酸、ジオクタデシルメチルアンモニウムクロライドおよびステアリル酸メチル等のラングミュア・ブロジェット法(LB膜)により形成される累積膜、あるいは電場あるいは磁場の付与により誘電体を配向させた層を挙げることができる。
【0077】
配向層用の有機化合物の例としては、ポリメチルメタクリレート、アクリル酸/メタクリル酸共重合体、スチレン/マレインイミド共重合体、ポリビニルアルコール、ポリ(N−メチロールアクリルアミド)、ポリビニルピロリドン、スチレン/ビニルトルエン共重合体、クロロスルホン化ポリエチレン、ニトロセルロース、ポリ塩化ビニル、塩素化ポリオレフィン、ポリエステル、ポリイミド、酢酸ビニル/塩化ビニル共重合体、エチレン/酢酸ビニル共重合体、カルボキシメチルセルロース、ポリエチレン、ポリプロピレンおよびポリカーボネート等のポリマーおよびシランカップリング剤等の化合物を挙げることができる。好ましいポリマーの例としては、ポリイミド、ポリスチレン、スチレン誘導体のポリマー、ゼラチン、ポリビニルアルコールおよびアルキル基(炭素原子数6以上が好ましい)を有するアルキル変性ポリビニルアルコールを挙げることができる。
【0078】
配向層の形成には、ポリマーを使用するのが好ましい。利用可能なポリマーの種類は、液晶性化合物の配向(特に平均傾斜角)に応じて決定することができる。例えば、液晶性化合物を水平に配向させるためには配向層の表面エネルギーを低下させないポリマー(通常の配向用ポリマー)を用いる。具体的なポリマーの種類については液晶セルまたは光学補償シートについて種々の文献に記載がある。例えば、ポリビニルアルコールもしくは変性ポリビニルアルコール、ポリアクリル酸もしくはポリアクリル酸エステルとの共重合体、ポリビニルピロリドン、セルロースもしくは変性セルロース等が好ましく用いられる。配向層用素材には液晶性化合物の反応性基と反応できる官能基を有してもよい。反応性基は、側鎖に反応性基を有する繰り返し単位を導入するか、あるいは、環状基の置換基として導入することができる。界面で液晶性化合物と化学結合を形成する配向層を用いることがより好ましく、かかる配向層としては特開平9−152509号公報に記載されており、酸クロライドやカレンズMOI(昭和電工(株)製)を用いて側鎖にアクリル基を導入した変性ポリビニルアルコールが特に好ましい。配向層の厚さは0.01〜5μmであることが好ましく、0.05〜2μmであることがさらに好ましい。配向層は酸素遮断膜としての機能を有していてもよい。
【0079】
また、LCDの配向層として広く用いられているポリイミド膜(好ましくはフッ素原子含有ポリイミド)も有機配向層として好ましい。これはポリアミック酸(例えば、日立化成工業(株)製のLQ/LXシリーズ、日産化学(株)製のSEシリーズ等)を支持体面に塗布し、100〜300℃で0.5〜1時間焼成した後、ラビングすることにより得られる。
【0080】
また、前記ラビング処理は、LCDの液晶配向処理工程として広く採用されている処理方法を利用することができる。即ち、配向層の表面を、紙やガーゼ、フェルト、ゴムあるいはナイロン、ポリエステル繊維などを用いて一定方向に擦ることにより配向を得る方法を用いることができる。一般的には、長さおよび太さが均一な繊維を平均的に植毛した布などを用いて数回程度ラビングを行うことにより実施される。
【0081】
また、無機斜方蒸着膜の蒸着物質としては、SiO2を代表とし、TiO2、ZnO2等の金属酸化物、あるいやMgF2等のフッ化物、さらにAu、Al等の金属が挙げられる。尚、金属酸化物は、高誘電率のものであれば斜方蒸着物質として用いることができ、上記に限定されるものではない。無機斜方蒸着膜は、蒸着装置を用いて形成することができる。フィルム(支持体)を固定して蒸着するか、あるいは長尺フィルムを移動させて連続的に蒸着することにより無機斜方蒸着膜を形成することができる。
【0082】
[反射層]
複屈折パターン作製材料は、より容易に識別できる複屈折パターンの作製のために反射層を有していてもよい。反射層としては特に限定されないが、例えばアルミや銀などの金属層が挙げられる。
【0083】
[後粘着層]
複屈折パターン作製材料は、後述のパターン露光及びベーク後に作製される複屈折パターンを有する物品をさらに他の物品に貼付するための後粘着層を有していてもよい。後粘着層の材料は特に限定されないが、複屈折パターン作製の為のベークの工程を経てた後でも粘着性を有する材料であることが好ましい。
【0084】
[2層以上の光学異方性層]
複屈折パターン作製材料は、光学異方性層を2層以上有してもよい。2層以上の光学異方性層は法線方向に互いに隣接していてもよいし、間に別の機能性層を挟んでいてもよい。2層以上の光学異方性層は互いにほぼ同等のレターデーションを有していてもよく、異なるレターデーションを有していてもよい。また遅相軸の方向が互いにほぼ同じ方向を向いていてもよく、異なる向きを向いていてもよい。
【0085】
遅相軸が同じ向きを向くように積層した2層以上の光学異方性層を有する複屈折パターン作製材料を用いる例として、大きなレターデーションを有するパターンを作製する場合が挙げられる。手持ちの光学異方性層では一層では必要とするレターデーションに足りない場合でも、二層三層と積層してからパターン露光することで大きなレターデーションを有する領域を含むパターン化光学異方性層を容易に得ることができる。
【0086】
[複屈折パターン作製材料の作製方法]
複屈折パターン作製材料を作製する方法としては特に限定されないが、例えば、支持体上に光学異方性層を直接形成する、別の複屈折パターン作製材料を転写材料として用いて支持体上に光学異方性層を転写する、自己支持性の光学異方性層として形成する、自己支持性の光学異方性層上に他の機能性層を形成する、自己支持性の光学異方性層に支持体に貼合する、などの方法が挙げられる。このうち光学異方性層の物性に制約を加えないという点からは支持体上に光学異方性層を直接形成する方法と転写材料を用いて支持体上に光学異方性層を転写する方法が好ましく、さらに支持体に対する制約が少ない点から転写材料を用いて支持体上に光学異方性層を転写する方法がより好ましい。
【0087】
光学異方性層を2層以上含む複屈折パターン作製材料を作製する方法としては、複屈折パターン作製材料上に光学異方性層を直接形成する、別の複屈折パターン作製材料を転写材料として用いて複屈折パターン作製材料上に光学異方性層を転写するなどの方法が挙げられる。このうち複屈折パターン作製材料を転写材料として用いて複屈折パターン作製材料上に光学異方性層を転写する方法がより好ましい。
以下に、転写材料として用いられる複屈折パターン作製材料について説明する。なお、転写材料として用いられる複屈折パターン作製材料は、後述の実施例などにおいて「複屈折パターン作製用転写材料」という場合がある。
【0088】
[仮支持体]
転写材料として用いられる複屈折パターン作製材料は仮支持体を有することが好ましい。仮支持体は、透明でも不透明でもよく特に限定はない。仮支持体を構成するポリマーの例には、セルロースエステル(例、セルロースアセテート、セルロースプロピオネート、セルロースブチレート)、ポリオレフィン(例、ノルボルネン系ポリマー)、ポリ(メタ)アクリル酸エステル(例、ポリメチルメタクリレート)、ポリカーボネート、ポリエステルおよびポリスルホン、ノルボルネン系ポリマーが含まれる。製造工程において光学特性を検査する目的には、透明支持体は透明で低複屈折の材料が好ましく、低複屈折性の観点からはセルロースエステルおよびノルボルネン系が好ましい。市販のノルボルネン系ポリマーとしては、アートン(JSR(株)製)、ゼオネックス、ゼオノア(以上、日本ゼオン(株)製)などを用いることができる。また安価なポリカーボネートやポリエチレンテレフタレート等も好ましく用いられる。
【0089】
[転写用接着層]
転写材料は転写接着層を有することが好ましい。転写接着層としては、透明で着色がなく、十分な転写性を有していれば特に制限はなく、粘着剤による粘着層、感圧性樹脂層、感熱性樹脂層、感光性樹脂層などが挙げられるが、液晶表示装置用基板等に用いられる場合に必要な耐ベーク性から感光性もしくは感熱性樹脂層が望ましい。
【0090】
粘着剤としては、例えば、光学的透明性に優れ、適度な濡れ性、凝集性や接着性の粘着特性を示すものが好ましい。具体的な例としては、アクリル系ポリマーやシリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテル、合成ゴム等のポリマーを適宜ベースポリマーとして調製された粘着剤等が挙げられる。粘着剤層の粘着特性の制御は、例えば、粘着剤層を形成するベースポリマーの組成や分子量、架橋方式、架橋性官能基の含有割合、架橋剤の配合割合等によって、その架橋度や分子量を調節するというような、従来公知の方法によって適宜行うことができる。
【0091】
感圧性樹脂層としては、圧力をかけることによって接着性を発現すれば特に限定はなく、感圧性接着剤には、ゴム系,アクリル系,ビニルエーテル系,シリコーン系の各粘着剤が使用できる。粘着剤の製造段階,塗工段階の形態では、溶剤型粘着剤,非水系エマルジョン型粘着剤,水系エマルジョン型粘着剤,水溶性型粘着剤,ホットメルト型粘着剤,液状硬化型粘着剤,ディレードタック型粘着剤等が使用できる。ゴム系粘着剤は、新高分子文庫13「粘着技術」(株)高分子刊行会P.41(1987)に記述されている。ビニルエーテル系粘着剤は、炭素数2〜4のアルキルビニルエーテル重合物を主剤としたもの,塩化ビニル/酢酸ビニル共重合体,酢酸ビニル重合体,ポリビニルブチラール等に可塑剤を混合したものがある。シリコーン系粘着剤は、フィルム形成と膜の凝縮力を与えるためゴム状シロキサンを使い、粘着性や接着性を与えるために樹脂状シロキサンを使ったものが使用できる。
【0092】
感熱性樹脂層としては、熱をかけることによって接着性を発現すれば特に限定はなく、感熱性接着剤としては、熱溶融性化合物、熱可塑性樹脂などを挙げることができる。前記熱溶融性化合物としては、例えば、ポリスチレン樹脂、アクリル樹脂、スチレン−アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂等の熱可塑性樹脂の低分子量物、カルナバワックス、モクロウ、キャンデリラワックス、ライスワックス、及び、オウリキュリーワックス等の植物系ワックス類、蜜ロウ、昆虫ロウ、セラック、及び、鯨ワックスなどの動物系ワックス類、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、フィッシャー・トロプシュワックス、エステルワックス、及び、酸化ワックスなどの石油系ワックス類、モンタンロウ、オゾケライト、及びセレシンワックスなどの鉱物系ワックス類等の各種ワックス類を挙げることができる。さらに、ロジン、水添ロジン、重合ロジン、ロジン変性グリセリン、ロジン変性マレイン酸樹脂、ロジン変性ポリエステル樹脂、ロジン変性フェノール樹脂、及びエステルガム等のロジン誘導体、フェノール樹脂、テルペン樹脂、ケトン樹脂、シクロペンタジエン樹脂、芳香族炭化水素樹脂、脂肪族系炭化水素樹脂、及び脂環族系炭化水素樹脂などを挙げることができる。
【0093】
なお、これらの熱溶融性化合物は、分子量が通常10,000以下、特に5,000以下で融点もしくは軟化点が50〜150℃の範囲にあるものが好ましい。これらの熱溶融性化合物は、1種単独で使用してもよく、2種以上を併用してもよい。また、前記熱可塑性樹脂としては、例えば、エチレン系共重合体、ポリアミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン系樹脂、アクリル系樹脂、及びセルロース系樹脂などを挙げることができる。これらのなかでも、特に、エチレン系共重合体等が好適に使用される。
【0094】
感光性樹脂層は、感光性樹脂組成物よりなり、ポジ型でもネガ型でもよく特に限定はなく、市販のレジスト材料を用いることもできる。転写接着層として用いられる場合、光照射によって接着性を発現することが好ましい。また、液晶表示装置用基板等の物品の製造工程における環境上や防爆上の問題から、有機溶剤が5%以下の水系現像であることが好ましく、アルカリ現像であることが特に好ましい。また、感光性樹脂層は少なくとも(1)ポリマーと、(2)モノマー又はオリゴマーと、(3)光重合開始剤又は光重合開始剤系とを含む樹脂組成物から形成するのが好ましい。
【0095】
以下、これら(1)〜(3)の成分について説明する。
(1)ポリマー
ポリマー(以下、単に「バインダ」ということがある。)としては、側鎖にカルボン酸基やカルボン酸塩基などの極性基を有するポリマーからなるアルカリ可溶性樹脂が好ましい。その例としては、特開昭59−44615号公報、特公昭54−34327号公報、特公昭58−12577号公報、特公昭54−25957号公報、特開昭59−53836号公報および特開昭59−71048号公報に記載されているようなメタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等を挙げることができる。また側鎖にカルボン酸基を有するセルロース誘導体も挙げることができ、またこの他にも、水酸基を有するポリマーに環状酸無水物を付加したものも好ましく使用することができる。また、特に好ましい例として、米国特許第4139391号明細書に記載のベンジル(メタ)アクリレートと(メタ)アクリル酸との共重合体や、ベンジル(メタ)アクリレートと(メタ)アクリル酸と他のモノマーとの多元共重合体を挙げることができる。これらの極性基を有するバインダポリマーは、単独で用いてもよく、或いは通常の膜形成性のポリマーと併用する組成物の状態で使用してもよい。全固形分に対するポリマーの含有量は20〜70質量%が一般的であり、25〜65質量%が好ましく、25〜45質量%がより好ましい。
【0096】
(2)モノマー又はオリゴマー
前記感光性樹脂層に使用されるモノマー又はオリゴマーとしては、エチレン性不飽和二重結合を2個以上有し、光の照射によって付加重合するモノマー又はオリゴマーであることが好ましい。そのようなモノマーおよびオリゴマーとしては、分子中に少なくとも1個の付加重合可能なエチレン性不飽和基を有し、沸点が常圧で100℃以上の化合物を挙げることができる。その例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレートおよびフェノキシエチル(メタ)アクリレートなどの単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート;トリメチロールプロパンやグリセリン等の多官能アルコールにエチレンオキシド又はプロピレンオキシドを付加した後(メタ)アクリレート化したもの等の多官能アクリレートや多官能メタクリレートを挙げることができる。
更に特公昭48−41708号公報、特公昭50−6034号公報および特開昭51−37193号公報に記載されているウレタンアクリレート類;特開昭48−64183号公報、特公昭49−43191号公報および特公昭52−30490号公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレー卜やメタクリレートを挙げることができる。
これらの中で、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが好ましい。
また、この他、特開平11−133600号公報に記載の「重合性化合物B」も好適なものとして挙げることができる。
これらのモノマー又はオリゴマーは、単独でも、2種類以上を混合して用いてもよく、着色樹脂組成物の全固形分に対する含有量は5〜50質量%が一般的であり、10〜40質量%が好ましい。
【0097】
(3)光重合開始剤又は光重合開始剤系
前記感光性樹脂層に使用される光重合開始剤又は光重合開始剤系としては、米国特許第2367660号明細書に開示されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載のα−炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書および同第2951758号明細書に記載の多核キノン化合物、米国特許第3549367号明細書に記載のトリアリールイミダゾール2量体とp−アミノケトンの組み合わせ、特公昭51−48516号公報に記載のベンゾチアゾール化合物とトリハロメチル−s−トリアジン化合物、米国特許第4239850号明細書に記載されているトリハロメチル−トリアジン化合物、米国特許第4212976号明細書に記載されているトリハロメチルオキサジアゾール化合物等を挙げることができる。特に、トリハロメチル−s−トリアジン、トリハロメチルオキサジアゾールおよびトリアリールイミダゾール2量体が好ましい。
また、この他、特開平11−133600号公報に記載の「重合開始剤C」も好適なものとしてあげることができる。
【0098】
これらの光重合開始剤又は光重合開始剤系は、単独でも、2種類以上を混合して用いてもよいが、特に2種類以上を用いることが好ましい。少なくとも2種の光重合開始剤を用いると、表示特性、特に表示のムラが少なくできる。
着色樹脂組成物の全固形分に対する光重合開始剤又は光重合開始剤系の含有量は、0.5〜20質量%が一般的であり、1〜15質量%が好ましい。
【0099】
感光性樹脂層は、ムラを効果的に防止するという観点から、適切な界面活性剤を含有させることが好ましい。前記界面活性剤は、感光性樹脂組成物と混ざり合うものであれば使用可能である。本発明に用いる好ましい界面活性剤としては、特開2003−337424号公報[0090]〜[0091]、特開2003−177522号公報[0092]〜[0093]、特開2003−177523号公報[0094]〜[0095]、特開2003−177521号公報[0096]〜[0097]、特開2003−177519号公報[0098]〜[0099]、特開2003−177520号公報[0100]〜[0101]、特開平11−133600号公報の[0102]〜[0103]、特開平6−16684号公報の発明として開示されている界面活性剤が好適なものとして挙げられる。より高い効果を得る為にはフッ素系界面活性剤、および/又はシリコン系界面活性剤(フッ素系界面活性剤、又は、シリコン系界面活性剤、フッソ原子と珪素原子の両方を含有する界面活性剤)のいずれか、あるいは2種以上を含有することが好ましく、フッ素系界面活性剤が最も好ましい。フッ素系界面活性剤を用いる場合、該界面活性剤分子中のフッ素含有置換基のフッ素原子数は1〜38が好ましく、5〜25がより好ましく、7〜20が最も好ましい。フッ素原子数が多すぎるとフッ素を含まない通常の溶媒に対する溶解性が落ちる点で好ましくない。フッ素原子数が少なすぎると、ムラの改善効果が得られない点で好ましくない。
特に好ましい界面活性剤として、下記一般式(a)および、一般式(b)で表されるモノマーを含み、且つ一般式(a)/一般式(b)の質量比が20/80〜60/40の共重合体を含有するものが挙げられる。
【0100】
【化19】

