説明

試料分析システム及び試料搬送方法

【課題】タンパク質の吸着により搬送が困難な液体であっても安定した搬送を可能にし,微少量の試料での安定分析を可能にする。
【解決手段】液体試料中にわずかな界面活性剤を添加する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は,試料中に含まれる成分量を検出する分析装置に係わり,微少量の試料で分析するために試料や試薬等を液滴として扱う技術に関する。
【背景技術】
【0002】
試料中に含まれる成分量を検出する分析装置として,ハロゲンランプ等からの白色光を試料溶液に照射し,試料溶液を透過してきた光を回折格子で分光して必要な波長成分を取り出し,その吸光度を割り出すことで目的の成分量を測定する分光分析装置が広く用いられている。あるいは,白色光を回折格子で分光した後,試料溶液に照射する場合もある。これらの分析装置においては,従来,プラスチックやガラスの反応容器内に試料と試薬を分注し,これらを混合して試料溶液とした物に光を照射し,成分量を測定していた。
【0003】
しかし近年,試薬コストの削減や,環境への負荷低減のため,分析に用いる試料溶液の微少量化が求められており,従来方式での試料溶液微少量化では液の取り扱いが困難になり,分注,混合時に発生する気泡等により正確な測定ができなくなるという問題もあった。そこで,微少量の液体を何らかの方法で流通し,流通の途中で液体の成分量を計測する方法が考えられる。
【0004】
微少量の液体を流通する一つ目の方法として,基板に形成された電極上の液体を電気的な制御により流通する方式が上げられる。この方法には一般的に次の二つの方式が知られている。
【0005】
電気的な制御により流通する一つ目の方式は,複数の電極を形成した二つの対向する基板間に流通する液体を粒状にして挟みこみ,二つの対向する基板間の電極に電圧を印加することで,粒状の液体を駆動する方式である(特開昭59-206868号公報)。この方式では,通常,片方の基板上に液体を流通させる液体流通路に沿って多数の電極が形成され,もう一方の基板上にはほぼ全面にグランドに接続された一つの電極を備える。多数の電極それぞれの形状は,一般的に長方形や三角形が多い。粒状の液体がいくつかの電極にまたがって静置している状態で粒状の液体下部の電極の一つに電圧を印加すると,電気毛管現象(M. G. Lippmann, Ann. Chim. Phys. 5, 494 1875)と表現されるように,電圧を印加した電極上の粒状の液体の濡れ性が変化したように電極に吸い寄せられ,最終的にその電圧を印加した電極の真上にその粒状の液体が移動する。これを繰り返し,流通する。
【0006】
電気的な制御により流通するもう一つの方式として,前述と同様の形状からなる多数の電極を有した一つの基板の上に流通する液体を粒状にして供給し,粒状の液体付近の電極に電圧を印加して,粒状の液体を駆動する方式がある(特開平10-267801号公報)。多数の電極は粒状の液体を流通させる液体流通路に沿って配置される。液体の下部に存在する電極と液体付近の電極との間に電界を形成し,電界の力を利用し,駆動させる。これを繰り返し,流通する。
【0007】
これらの両方式とも微少量の液体を流通することは可能である。また,二つの微少量の粒状の液体同士を同じ電極上に流通することにより混合させることも可能であり,さらには一つの微少量の粒状の液体を二つに分割することも可能である。前述した二つの方式は電圧を印加して液体を駆動する力を生じる点で同じであり,本発明では両方式に用いている液体の駆動力を静電力と呼ぶ。
【0008】
静電力を用いて粒状の液体を流通し,分析するシステムの利点は,周囲が壁に囲まれたプラスチックやガラスの反応容器を用いる方式に比べ,単一もしくは二枚の基板を利用するため気泡の影響を受けにくいことや,電極に電圧を印加するだけで基板内の自由な場所で多数の粒状の液体を独立して駆動できること,また電圧を印加することにより粒状の液体を置く場所を指定できるため,試料,試薬や試料溶液がいつ測定部に到達するのか,タイミングを計りやすいことなどが挙げられる。
【0009】