【0101】
式中、R1、R2およびR3はそれぞれ独立に水素原子またはメチル基を示し、R4は水素原子または炭素数1〜5のアルキル基を示す。nは1〜18の整数、mは2〜14の整数を示す。p、qは0〜18の整数を示すが、p、qがいずれも同時に0になる場合は含まない。
【0102】
特に好ましい界面活性剤の一般式(a)で表されるモノマーをモノマー(a)、一般式(b)で表されるモノマーをモノマー(b)と記す。一般式(a)に示すCm2m+1は、直鎖でも分岐鎖でもよい。mは2〜14の整数を示し、好ましくは4〜12の整数である。Cm2m+1の含有量は、モノマー(a)に対して20〜70質量%が好ましく、特に好ましくは40〜60質量%である。R1は水素原子またはメチル基を示す。またnは1〜18を示し、中でも2〜10が好ましい。一般式(b)に示すR2およびR3は、各々独立に水素原子またはメチル基を示し、R4は水素原子または炭素数が1〜5のアルキル基を示す。pおよびqは0〜18の整数を示すが、p、qがいずれも0は含まない。pおよびqは好ましくは2〜8である。
【0103】
また、特に好ましい界面活性剤1分子中に含まれるモノマー(a)としては、互いに同じ構造のものでも、上記定義範囲で異なる構造のものを用いてもよい。このことは、モノマー(b)についても同様である。
特に好ましい界面活性剤の重量平均分子量Mwは、1000〜40000が好ましく、更には5000〜20000がより好ましい。界面活性剤は前記一般式(a)および一般式(b)で表されるモノマーを含み、且つ一般式(a)/一般式(b)の質量比が20/80〜60/40の共重合体を含有することを特徴とする。特に好ましい界面活性剤100質量部は、モノマー(a)が20〜60質量部、モノマー(b)が80〜40質量部、およびその他の任意モノマーがその残りの質量部からなることが好ましく、更には、モノマー(a)が25〜60質量部、モノマー(b)が60〜40質量部、およびその他の任意モノマーがその残りの質量部からなることが好ましい。
【0104】
モノマー(a)および(b)以外の共重合可能なモノマーとしては、スチレン、ビニルトルエン、α−メチルスチレン、2−メチルスチレン、クロルスチレン、ビニル安息香酸、ビニルベンゼンスルホン酸ソーダ、アミノスチレン等のスチレンおよびその誘導体、置換体、ブタジエン、イソプレン等のジエン類、アクリロニトリル、ビニルエーテル類、メタクリル酸、アクリル酸、イタコン酸、クロトン酸、マレイン酸、部分エステル化マレイン酸、スチレンスルホン酸無水マレイン酸、ケイ皮酸、塩化ビニル、酢酸ビニル等のビニル系単量体等が挙げられる。
特に好ましい界面活性剤は、モノマー(a)、モノマー(b)等の共重合体であるが、そのモノマー配列は特に制限はなくランダムでも規則的、例えば、ブロックでもグラフトでもよい。更に、特に好ましい界面活性剤は、分子構造および/又はモノマー組成の異なるものを2以上混合して用いることができる。
前記界面活性剤の含有量としては、感光性樹脂層の層全固形分に対して0.01〜10質量%が好ましく、特に0.1〜7質量%が好ましい。界面活性剤は、特定構造の界面活性剤とエチレンオキサイド基、およびポリプロピレンオキサイド基とを所定量含有するもので、感光性樹脂層に特定範囲で含有することにより該感光性樹脂層を備えた液晶表示装置の表示ムラが改善される。全固形分に対して0.01質量%未満であると、表示ムラが改善されず、10質量%を超えると、表示ムラ改善の効果があまり現れない。上記の特に好ましい界面活性剤を前記感光性樹脂層中に含有させカラーフィルタを作製すると、表示ムラが改良される点で好ましい。
【0105】
好ましいフッ素系界面活性剤の具体例としては、特開2004−163610号公報の段落番号[0054]〜[0063]に記載の化合物が挙げられる。また、下記市販の界面活性剤をそのまま用いることもできる。使用できる市販の界面活性剤として、例えばエフトップEF301、EF303、(新秋田化成(株)製)、フロラードFC430、431(住友スリーエム(株)製)、メガファックF171、F173、F176、F189、R08(大日本インキ(株)製)、サーフロンS−382、SC101、102、103、104、105、106(旭硝子(株)製)等のフッ素系界面活性剤、又は、シリコン系界面活性剤を挙げることができる。またポリシロキサンポリマーKP−341(信越化学工業(株)製)、トロイゾルS−366(トロイケミカル(株)製)もシリコン系界面活性剤として用いることができる。本発明においては、一般式(a)で表されるモノマーを含まないフッ素系界面活性剤である、特開2004−331812号公報の段落番号[0046]〜[0052]に記載の化合物を用いることも好ましい。
【0106】
[力学特性制御層]
転写材料の、仮支持体と光学異方性層の間には、力学特性や凹凸追従性をコントロールするために力学特性制御層を形成することが好ましい。力学特性制御層としては、柔軟な弾性を示すもの、熱により軟化するもの、熱により流動性を呈するものなどが好ましく、熱可塑性樹脂層が特に好ましい。熱可塑性樹脂層に用いる成分としては、特開平5−72724号公報に記載されている有機高分子物質が好ましく、ヴイカーVicat法(具体的にはアメリカ材料試験法エーエステーエムデーASTMD1235によるポリマー軟化点測定法)による軟化点が約80℃以下の有機高分子物質より選ばれることが特に好ましい。具体的には、ポリエチレン、ポリプロピレンなどのポリオレフィン、エチレンと酢酸ビニル或いはそのケン化物の様なエチレン共重合体、エチレンとアクリル酸エステル或いはそのケン化物、ポリ塩化ビニル、塩化ビニルと酢酸ビニルおよびそのケン化物の様な塩化ビニル共重合体、ポリ塩化ビニリデン、塩化ビニリデン共重合体、ポリスチレン、スチレンと(メタ)アクリル酸エステル或いはそのケン化物の様なスチレン共重合体、ポリビニルトルエン、ビニルトルエンと(メタ)アクリル酸エステル或いはそのケン化物の様なビニルトルエン共重合体、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸ブチルと酢酸ビニル等の(メタ)アクリル酸エステル共重合体、酢酸ビニル共重合体ナイロン、共重合ナイロン、N−アルコキシメチル化ナイロン、N−ジメチルアミノ化ナイロンの様なポリアミド樹脂等の有機高分子が挙げられる。
【0107】
[剥離層]
転写材料として用いられる複屈折パターン作製材料は仮支持体の上に剥離層を有してもよい。剥離層は仮支持体と剥離層間の、あるいは剥離層とその直上層の間の密着力を制御し、光学異方性層を転写した後の仮支持体の剥離を助ける役目を負う。また前述の他の機能層、例えば配向層や力学特性制御層などが剥離層としての機能を有してもよい。
転写材料においては、複数の塗布層の塗布時、および塗布後の保存時における成分の混合を防止する目的から、中間層を設けることが好ましい。該中間層としては、特開平5−72724号公報に「分離層」として記載されている、酸素遮断機能のある酸素遮断膜や、前記光学異方性形成用の配向層を用いることが好ましい。これらの内、特に好ましいのは、ポリビニルアルコールもしくはポリビニルピロリドンとそれらの変性物の一つもしくは複数を混合してなる層である。前記熱可塑性樹脂層や前記酸素遮断膜、前記配向層を兼用することもできる。
【0108】
[表面保護層]
樹脂層の上には、貯蔵の際の汚染や損傷から保護する為に薄い表面保護層を設けることが好ましい。表面保護層の性質は特に限定されず、仮支持体と同じか又は類似の材料からなってもよいが、隣接する層(例えば転写接着層)から容易に分離されねばならない。表面保護層の材料としては例えばシリコン紙、ポリオレフィンもしくはポリテトラフルオロエチレンシートが適当である。
【0109】
光学異方性層、感光性樹脂層、転写接着層および所望により形成される配向層、熱可塑性樹脂層、力学特性制御層および中間層等の各層は、ディップコート法、エアーナイフコート法、スピンコート法、スリットコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法(米国特許2681294号明細書)により、塗布により形成することができる。二以上の層を同時に塗布してもよい。同時塗布の方法については、米国特許2761791号、同2941898号、同3508947号、同3526528号の各明細書および原崎勇次著、コーティング工学、253頁、朝倉書店(1973)に記載がある。
また、光学異方性層上に塗布する層(例えば転写接着層)の塗布の際には、その塗布液に可塑剤や光重合開始剤を添加することにより、それらの添加剤の浸漬による光学異方性層の改質を同時に行ってもよい。
【0110】
[転写材料を被転写材料上に転写する方法]
転写材料を支持体(基板)等の被転写材料上に転写する方法については特に制限されず、基板上に上記光学異方性層を転写できれば特に方法は限定されない。例えば、フィルム状に形成した転写材料を、転写接着層面を被転写材料表面側にして、ラミネータを用いて加熱および/又は加圧したローラー又は平板で圧着又は加熱圧着して、貼り付けることができる。具体的には、特開平7−110575号公報、特開平11−77942号公報、特開2000−334836号公報、特開2002−148794号公報に記載のラミネータおよびラミネート方法が挙げられるが、低異物の観点で、特開平7−110575号公報に記載の方法を用いるのが好ましい。
被転写材料としては、支持体、支持体及び他の機能性層を含む積層体、又は複屈折パターン作製材料が挙げられる。
【0111】
[転写に伴う工程]
複屈折パターン作製用転写材料を被転写材料上に転写した後、仮支持体は剥離してもよく、しなくともよい。ただし剥離しない場合には仮支持体がその後のパターン露光に適した透明性やベークに耐え得る耐熱性などを有していることが好ましい。また、光学異方性層と一緒に転写される不要の層を除去する工程があってもよい。例えば配向層としてポリビニルアルコールとポリビニルピロリドンの共重合体を用いた場合には、弱アルカリ性の水系現像液での現像により配向層より上の層の除去が可能である。現像の方式としては、パドル現像、シャワー現像、シャワー&スピン現像、ディップ現像等、公知の方法を用いることができる。現像液の液温度は20℃〜40℃が好ましく、また、現像液のpHは8〜13が好ましい。
【0112】
また転写後、必要に応じて仮支持体の剥離や不要層の除去を行った後の表面に他の層を形成してもよい。あるいは必要に応じて仮支持体の剥離や不要層の除去を行った後の表面に転写材料を転写してもよい。この際に用いる転写材料は先に転写した転写材料と同じでもよく、異なってもよい。また、先に転写した転写材料の光学異方性層の遅相軸と新たに転写する転写材料の光学異方性層と遅相軸は互いに同じ向きでもよく、異なる向きでもよい。前述のように、複数層の光学異方性層を転写する事は遅相軸の向きを揃えた複数層の光学異方性層を積層した大きなレターデーションを持つ複屈折パターンや遅相軸の向きの異なる複数層を積層した特殊な複屈折パターンの作製などに有用である。
【0113】
[複屈折パターンを有する物品の作製]
複屈折パターン作製材料に少なくとも、パターン露光及び加熱(ベーク)をこの順に行うことにより、複屈折パターンを有する物品を作製することができる。
【0114】
[パターン露光]
本明細書において、パターン露光とは、複屈折パターン作製材料の一部の領域のみが露光されるように行う露光を意味する。パターン露光の手法としてはマスクを用いたコンタクト露光、プロキシ露光、投影露光などでもよいし、レーザーや電子線などを用いてマスクなしに決められた位置にフォーカスして直接描画してもよい。
前記露光の光源の照射波長としては250〜450nmにピークを有することが好ましく、300〜410nmにピークを有することがさらに好ましい。具体的には、超高圧水銀灯、高圧水銀灯、メタルハライドランプ、青色レーザー等が挙げられる。好ましい露光量としては通常3〜2000mJ/cm2程度であり、より好ましくは5〜1000mJ/cm2程度、最も好ましくは10〜500mJ/cm2程度である。
【0115】
[パターン露光時の露光条件]
本発明の製造方法は、複屈折パターン作製材料の2つ以上の領域に互いに露光条件の異なる露光(パターン露光)を行うことを特徴とする。このときの「2つ以上の領域」は互いに重なる部位を有していても有していなくてもよいが、互いに重なる部位を有していないことが好ましい。パターン露光は複数回の露光によって行われてもよく、もしくは、例えば領域によって異なる透過スペクトルを示す2つ以上の領域を有するマスク等を用いて1回の露光によって行われていてもよく、又は両者が組み合わされていてもよい。本発明の製造方法はすなわち、パターン露光時に、異なる露光条件で露光された2つ以上の露光領域を生ずるような形で露光が行われていることを特徴とする。
【0116】
露光条件としては、特に限定はされないが、露光ピーク波長、露光照度、露光時間、露光量、露光時の温度、露光時の雰囲気等が挙げられる。この中で、条件調整の容易性の観点から、露光ピーク波長、露光照度、露光時間、および露光量が好ましく、露光照度、露光時間および露光量がさらに好ましい。パターン露光時に相異なる露光条件で露光された領域はその後、焼成を経て相異なる、かつ露光条件によって制御された複屈折性を示す。特に異なるレターデーション値を与える。すなわち、パターン露光の際に領域ごとに露光条件を調整することにより、焼成を経た後に領域ごとに異なる、かつ所望のレターデーションを有する複屈折パターンを作製することが可能である。なお、異なる露光条件で露光された2つ以上の露光領域間の露光条件は不連続に変化させてもよいし、連続的に変化させてもよい。
【0117】
[マスク露光]
露光条件の異なる露光領域を生じる手段として、露光マスクを用いた露光は有用である。例えば1つの領域のみを露光するような露光マスクを用いて露光を行った後に、温度、雰囲気、露光照度、露光時間、露光波長を変えて別のマスクを用いた露光や全面露光を行うことで、先に露光された領域と後に露光された領域の露光条件は容易に変更することができる。また、露光照度、あるいは露光波長を変えるためのマスクとして領域によって異なる透過スペクトルを示す2つ以上の領域を有するマスクは特に有用である。この場合、ただ一度の露光を行うだけで複数の領域に対して異なる露光照度、あるいは露光波長での露光を行うことができる。異なる露光照度の元で同一時間の露光を行う事で異なる露光量を与えることができることは言うまでもない。
またレーザーなどを用いた走査露光を用いる場合には、露光領域によって光源強度を変える、走査速度を変えるなどの手法で領域ごとに露光条件を変えることが可能である。
【0118】
また、複屈折パターン作製材料にパターン露光を行って得られた積層体の上に新たな複屈折パターン作製用転写材料を転写し、その後に新たにパターン露光を行う手法を併用してもよい。この場合、一度目及び二度目ともに未露光部である領域(通常レターデーション値が一番低い)、一度目に露光部であり二度目に未露光部である領域、及び、一度目及び二度目ともに露光部である領域(通常レターデーション値が一番高い)でベーク後に残るレターデーションの値を効果的に変えることができる。なお、一度目に未露光部であり二度目に露光部である領域は、二度目の露光により一度目及び二度目ともに露光部である領域と同様となると考えられる。同様にして転写とパターン露光を交互に三度、四度と行うことにより、四つ以上の領域を作ることも容易にできる。この手法は、異なる領域の間で、露光条件だけでは与え得ないような差異(光学軸の方向の違いや非常に大きなレターデーションの差異など)を持たせたい時に有用である。
【0119】
[加熱(ベーク)]
パターン露光された複屈折パターン作製材料に対して50℃以上400℃以下、好ましくは80℃以上400℃以下に加熱を行うことにより複屈折パターンを作製することができる。
【0120】
また、ベークを行った複屈折パターン材料の上に新たな複屈折パターン作製用転写材料を転写し、その後に新たにパターン露光とベークを行ってもよい。この場合、一度目及び二度目の露光条件で組み合わせて、二度目のベーク後に残るレターデーションの値を効果的に変えることができる。この手法は、例えば互いに遅相軸の方向が異なる複屈折性を持つ二つの領域を互いに重ならない形で作りたい時に有用である。
【0121】
[複屈折パターンに積層される機能性層]
複屈折パターン作製材料は、上述のように露光及びベークを行って複屈折性パターンを作製された後に、さらに様々な機能を持った機能性層を積層され、複屈折パターンを有する物品となっていてもよい。機能性層としては、特に限定されるものではないが、例えば表面の傷つきを防止するハードコート層や、複屈折パターンの視認を容易にする反射層などがあげられる。識別を容易とする為、特に複屈折パターンの下に反射層を有することが好ましい。
【0122】
[複屈折パターンを有する物品]
複屈折パターン作製材料に上述のように露光及びベークを行って得られる物品は通常はほぼ無色透明である一方で、二枚の偏光板で挟まれた場合、あるいは反射層と偏光板とで挟まれた場合においては特徴的な明暗、あるいは色を示し容易に目視で認識できる。この性質を生かして、上記の製造方法により得られる複屈折パターンを有する物品は、例えば偽造防止手段として利用することができる。すなわち、本発明の作製方法で作製された複屈折パターンを有する物品、特に反射層を含む複屈折パターンを有する物品は通常は目視ではほぼ不可視な一方で、偏光板を介することで容易に多色の画像が識別可能となる。複屈折パターンは偏光板を介さずにコピーしても何も映らず、逆に偏光板を介してコピーすると永続的な、つまりは偏光板無しでも目視可能なパターンとして残る。従って複屈折パターンの複製は困難である。このような複屈折パターンの作製法は広まっておらず、材料も特殊であることから、偽造防止手段として用いるに適していると考えられる。
【0123】
[光学素子]
また、上記の製造方法により得られる複屈折パターンを有する物品は光学素子への利用も可能である。例えば上記の製造方法により得られる複屈折パターンを有する物品を構造的な光学素子として用いた場合、特定の偏光にのみ効果を与える特殊な光学素子の作製が可能である。一例として、本発明の屈折率のパターンによって作製された回折格子は特定の偏光を強く回折する偏光分離素子として機能し、プロジェクターや光通信分野への応用が可能である。
【実施例】
【0124】
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
【0125】
(実施例1:複屈折パターン作製材料の作製及び前記複屈折パターン作製材料を用いた、任意のレターデーションを有する複屈折サンプルの作製)
(力学特性制御層用塗布液CU−1の調製)
下記の組成物を調製し、孔径30μmのポリプロピレン製フィルタでろ過して、力学特性制御層用塗布液CU−1として用いた。
B−1はメチルメタクリレート、2−エチルヘキシルアクリレート、ベンジルメタクリレートおよびメタクリル酸の共重合体で共重合組成比(モル比)=55/30/10/5、重量平均分子量=10万、Tg≒70℃である。
B−2はスチレンとアクリル酸の共重合体で共重合組成比(モル比)=65/35、重量平均分子量=1万、Tg≒100℃である。
【0126】
──────────────────────────────────―
力学特性制御層用塗布液組成(%)
──────────────────────────────────―
バインダー(B−1) 5.89
バインダー(B−2) 13.74
BPE−500(新中村化学(株)製) 9.20
メガファックF−780−F(大日本インキ化学工業(株)製) 0.55
メタノール 11.22
プロピレングリコールモノメチルエーテルアセテート 6.43
メチルエチルケトン 52.97
──────────────────────────────────―
【0127】
(配向層用塗布液AL−1の調製)
下記の組成物を調製し、孔径30μmのポリプロピレン製フィルタでろ過して、配向層用塗布液AL−1として用いた。
──────────────────────────────────―
配向層用塗布液組成(%)
──────────────────────────────────―
ポリビニルアルコール(PVA205、クラレ(株)製) 3.21
ポリビニルピロリドン(Luvitec K30、BASF社製) 1.48
蒸留水 52.10
メタノール 43.21
──────────────────────────────────―
【0128】
(光学異方性層用塗布液LC−1の調製)
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、光学異方性層用塗布液LC−1として用いた。
LC−1−1は2つの反応性基を有する液晶化合物であり、2つの反応性基の片方はラジカル性の反応性基であるアクリル基、他方はカチオン性の反応性基であるオキセタン基である。
LC−1−2は配向制御の目的で添加する円盤状の化合物である。Tetrahedron Lett.誌、第43巻、6793頁(2002)に記載の方法に準じて合成した。
【0129】
──────────────────────────────────―────
光学異方性層用塗布液組成(%)
──────────────────────────────────―────
棒状液晶(LC−1−1) 32.59
水平配向剤(LC−1−2) 0.02
カチオン系光重合開始剤
(CPI100−P、サンアプロ株式会社製) 0.66
重合制御剤(IRGANOX1076、チバ・スペシャルティ・ケミカルズ(株)製) 0.07
メチルエチルケトン 66.66
──────────────────────────────────―────
【0130】
【化20】