微少量の液体を流通する二つ目の方式として,特開2005-257407号公報のように表面弾性波を用いて搬送する方法がある。この方法は表面弾性波を伝播可能なチタン酸ジルコン酸鉛(PZT)等の圧電体上に表面弾性波発生部となる電極部を設け,表面弾性波発生部で発生した表面弾性波により粒状の微少液体を流通するものである。本方式では,微少量の液体を流通したい部分が圧電体であれば,表面弾性波発生部となる電極部は1ヶ所にあれば良く,前述の静電力による微少液体の流通方法のように複雑な電極配置は不要という特徴がある。
【0010】
微少量の液体を流通する三つ目の方式として,内部に媒体を詰めたチューブや細管を用い,媒体に圧力を加えて細管の中を流し,媒体の中に微量の試料溶液を入れ,媒体の流れによって試料溶液を伝播する方法がある(特開2003-20041号公報,米国特許第4,259,291号)。この媒体の流れによって試料溶液を伝播する方法では,静電力を用いる例や表面弾性波を用いる例に比べ,搬送する微少液体が細管内側の壁面に吸着しにくい。その理由は,微少液体と共に媒体が細管の中を流れているため,細管内側の壁面近傍と細管の中心付近とに流速の差が発生し,壁面近傍には媒体の膜が保たれることや,静電力を用いる場合のように,静電力により微少液体を壁面に吸着する力が発生しないためである。
【0011】
【特許文献1】特開昭59-206868号公報
【特許文献2】特開平10-267801号公報
【特許文献3】特開2005-257407号公報
【特許文献4】特開2003-20041号公報
【特許文献5】米国特許第4,259,291号明細書
【非特許文献1】M. G. Lippmann, Ann. Chim. Phys. 5, 494 1875
【発明の開示】
【発明が解決しようとする課題】
【0012】
微少量の液体を搬送することには課題が多い。静電力を用いた液体の流通では,液性の違いによって搬送不可能な液体が存在する。例えば,アルブミン等のたんぱく質を多く含む液体は基板に吸着し易く,吸着してしまうと静電力により動かすことは不可能である。また,界面活性剤を多く含む液体等は動かしにくい。表面弾性波を用いて搬送する方法では,基板表面が表面弾性波によって微少液体を押し動かすため,静電力による微少液体の流通と同様にアルブミン等のたんぱく質を多く含む液体は基板に吸着し易く,吸着する場合は搬送不可能である。内部に媒体を詰めたチューブや細管を用いる方法は,細管内の流れが一定時間以上停止した場合などは,やはり細管内側の壁面に試料溶液が接触するため,一旦接触して吸着した後媒体に流れを発生すれば微少液体を強制的に移動できるが,細管内側の壁面に付着が残ることになる。細管内側の壁面を撥水処理しておけば,細管内の流れが一定時間以上停止しても水溶性の液体であれば付着を防止できるが,アルブミン等のたんぱく質を多く含む液体は細管内側の壁面に吸着してしまい,吸着した場合は強制的に搬送しても細管内側の壁面に液体の一部が付着して残ることになる。
【0013】
このように上記従来技術では,搬送しようとする微少液体の液性の違いによって搬送不可能であったり,吸着が残るという問題があった。特にアルブミン等のたんぱく質を多く含む液体は基板に吸着し易く,吸着してしまうと搬送不可能,又は,搬送しても壁面に液体の一部が付着して残ることが問題であった。
【0014】
本発明では,アルブミン等のたんぱく質を多く含む微少液体が,静電力を用いた液体の流通や表面弾性波を用いて搬送する方法では基板に,媒体の流れによって試料溶液を伝播する方法では壁面に吸着するのを防止し,従来搬送が困難であった微小液体の搬送を的確に行い,微少量の試料での安定分析が可能な液体分析システムを提供することを目的としている。
【課題を解決するための手段】
【0015】
本発明では,平行に配置された2枚の基板の間を搬送する液体に界面活性剤を添加することで上記目的を達成する。界面活性剤の添加濃度は臨界ミセル濃度程度とするのが好ましい。試料液体の搬送方法は,静電力搬送,超音波搬送,搬送媒体の流れによる搬送のいずれでもよい。
【発明の効果】
【0016】
本発明によれば,微少量の試料で分析するために試料や試薬等を液滴として扱う際,液滴の吸着を防止し,液滴を安定搬送することで微少量の試料での安定分析が可能となる。