【0131】
(転写接着層用塗布液AD−1の調製)
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、転写接着層用塗布液AD−1として用いた。
B−3はベンジルメタクリレート、メタクリル酸およびメタクリル酸メチルの共重合体で共重合組成比(モル比)=35.9/22.4/41.7、重量平均分子量=3.8万である。
RPI−1としては2−トリクロロメチル−5−(p−スチリルスチリル)
1,3,4−オキサジアゾールを用いた。
【0132】
──────────────────────────────────―
転写接着層用塗布液組成(質量%)
──────────────────────────────────―
バインダー(B−3) 8.05
KAYARAD DPHA(日本化薬(株)製) 4.83
ラジカル光重合開始剤(RPI−1) 0.12
ハイドロキノンモノメチルエーテル 0.002
メガファックF−176PF(大日本インキ化学工業(株)製) 0.05
プロピレングリコールモノメチルエーテルアセテート 34.80
メチルエチルケトン 50.538
メタノール 1.61
──────────────────────────────────―
【0133】
(光学異方性層塗布サンプルTRC−1および複屈折パターン作製用転写材料TR−1の作製)
厚さ100μmの易接着ポリエチレンテレフタレートフィルム(コスモシャインA4100、東洋紡績(株)製)の仮支持体の上に、ワイヤーバーを用いて順に、力学特性制御層用塗布液CU−1、配向層用塗布液AL−1を塗布、乾燥した。乾燥膜厚はそれぞれ14.6μm、1.6μmであった。次いで、ワイヤーバーを用いて光学異方性層用塗布液LC−1を塗布、膜面温度90℃で2分間乾燥して液晶相状態とした後、空気下にて160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射してその配向状態を固定化して厚さ3.5μmの光学異方性層を形成して光学異方性層塗布サンプルTRC−1を作製した。この際用いた紫外線の照度はUV−A領域(波長320nm〜400nmの積算)において100mW/cm2、照射量はUV−A領域において80mJ/cm2であった。TRC−1の光学異方性層は20℃で固体の高分子で、耐MEK(メチルエチルケトン)性を示した。最後に、光学異方性層塗布サンプルTRC−1の上に転写接着層用塗布液AD−1を塗布、乾燥して1.2μmの転写接着層を形成した後に保護フィルム(厚さ12μmのポリプロピレンフィルム)を圧着し、複屈折パターン作製用転写材料TR−1を作製した。
【0134】
(複屈折パターン作製材料BPM―1の作製)
無アルカリガラス基板を、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3%水溶液、商品名:KBM−603、信越化学)をシャワーにより20秒間吹き付け、純水シャワー洗浄してシラン処理ガラスを得た。前記複屈折パターン作製用転写材料TR−1の保護フィルムを剥離後、ラミネータ((株)日立インダストリイズ製(LamicII型))を用い、前記シラン処理ガラスにローラー温度130℃、線圧100N/cm、搬送速度1.4m/分でラミネートした。この際、シラン処理ガラスに対して105℃2分間の予熱を行った。ラミネート後、仮支持体を剥離して複屈折パターン作製材料BPM−1を作製した。
【0135】
(位相差測定)
複屈折パターン作製材料BPM−1について、ファイバ型分光計を用いた平行ニコル法により、波長550nmにおける正面レターデーションRe(0)を測定した。位相差測定結果を表1に示す。
【0136】
【表1】

【0137】
(異なる露光量で作製したサンプルの比較)
次に、複屈折パターン作製材料BPM−1に対してミカサ社製M−3Lマスクアライナーを用いて異なる条件A〜Kで露光を行った後に230℃のクリーンオーブンで1時間の焼成を行い、露光量依存性測定用のサンプルBP−1A〜BP−1Kを作製した。露光条件としては、露光照度は6.25mW/cm2で共通とし、露光時間を変えることで露光量を変えた。各条件の露光時間および露光量と焼成後に得られたサンプルのレターデーションを測定した結果を表2に、露光量とレターデーションの関係のグラフを図4に示す。
【0138】
【表2】

【0139】
表および図に示したように、焼成後の各サンプルのレターデーションは未露光のものでほぼゼロとなり、露光量を増やすにつれて焼成後のレターデーションも増加し、ある程度(本実施例では100mJ/cm2)以上の露光量ではほぼ飽和した。図4のデータを元に適切な露光量を与えれば、焼成後のサンプルのレターデーションを飽和値以下の範囲で調整可能である。すなわち、本発明の複屈折パターン作製材料と製造方法(適切な露光量によるパターン露光と焼成)を用いる事により、(飽和値以下の)任意のレターデーションパターンを有するサンプルを得る事が可能である。
【0140】
(実施例2:転写接着層中の光重合開始剤の濃度により露光量と焼成後レターデーションの関係を調整した複屈折サンプルの作製)
(転写接着層用塗布液AD−2、AD−3の調製)
AD−1より光重合開始剤濃度を変更した転写接着層用塗布液として、新たにAD−2およびAD−3を調製し、孔径0.2μmのポリプロピレン製フィルタでろ過して用いた。AD−2およびAD−3の処方をAD−1と比較して表3に示す。AD−1に対して、光重合開始剤濃度を減じた処方がAD−2、増した処方がAD−3である。
【0141】
【表3】