【発明を実施するための最良の形態】
【0017】
以下、図面を参照して本発明の実施の形態を説明する。
【実施例1】
【0018】
図1から図10を用い,本発明による液体分析システムについて説明する。本実施例では試料,試薬の搬送に静電力搬送を用いた例を説明する。
【0019】
初めに,図1,図2,及び図3により本実施例での液体分析システムの構成を説明する。図1及び図2は液体分析システムの構成を示す略図であり,図1は装置の平面図,図2は装置の断面図,図3は試料を入れたチューブを複数本保持する試料カセット部分を断面して示す。
【0020】
本実施例での液体分析システムは主に,試料カセット投入搬送部1,試料カセット2,攪拌機構3,試料用ディスペンサ洗浄機構4,試料用ディスペンサ5,試料調整ディスク6,界面活性剤タンク7,界面活性剤用ディスペンサ8,及び,洗浄機構9からなる試料調整部10と,調整試料投入ディスペンサ11,調整試料投入ディスペンサ洗浄機構12,試料搬送デバイス13,試薬投入部14,計測部15,試薬投入部14’,計測部15’,及び,廃液回収部16からなる試料搬送計測部17とから構成されている。試料カセット2には,図3に示すように試料18を入れた試料チューブ19が複数本セットされており,同様に試料調整ディスク6には試料18と界面活性剤21を混ぜるための試料調整チューブ20が複数本セットされている。また,界面活性剤タンク7には界面活性剤21もしくは界面活性剤を含む希釈液21’が入れてあり,同様に試薬投入部14及び14’には,調整試料に添加混合し特定の反応を起こす試薬22,22’が入れてある。
【0021】
次に,試料搬送計測部17の構成を図4,図5,図6,及び図7により詳細に説明する。図4は試料搬送計測部のみを抜き出した図で,平面図を部分的に断面して示す。図5は図4を正面から見た断面図で示す。図6及び図7は,図5の部分拡大図を示す。
【0022】
図4及び図5に示すように,試料搬送計測部17は,透明なガラス,セラミック,若しくは樹脂製の第1基板30,第1基板30と並行に配置された同様の材質からなる第2基板31,第1基板30と第2基板31を並行かつ一定距離に保つスペーサ32から構成されており,第1基板30と第2基板31との間には,搬送媒体としてシリコーン若しくはフッ素系のオイル33が満たされている。
【0023】
第1基板30には,第2基板31と向かい合う側に導電薄膜による複数の第1の電極34が,前記調整試料や試薬22,22’の複数の搬送路となるように配列されており,電極34の表面は絶縁膜35で覆われ,更に,第2基板31と向かい合う側の表面は撥水処理されている。第1の電極34と絶縁膜35は非常に薄く,拡大しても書き表せないため,図では,必要に応じて図6のように厚さ方向を誇張して表す。第1の電極34それぞれは,図7や後述する図8のように交流矩形波の電源51とスイッチ44で配線されている。
【0024】
第2基板31には,第1基板30と向かい合う側の全面に,若しくは少なくとも第1の電極34と向かい合う部分をカバーする範囲に第2の電極36が配置されており,第1の電極34同様に絶縁膜37で覆われ,更に,第1基板30と向かい合う側の表面は撥水処理されている。尚,絶縁膜37は必ずしも必要ではなく,第1基板30と向かい合う側の面が撥水処理されていれば良い。
【0025】
第2基板31には,試料搬送計測部17に調整試料を導入する試料導入口38,試薬22,22’を導入する試薬導入口39,39’,及び分析が終了した試料を廃液として取り出す廃液回収口40が,円筒状に立ち上がった状態で設けられている。試料導入口38,試薬導入口39,39’,廃液回収口40は,平面から見た時に電極34と重なる位置に配置されている。
【0026】