【0142】
(複屈折パターン作製用転写材料TR−2およびTR−3、複屈折パターン作製材料BPM−2およびBPM−3の作製)
転写接着層用塗布液としてAD−1の代わりにAD−2もしくはAD−3を用いた以外はTR−1と同様にして、複屈折パターン作製用転写材料TR−2およびTR−3を作製した。さらに複屈折パターン作製用転写材料としてTR−1の代わりにTR−2およびTR−3を用いた以外はBPM−1と同様にして、複屈折パターン作製材料BPM−2およびBPM−3を作製した。
【0143】
(位相差測定)
複屈折パターン作製材料BPM−2およびBPM−3について、ファイバ型分光計を用いた平行ニコル法により波長550nmにおける正面レターデーションRe(0)を測定した。位相差測定結果をBPM−1と比較して表4に示す。
【0144】
【表4】

【0145】
(露光量と焼成後レターデーションの比較)
次に、複屈折パターン作製材料BPM−2およびBPM−3に対して実施例1と同様にしてミカサ社製M−3Lマスクアライナーを用いて異なる露光量で露光を行った後に230℃のクリーンオーブンで1時間のベークを行い、露光量依存性測定用サンプルを作製した。露光条件としては、露光照度は6.25mW/cm2で共通とし、露光時間を変えることで露光量を変えた。サンプルごとの露光量と焼成後のレターデーションを測定した結果を表5に、露光量とレターデーションの関係のグラフを図5に示す。表には、併せてそれぞれの材料作製で用いた転写接着層用塗布液中の光重合開始剤の濃度も示した
【0146】
【表5】

【0147】
表および図に示す結果から、転写接着層用塗布液の処方(本実施例では光重合開始剤の濃度)を変えることにより、各サンプルの焼成前露光量と焼成後レターデーションの関係を調整することが可能であることがわかる。
例えば、転写接着層中の光重合開始剤を減じた場合には露光量の増加に対する焼成後レターデーションの増加はなだらかになる。焼成後レターデーションを細かく調整したい場合にはこのような光重合開始剤を減じた処方が有用である。
【0148】
一方で、転写接着層中の光重合開始剤を増した場合には露光量の増加に対する焼成後レターデーションの増加はより急激になり早期に飽和する。中間のレターデーションがあまり必要なく、かつ露光時間の短縮にもつながる露光量の低減を行いたい場合にはこのような光重合開始剤を増した処方が有用である。
このように用途に応じて転写接着層の光重合開始剤の濃度を変えることにより、複屈折パターン作製材料の特性をより適したものへと調整することが可能である。
【0149】
(実施例3:転写接着層中の光重合開始剤の種類により露光量と焼成後レターデーションの関係を調整した複屈折サンプルの作製)
(転写接着層用塗布液AD−4の調製)
AD−1より光重合開始剤を変更した転写接着層用塗布液として、新たにAD−4を調製し、孔径0.2μmのポリプロピレン製フィルタでろ過して用いた。AD−4の処方をAD−1と比較して表6に示す。
RPI−2としては2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチル)−3−ブロモフェニル]−s−トリアジンを用いた。
【0150】
【表6】

【0151】
(複屈折パターン作製用転写材料TR−4、複屈折パターン作製材料BPM−4の作製)
転写接着層用塗布液としてAD−1の代わりにAD−4を用いた以外はTR−1と同様にして、複屈折パターン作製用転写材料TR−4を作製した。さらに複屈折パターン作製用転写材料としてTR−1の代わりにTR−4を用いた以外はBPM−1と同様にして、複屈折パターン作製材料BPM−4を作製した。
【0152】
(位相差測定)
複屈折パターン作製材料BPM−4について、ファイバ型分光計を用いた平行ニコル法により波長550nmにおける正面レターデーションRe(0)を測定した。位相差測定結果をBPM−1と比較して表7に示す。
【0153】
【表7】

【0154】
(露光量と焼成後レターデーションの比較)
次に、複屈折パターン作製材料BPM−4に対して実施例1と同様にしてミカサ社製M−3Lマスクアライナーを用いて異なる露光量で露光を行った後に230℃のクリーンオーブンで1時間のベークを行い、露光量依存性測定用サンプルを作製した。露光条件としては、露光照度は6.25mW/cm2で共通とし、露光時間を変えることで露光量を変えた。サンプルごとの露光量と焼成後のレターデーションを測定した結果を表8に、露光量とレターデーションの関係のグラフを図6に示す。表には、併せてそれぞれの材料作製で用いた転写接着層用塗布液中の光重合開始剤の種類も示した
【0155】
【表8】

【0156】
表および図に示す結果から、転写接着層用塗布液の処方において光重合開始剤の種類を変えることでも、各サンプルの焼成前露光量と焼成後レターデーションの関係を調整することが可能であることがわかる。すなわち、転写接着層中の光重合開始剤種を変更したBPM−4は(少なくとも)100nmまでの範囲では露光量に対して非常になだらかに変化することから、この範囲で細かいレターデーションの調整を行いたい場合には極めて有用である。
【0157】
このように用途に応じて転写接着層の光重合開始剤の種類を変えることによっても、複屈折パターン作製材料の特性をより適したものへと調整することが可能である。特に例を挙げては述べないが、光重合開始剤以外にも様々な添加剤を加える事により複屈折パターン作製材料の特性を調整することが可能である。
【0158】
(実施例4:基材上に直接塗布された光学異方性層を用いた複屈折サンプルの作製)
(光学異方性層用塗布液LC−2の調製)
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、光学異方性層用塗布液LC−2として用いた。
LC−2−1は2つの反応性基を有する液晶化合物であり、2つの反応性基の片方はラジカル性の反応性基であるメタクリル基、他方はカチオン性の反応性基であるオキセタン基である。
【0159】
──────────────────────────────────―
光学異方性層用塗布液組成(%)
──────────────────────────────────―
棒状液晶(LC−2−1) 32.64
水平配向剤(LC−1−2) 0.02
カチオン系光重合開始剤
(Cyracure UVI6974、ダウ・ケミカル社製) 0.67
メチルエチルケトン 66.67
──────────────────────────────────―
【0160】
【化21】

【0161】
(透明樹脂層用塗布液CL−1の調製)
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、透明樹脂層用塗布液CL−1として用いた。
B−4はベンジルメタクリレートとメタクリル酸の共重合体で共重合組成比(モル比)=72.0/28.0、重量平均分子量=3.8万である。
【0162】
──────────────────────────────────―
透明樹脂層用塗布液組成(質量%)
──────────────────────────────────―
バインダー(B−4) 11.57
NKエステル A−BPE−10(新中村化学工業(株)製) 1.30
ラジカル光重合開始剤(RPI−1) 0.12
ハイドロキノンモノメチルエーテル 0.002
メガファックF−176PF(大日本インキ化学工業(株)製) 0.05
メチルエチルケトン 86.96
──────────────────────────────────―
【0163】
(配向膜付きガラスの作製)
無アルカリガラス基板を、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、ポリイミド系配向膜作製用塗布液(商品名:SE−410、日産化学工業(株)製)を毎分5000回転でスピンコートした。この基板を基板予備加熱装置で100℃5分加熱した後に200℃のクリーンオーブンで1時間焼成した後にラビング処理を行い、配向膜付きガラスを得た。
【0164】
(基材上への直接塗布を用いた複屈折パターン作製材料BPM−5の作製)
前記配向膜付きガラス上にワイヤーバーを用いて光学異方性層用塗布液LC−2を塗布、膜面温度90℃で2分間乾燥して液晶相状態とした後、空気下にて160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射してその配向状態を固定化して厚さ1.5μmの光学異方性層を形成した。この際用いた紫外線の照度はUV−B領域(波長280nm〜320nmの積算)において50mW/cm2、照射量はUV−B領域において120mJ/cm2であった。さらにその上に透明樹脂層用塗布液CL−1を塗布、乾燥して1.2μmの透明樹脂層を形成し、複屈折パターン作製材料BMP−5を作製した。
【0165】
(位相差測定)
複屈折パターン作製材料BPM−5について、ファイバ型分光計を用いた平行ニコル法により、波長550nmにおける正面レターデーションRe(0)を測定した。位相差測定結果を表9に示す。
【0166】
【表9】

【0167】
(異なる露光量で作製したサンプルの比較)
次に、複屈折パターン作製材料BPM−5に対してミカサ社製M−3Lマスクアライナーを用いて異なる露光量で露光を行った後に230℃のクリーンオーブンで1時間のベークを行い、露光量依存性測定用サンプルを作製した。露光条件としては、露光照度は6.25mW/cm2で共通とし、露光時間を変えることで露光量を変えた。サンプルごとの露光量と焼成後のレターデーションを測定した結果を表10に、露光量とレターデーションの関係のグラフを図7に示す。
【0168】
【表10】

【0169】
表および図に示したように、本発明の製造方法は基材上に直接塗布して作製した複屈折パターン作製材料に対しても有効である。
【0170】
(実施例5:互いに異なる濃度を有する複数領域を持つ露光マスクを用いた、レターデーションの異なる複数領域を有する複屈折パターンの作製)
(本発明の複屈折パターン作製材料BPM−6の作製)
無アルカリガラス基板を、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、シランカップリング液(N−β(アミノエチル)γ-アミノプロピルトリメトキシシラン0.3%水溶液、商品名:KBM−603、信越化学)をシャワーにより20秒間吹き付け、純水シャワー洗浄してシラン処理ガラスを得た。
【0171】
前記複屈折パターン作製用転写材料TR−1の保護フィルムを剥離後、ラミネータ((株)日立インダストリイズ製(LamicII型))を用い、前記シラン処理ガラスにローラー温度130℃、線圧100N/cm、搬送速度1.4m/分でラミネートした。この際、シラン処理ガラスに対して105℃2分間の予熱を行った。
【0172】
ラミネート後、仮支持体を剥離した後の基板に再度同様の手法で複屈折パターン作製用転写材料TR−1をラミネートした。この際、先にラミネートした光学異方性層と後にラミネートした光学異方性層の両者の遅相軸方向が概ね一致するように注意した。ラミネート後、仮支持体を剥離して複数層の光学異方性層を積層した本発明の複屈折パターン作製材料BPM−6を作製した。
【0173】
(互いに異なる濃度を有する複数領域を持つ露光マスクを用いたレターデーションパターンの作製)
BPM−6に対してミカサ社製M−3Lマスクアライナーと濃度の異なる4つの領域を有するフォトマスクIを用いて露光照度6.25mW/cm2で7.5秒間の露光を行った。この際に用いたフォトマスクについて図8に示す。フォトマスクIは濃度の異なる4つの領域L〜Oと非透過部からなる。各々の領域のλ=365nmの紫外光に対する透過率を表11に示す。
【0174】
【表11】

【0175】
露光後のBPM−6に対して230℃のクリーンオーブンで1時間のベークを行い、レターデーションパターンBP−2を作製した。フォトマスクの領域L〜Oに対応する位置のサンプルの領域L’〜O’におけるレターデーションを測定した結果を、フォトマスクの領域L〜Oの透過率と併せて表12に示す。
【0176】
【表12】

【0177】
このように、互いに異なる濃度を有する複数領域を持つ露光マスクを用いることで、ただ一度きりの露光によって、領域ごとに異なったレターデーションを有する複屈折パターンの作製が可能となる。この手法は、フォトマスクとして複雑な濃度マスクを用いてでも同じ複屈折パターンを大量に迅速に作製したい場合に特に有用である。
【0178】
(実施例6:複数の露光マスクを用いた複屈折パターン作製)
BPM−6に対して、パターンの異なる4枚のフォトマスクII、III、IV、Vを用いて各1回ずつのマスク露光を行なった。用いたマスクの図を図9に示す。
【0179】
露光に際してはミカサ社製M−3Lマスクアライナーを用いて露光照度6.25mW/cm2で行い、各マスクに応じて露光時間を変えて露光を行なった。各々の露光時間を表13に示す。
【0180】
【表13】

【0181】
露光後のBPM−2に対して230℃のクリーンオーブンで1時間のベークを行い、レターデーションパターンBP−3を作製した。作製されたサンプルを図10に示す。サンプルの領域P、領域Q、領域R、領域Sの位置はそれぞれフォトマスクII、フォトマスクIII、フォトマスクIV、フォトマスクVの開口部に対応していた。サンプルの領域P〜Sにおけるレターデーションを測定した結果を、各領域が対応するフォトマスクおよびそのフォトマスクを用いた際の露光時間と併せて表14に示す。
【0182】
【表14】