スペーサ32は,前述のように第1基板30と第2基板31を並行かつ一定距離に保つためと,第1基板30と第2基板31との間をシールし,その間にオイル33を保持するために設けられる。その場合,試料導入口38,試薬導入口39,39’,廃液回収口40のいずれかの口をオイル導入部とすると,別の口から空気が押し出され,オイルで満たされる。オイルが接触する部分は,試料や試薬が搬送路から外れる等の不測の事態に備え,撥水処理しておくのが望ましい。第1基板30と第2基板31との間にオイル33を満たす方法は,スペーサ32でシールせず,第1基板30と第2基板31をオイル33で満たされた槽に浸すことでも可能である。その場合,第1基板30と第2基板31の隙間がオイル導入部となり,試料導入口38,試薬導入口39,39’,廃液回収口40のいずれかの口から空気が押し出され,オイルで満たされる。この場合も,試料や試薬が搬送路から外れる等の不測の事態に備え,オイルが接触する部分を撥水処理しておくのが望ましい。
【0027】
次に,本実施例での液体分析システムを用いた分析方法を図1から図3,及び図6から図10により説明する。図1,図2において,最初に分析対象の試料用溶液を,その対象毎に試料18として試料チューブ19に入れ,試料カセット2に装着し,液体分析システムの試料カセット投入搬送部1に装填する。
【0028】
分析動作を開始すると,液体分析システムは最初に試料調整のための動作を行う。まず,界面活性剤用ディスペンサ8が界面活性剤タンク7の中の界面活性剤21もしくは界面活性剤を含む希釈液21’を吸引し,吸引した界面活性剤21もしくは界面活性剤を含む希釈液21’を試料調整ディスク6にセットされた試料調整チューブ20内に吐出する。同時に試料カセット投入搬送部1に装填された試料カセット2が,所望の試料18が入った試料チューブ19が試料用ディスペンサ5の吸引可能位置にくるように移動し,試料用ディスペンサ5によって試料18が一定量吸引される。続いて試料調整ディスク6が回転し,界面活性剤21もしくは界面活性剤を含む希釈液21’が吐出された試料調整チューブ20が試料用ディスペンサ5の吐出位置に移動すると,試料用ディスペンサ5によって試料18が試料調整チューブ20内に一定量吐出される。ここで試料調整チューブ20内には,界面活性剤21もしくは界面活性剤を含む希釈液21’と試料18がそれぞれ一定量入っており,試料調整ディスク6がさらに回転し攪拌機構3の位置でそれらが攪拌され,調整試料23となる。尚,試料用ディスペンサ5は試料18を吸引,吐出後,試料用ディスペンサ洗浄機構4で洗浄される。また,試料調整チューブ20も必要に応じて洗浄機構9で洗浄される。試料調整チューブ20を毎回洗浄せず必要に応じて洗浄する理由は,試料調整チューブ20内にある調整試料23は複数回の分析に必要な量が調整されているためであり,必要な項目数の分析,必要な回数の分析,あるいは不測の事態の再検査等が終了した時点で洗浄が行われる。
【0029】
続いて液体分析システムは,試料搬送計測部17において調整試料23を搬送しながら分析を行う。まず,試料調整ディスク6がさらに回転し,試料調整チューブ20は,前述の攪拌機構3の位置から調整試料投入ディスペンサ11の吸引可能位置に移動して停止する。ここで,調整試料投入ディスペンサ11は分析に必要な一定量の調整試料23を吸引し,その後旋回移動して試料導入口38から試料搬送デバイス13内に調整試料23を吐出する。調整試料投入ディスペンサ11が試料搬送デバイス13内に調整試料23を吐出する時の状態を図7で説明する。図7は,図6に調整試料投入ディスペンサ11先端のノズル41が入り込み,調整試料23を吐出している状態を示す。ノズル41は導電性を持つ材料で構成されており,調整試料23の吐出時に図7のように,電源51の電圧がノズル41,及び第2の電極36と調整試料23が吐出される領域の第1の電極34間に印加されるようスイッチ43,及び,スイッチ44をONにする。調整試料23の吐出終了後,スイッチ43のみをOFFにすることで,調整試料23はノズル41を上方に退避してもノズル41先端に付着することなく第1の電極34と第2の電極36との間,つまり第1基板30と第2基板31との間に保持され,試料搬送計測部17中への導入が終了する。試料搬送計測部17中への調整試料23の導入動作と略同時に,試薬導入口39,39’から試薬投入部14,14’内部の試薬22,22’一定量を図8(1)のように,前述の調整試料23の導入と同じ方法で試料搬送計測部17中へ導入しておく。
【0030】
図8(1)から図8(5)は,試料搬送計測部17の部分断面図であり,(1)から(5)で調整試料23の移動の様子を時系列に表している。