【0183】
このように、複数の露光マスクを用いて、マスクごとに露光条件を変えて露光することでも領域ごとに異なったレターデーションを有する複屈折パターンの作製が可能となる。この手法は領域ごとの露光条件を微妙に振りたい場合に特に有用である。
【0184】
(実施例7:ブラックマトリクスを有する複屈折パターンの作製)
(黒色感光性樹脂層用塗布液KL−1の調製)
下記の組成物を調製後、孔径0.2μmのポリプロピレン製フィルタでろ過して、黒色感光性樹脂層用塗布液KL−1として用いた。
B−5はベンジルメタクリレートとメタクリル酸の共重合体で共重合組成比(モル比)=78.0/22.0、重量平均分子量=4.0万である。
【0185】
──────────────────────────────────―
黒色感光性樹脂層用塗布液組成(質量%)
──────────────────────────────────―
K顔料分散物 25.00
バインダー(B−5) 2.43
KAYARAD DPHA(日本化薬(株)製) 3.19
ラジカル光重合開始剤(RPI−1) 0.12
ハイドロキノンモノメチルエーテル 0.002
メガファックF−176PF(大日本インキ化学工業(株)製) 0.04
プロピレングリコールモノメチルエーテルアセテート 15.58
メチルエチルケトン 53.59
──────────────────────────────────―
【0186】
なお、表中に用いているK顔料分散物組成物は以下の通り。
────────────────────────────────────―─―
K顔料分散物組成(%)
──────────────────────────────────────―
カーボンブラック 13.1
(デグッサ社製、Special Black 250)
5−[3−オキソ−2−[4−[3,5-ビス(3−ジエチルアミノプロピルアミノカルボニル)フェニル]アミノカルボニル]フェニルアゾ]−ブチロイルアミノベンズイミダゾロン 0.65
バインダー(B−4) 6.72
プロピレングリコールモノメチルエーテルアセテート 79.53
───────────────────────────────────────―
【0187】
(配向膜付きガラスの作製)
無アルカリガラス基板を、25℃に調整したガラス洗浄剤液をシャワーにより20秒間吹き付けながらナイロン毛を有する回転ブラシで洗浄し、純水シャワー洗浄後、ポリイミド系配向膜作製用塗布液(商品名:SE−410、日産化学工業(株)製)を毎分5000回転でスピンコートした。この基板を基板予備加熱装置で100℃5分加熱した後に200℃のクリーンオーブンで1時間焼成した後にラビング処理を行い、配向膜付きガラスを得た。
【0188】
(黒色感光性樹脂層を有する複屈折パターン材料BMP−7の作製)
前記配向膜付きガラス上にワイヤーバーを用いて光学異方性層用塗布液LC−1を塗布、膜面温度90℃で2分間乾燥して液晶相状態とした後、空気下にて160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて紫外線を照射してその配向状態を固定化して厚さ3.0μmの光学異方性層を形成した。この際用いた紫外線の照度はUV−A領域(波長320nm〜400nmの積算)において100mW/cm2、照射量はUV−A領域において80mJ/cm2であった。さらにその上に黒色感光性樹脂層用塗布液KL−1を塗布、乾燥して2.0μmの黒色感光性樹脂層を形成し、黒色感光性樹脂層を有する複屈折パターン作製材料BMP−7を作製した。
【0189】
(ブラックマトリクスの作製)
黒色感光性樹脂層を有する複屈折パターン作製材料BMP−7に対してミカサ社製M−3Lマスクアライナーと格子状の透過部を有する露光マスクを用いて黒色樹脂層側よりパターン露光を行った。この際用いた紫外線の照度はUV−A領域(波長320nm〜400nmの積算)において25mW/cm2、照射量はUV−A領域において2000mJ/cm2、露光マスク面と該感光性樹脂層の間の距離は100μmに設定した。またこの際の露光は黒色樹脂層側より行うため、光学異方性層はほとんど露光されないことを付記しておく。
【0190】
次に、炭酸Na系現像液(0.06mol/Lの炭酸水素ナトリウム、同濃度の炭酸ナトリウム、1%のジブチルナフタレンスルホン酸ナトリウム、アニオン界面活性剤、消泡剤、安定剤含有、商品名:T−CD1、富士写真フイルム(株)製)を用い、コーン型ノズル圧力0.15MPaでシャワー現像し感光性樹脂層を現像し、複屈折パターン材料の表面に格子状の黒色樹脂層からなるブラックマトリクスを作製した。
【0191】
(表面にブラックマトリクスを有する複屈折パターンBP−4の作製)
さらに、表面にブラックマトリクスを有する複屈折パターン作製材料に対してブラックマトリクスの開口部を通じて光学異方性層に対する露光を行った。この際比較のため、開口部の位置により異なる露光量を与えた3種類の開口部X,Y、Zを作製した。露光はミカサ社製M−3Lマスクアライナーを用いて行い、開口部X、開口部Y、開口部Zのそれぞれに10mJ/cm2、40mJ/cm2、160mJ/cm2の露光量を与えた。露光後、230℃のクリーンオーブンで1時間のベークを行い、表面にブラックマトリクスを有する複屈折パターンBP−4を作製した。作製されたパターン中の露光量の異なる開口部の焼成後のレターデーションを測定した結果を表15に示す。
【0192】
【表15】

【0193】
このように本発明の製造方法を応用することにより、その開口部ごとに異なったレターデーションを有し、かつブラックマトリクスを有する複屈折パターンの作製が可能となる。ブラックマトリクスの存在は開口部間の位相差の差をより明瞭にするため、複屈折パターンを視覚的に利用する際に有用である。
【図面の簡単な説明】
【0194】
【図1】複屈折パターン作製材料の例を示す概略断面図である。
【図2】転写材料として用いられる複屈折パターン作製材料の例の概略断面図である
【図3】本発明の製造方法により得られる複屈折パターンを有する物品の例の概略断面図である。
【図4】1つの複屈折パターン作製材料の複数の領域に対して異なる露光量で露光を行った例における、露光量とレターデーションとの関係を示すグラフである。
【図5】1つの複屈折パターン作製材料の複数の領域に対して異なる露光量で露光を行った例における露光量とレターデーションとの関係の、光重合開始剤の量による変化を示すグラフである。
【図6】1つの複屈折パターン作製材料の複数の領域に対して異なる露光量で露光を行った例における露光量とレターデーションとの関係の、光重合開始剤の種類による変化を示すグラフである。
【図7】1つの複屈折パターン作製材料の複数の領域に対して異なる露光量で露光を行った例における露光量とレターデーションとの関係を示すグラフである。
【図8】実施例で用いたフォトマスクIの形状を示す図である。
【図9】実施例で用いた4枚のフォトマスクII、III、IV、及びVのそれぞれの形状を示す図である。
【図10】4枚のフォトマスクII、III、IV、及びVを用いて作製されたサンプルにおける、異なるレターデーションを有する領域を示す図である。
【符号の説明】
【0195】
11 支持体または基板
12 光学異方性層
12F 第一光学異方性層
12S 第二光学異方性層
13 配向層(支持体上)
14 転写用接着層
14A 第一転写接着層
14B 第二転写接着層
14C 第三転写接着層
15 感光性樹脂層
16 後粘着層
17 剥離層
18 表面保護層
21 仮支持体
22 配向層(仮支持体上)
22F 仮支持体上第一配向層
22S 仮支持体上第一配向層
23 力学特性制御層
35 反射層
112 パターン化光学異方性層
112−A パターン化光学異方性層(第一露光部)
112−B パターン化光学異方性層(第二露光部)
112−N パターン化光学異方性層(未露光部)
112F―A パターン化第一光学異方性層(第一層第一露光部)
112F―B パターン化第一光学異方性層(第一層第二露光部)
112F―N パターン化第一光学異方性層(第一層未露光部)
112S―A パターン化第二光学異方性層(第二層第一露光部)
112S―B パターン化第二光学異方性層(第二層第二露光部)
112S―N パターン化第二光学異方性層(第二層未露光部)
112T―A パターン化第三光学異方性層(第三層露光部)
112T―N パターン化第三光学異方性層(第三層未露光部)

【特許請求の範囲】
【請求項1】
少なくとも次の[1]〜[3]の工程をこの順に含む、複屈折パターンを有する物品の製造方法:
[1]高分子を含む光学異方性層を有する複屈折パターン作製材料を用意する工程;
[2]該複屈折パターン作製材料の2つ以上の領域にそれぞれ互いに露光条件の異なる露光を行う工程;
[3]工程[2]後に得られる積層体を50℃以上400℃以下に加熱する工程。
【請求項2】
前記露光条件が、露光照度、露光量、露光時間、及び露光ピーク波長からなる群より選択される1つ以上である請求項1に記載の製造方法
【請求項3】
前記の2つ以上の領域に対する露光がそれぞれ異なるパターンを有する露光マスクを用いて行われる請求項1又は2に記載の製造方法。
【請求項4】
前記工程[2]が互いに異なる透過スペクトルを示す2つ以上の領域を有する露光マスクを用いた一回の露光により行われる請求項1に記載の方法。
【請求項5】
前記光学異方性層の20℃時の面内レターデーションが10nm以上である請求項1〜4のいずれか1項に記載の製造方法。
【請求項6】
前記高分子が未反応の反応性基を有する請求項1〜5のいずれか1項に記載の製造方法。
【請求項7】
前記光学異方性層が少なくとも1つの反応性基を有する液晶性化合物を含む溶液を塗布乾燥して液晶相を形成した後、熱または電離放射線照射して重合固定化したものである請求項1〜6のいずれか1項に記載の製造方法。
【請求項8】
前記液晶性化合物が重合条件の異なる2種類以上の反応性基を有する請求項7に記載の製造方法。
【請求項9】
前記液晶性化合物が少なくともラジカル性の反応性基とカチオン性の反応性基とを有する請求項8に記載の製造方法。
【請求項10】
前記ラジカル性の反応性基がアクリル基および/またはメタクリル基であり、かつ前記カチオン性基がビニルエーテル基、オキセタン基および/またはエポキシ基である請求項9に記載の製造方法。
【請求項11】
前記光学異方性層が延伸フィルムからなる請求項1〜6のいずれか1項に記載の製造方法。
【請求項12】
前記工程[1]が、光学異方性層を含む転写材料を、被転写材料上に転写することにより行われる請求項1〜11のいずれか1項に記載の製造方法。
【請求項13】
200℃で30分焼成したときの位相差変動が10%以下である請求項1〜12のいずれか1項に記載の製造方法により得られる物品。
【請求項14】
偽造防止手段として用いられる請求項1〜12のいずれか1項に記載の製造方法により得られる物品。
【請求項15】
光学素子として用いられる請求項1〜12のいずれか1項に記載の製造方法により得られる物品。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2009−175208(P2009−175208A)
【公開日】平成21年8月6日(2009.8.6)
【国際特許分類】
【出願番号】特願2008−11170(P2008−11170)
【出願日】平成20年1月22日(2008.1.22)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】