試料搬送計測部17中へ導入された調整試料23は,図8(1)から図8(5)で示すように各第1の電極34に配線されたスイッチ44を順次切り替えることで,交流矩形波電源51からの電圧を第1の電極34に順次印加して静電力により移動し,試薬22,22’と混ぜ合わされ,さらに移動し計測部15の位置に至る。尚,第1の電極34に印加する電圧に交流矩形波を用いるのは,直流電圧を印加し続けることにより第1の電極34や第2の電極36表面の絶縁膜や撥水処理剤で帯電が起こり,静電力による搬送ができなくなることを交流電圧を印加することにより防止することと,交流正弦波よりも交流矩形波の方が大きな駆動力が得られることが,実験により確認されたためである。印加する交流矩形波の周波数は10Hz以上10kHz以下が好ましい。周波数が10Hzより小さいと,調整試料の液滴が印加周波数に追随して動き,振動を起こす。また,周波数が10kHzより大きいと隣の電極に移動させる駆動力が低下してしまう。
【0031】
図9は,試料搬送計測部17の,計測部15,15’領域の部分断面図である。計測部15に移動した調整試料23は,図9のような状態でその成分量を分析される。すなわち,計測部15には特定の1種類,若しくは2種類の波長の光52を出力する光源53と,調整試料23を透過した光52を受光し電気信号に変換する受光部54が配置されている。詳細は割愛するが,試薬22,22’と混ぜ合わされた調整試料23は,そこに含まれる特定の成分に応じて反応し,特定の波長の光を吸収するため,受光部54での受光量から調整試料23に含まれる特定の成分の量を割り出すことができる。割り出したい成分の種類により,試薬22,22’,及び光52の波長が違うため,文頭の第1の電極34の説明で述べた複数の搬送路各々にそれらを割り当て,試料導入口38から導入した調整試料23を希望する成分分析のための搬送路に送ることができるようになっている。計測部15,及び,計測部15’には,図9のように複数の光源53と受光部54の組合せが配置されており,調整試料23と試薬22,若しくは試薬22’との反応後,複数回の計測,若しくは異なった波長での計測が可能になっている。
【0032】
また,1種類,若しくは2種類の波長の光52を調整試料23に透過し受光部54で電気信号に変換すると述べたが,白色光を調整試料23に透過し,透過後回折格子やフィルタで分光し,特定の1種類,若しくは2種類の波長の光を電気信号に変換する方法でも良い。
【0033】
本発明では,調整試料23を試料搬送計測部17へ導入してからここまでの動作,つまり,調整試料23と試薬22を混ぜ合わせて反応させ,計測部15で成分量を分析するまでの動作を,一つの搬送路で2回行うような構成になっている。すなわち,計測部15で成分量を分析した後,調整試料23を静電力により更に移動し,試薬22’を混ぜ合わせて反応させた後,計測部15’で計測する。これは,夾雑物の影響を排除する等の目的で,反応と計測を2度行うためである。
【0034】
計測部15’で計測が終了した調整試料23は廃液55となり,静電力により更に移動され,廃液回収部16で回収される。図10に,試料搬送計測部17の廃液回収部16の断面を拡大して示す。廃液回収部16にはシッパー56があり,その先端部分のノズル57が試料搬送計測部17の廃液回収口40から試料搬送計測部17に挿入されている。シッパー56のノズル57と反対側は,バルブ58を介してサクションポンプ等(図示せず)に接続されている。
【0035】
試料搬送計測部17の廃液回収部16は,静電力による搬送路の終端にあり,ここから第1基板30と第2基板31との隙間が広くなっている。この広くなった領域59に廃液55が送り込まれると,それまで第1基板30と第2基板31とで押しつぶされた形状をしていた廃液55が解放され,廃液55自体の表面張力により球状に変形する。すると廃液は第1基板30と第2基板31との隙間に入り込むことはなくなり,オイル33の比重より重い廃液55は沈殿して下方に,オイル33の比重より軽い廃液55は浮上して上方に蓄積される。これらの蓄積された廃液を,バルブ58を開きシッパー56で吸引し,回収する。
【0036】
以上が本実施例での液体分析システムの構成と,液体分析システムを用いた分析方法についての説明である。次に,本発明での大きな特徴である界面活性剤の添加について説明する。
【0037】
先に説明した本発明での液体分析システムの構成と液体分析システムを用いた分析方法では,試料18に界面活性剤21もしくは界面活性剤を含む希釈液21’を添加し,試料搬送計測部17に導入している。そのようにすることで,試薬が第1基板30や第2基板31の表面に吸着するのを防止することができ,静電力による搬送を安定して行うことができる。以下にその理由を説明する。
【0038】
図11は,試料搬送計測部17の部分断面図であり,図11(a)は界面活性剤の添加されていない試料18を導入した場合の模式図,図11(b)は界面活性剤を添加した調整試料23を導入した場合の模式図を表す。
【0039】
図11(a)において,試料18は通常,人の血清や血漿であるため,その中にアルブミン等のタンパク質60を平均して1mlあたり80mg程度含んでいる。このような試料18を静電力等で搬送しようとすると,タンパク質60が第1基板30や第2基板31の表面に吸着するため,搬送力に対する抵抗力が大きく,搬送が不可能となる。仮に搬送媒体であるオイル33等に流れを生じさせ,強制的に搬送しようとすると,タンパク質60の一部が付着物として第1基板30や第2基板31の表面に残ってしまう。
【0040】
それに対し図11(b)では,試料18に界面活性剤を添加した調整試料23を用いている。調整試料23の中の界面活性剤61は,図12の模式図に示すように親水基62と疎水基63からなり,調整試料23の内部では,図11(b)に示すように界面活性剤の疎水基63がタンパク質60と結合して包み込み,第1基板30や第2基板31の表面にタンパク質60が吸着することがない。そのため,静電力等による搬送でも,抵抗力が小さいため安定して搬送することができ,また,タンパク質60の一部が第1基板30や第2基板31の表面に付着して残ることもない。
【0041】
試料18に添加する界面活性剤の量は,静電力による試薬の搬送時の吸着防止のためであれば,試料中の界面活性剤濃度が飽和ミセル化濃度程度になるように添加すればよい。通常飽和ミセル化濃度は界面活性剤の量が0.1重量%程度であり,厳密には決めることができない。市販されている洗濯用の洗剤等で指定されている使用量では,飽和ミセル化濃度の2倍から3倍の量が指定されている。そのため,試料18に添加する界面活性剤の量は,上限が0.3重量%と言うことができる。
【0042】
本明細書の従来の技術でも述べたが,静電力を用いた微量液体の移動では,界面活性剤を多く含む液体は界面張力が小さすぎると動かしにくい。また,界面活性剤が多く含まれると分析精度にも影響を与えることが考えられる。そのため,界面活性剤の添加量は少ないに越したことはなく,静電力による試薬の搬送時の吸着を防止した上で安定に搬送可能で,分析精度に与える影響が極力少ない界面活性剤の下限濃度が重要になる。図13は,第1の電極サイズ2mm×2mm,絶縁膜の厚さ1μm以下,第1基板30と第2基板31との距離1mm,調整試料23に相当する液体の量10μlでの条件(他に材質の違いによる条件等があるが割愛する)で,静電力を用いた微量液体の移動時の駆動力と抵抗力を求めたものである。図中の界面活性剤濃度の単位は重量%である。駆動力は図14の式(1)により求めた理論値,抵抗力は駆動する液体の界面活性剤濃度と電極に印加する直流電圧を可変し,実験で求めた値であり,駆動力が抵抗力よりも大きければ搬送可能となる。尚,電圧を上げると共に大きくなる駆動力に対し,この図には表していないが,一般的に用いられる今回の条件では,直流電圧では約20V以上になると液体が電極に吸引される力が大きくなり,搬送不可能になることがわかっている。以上のことを勘案し,図13に示す結果から,前述の条件に適した界面活性剤の下限濃度は0.01重量%と言うことができる。
【0043】
次に,使用する界面活性剤の種類に付いて説明する。
界面活性剤には,大きく分けて非イオン性界面活性剤とイオン性界面活性剤がある。また,界面活性剤は,高分子系と低分子系に分けられる。静電力を用いた微少液体の搬送による液体分析システムでは,先に述べたように,試薬の搬送時の吸着を防止した上で安定に搬送可能で,分析精度に与える影響が極力少ない界面活性剤が求められる。具体的には,界面張力の低下が少なくタンパク質をミセル化しやすい,タンパク質を変性させない等である。これらを勘案すると,静電力を用いた微少液体の搬送による液体分析システムに適した界面活性剤は,非イオン性の高分子系界面活性剤が選択できる。その理由は,一般的に非イオン性界面活性剤はタンパク質に対する作用が温和であり,逆に,イオン性はタンパク質変性作用が強く,また,高分子系界面活性剤は低分子の物に比べて表面張力をあまり下げずに乳化・分散性に優れるため,タンパク質をミセル化しやすいためである。非イオン性の高分子系界面活性剤としては,Polyoxyethylene(10)Octylphenyl Ether,Polyoxyethylene(20)Sorbitan Monolaurate,Polyoxyethylene(20)Sorbitan Monopalmitate,Polyoxyethylene(20)Sorbitan Monostearate,Polyoxyethylene(20)Sorbitan Monooleate等を含む物が挙げられる。
【0044】
以上のような構成により,従来搬送が困難であったアルブミン等のタンパク質を多く含む血清や血漿等の試料を静電力等により安定して搬送し,微少量の試料での安定した分析が可能な液体分析システムを提供することが可能となる。
【実施例2】
【0045】
図15から図19を用い,本発明による液体分析システムについて,試料搬送計測部に超音波搬送を用いた例を説明する。本実施例の液体分析システムは,試料搬送計測部17の搬送方式が,静電力搬送方式から超音波搬送方式に変わっていること以外は実施例1と同じであるため,試料搬送計測部を17’とし,搬送方式のみ説明する。
【0046】
最初に超音波搬送方式の原理を説明する。図15は超音波搬送方式の原理図を示す平面図である。超音波搬送方式では,圧電体基板70の表面で液滴71を移動して搬送する。圧電体基板70は表面弾性波を伝播可能なチタン酸ジルコン酸鉛(PZT)やニオブ酸リチウム(LiNb03)等からなり,表面上に櫛型パターン72,櫛型パターン72’を対とした電極73が,必要に応じて配置されている。各電極73は,スイッチ74を介し交流電源75に接続される。この状態で圧電体基板70上に液滴71を配置し,特定の場所のスイッチ74を接続状態にすると,接続された電極73の部分から圧電体基板70表面に矢印方向に進行する表面弾性波が発生し,液滴71を該電極73から遠ざける方向に移動,搬送することができる。図15では,長方形の圧電体基板70上に電極73を4ヶ所配置しているため,ハッチングで示す移動領域76内での搬送が可能である。本実施例では,搬送中の液滴が移動領域76から外れないようにするために,圧電体基板70表面の移動領域76以外の部分を移動領域76よりも撥水性が高くなるように表面処理をしている。
【0047】
以上の原理を用いた試料搬送計測部17’の構成を図16,図17,図18,及び図19により説明する。図16は試料搬送計測部のみを抜き出した図で,平面図を部分的に断面して示す。図17は図16を正面から見た断面図で示す。図18及び図19は,図17の部分拡大図を示す。
【0048】
図16及び図17に示すように,試料搬送計測部17’は,透明な圧電体材料であるニオブ酸リチウム製の第1基板80,第1基板80と並行に配置された透明なガラス,セラミック,若しくは樹脂製の第2基板81,第1基板80と第2基板81を並行かつ一定距離に保つスペーサ82から構成されている。第1基板80の第2基板81と向かい合う側には,前記原理図で説明した電極73が図のように複数配置され,少なくとも第1基板80,若しくは第2基板81どちらかには,移動領域76がハッチングで示すような領域になるように構成され,第1基板80と第2基板81それぞれの向かい合う面側の移動領域76以外の部分は,移動領域76よりも撥水性が高くなっている。電極73それぞれは,スイッチ74を介し,交流電源75に接続されている。
【0049】
第2基板81には,試料搬送計測部17’に調整試料を導入する試料導入口88,試薬22,22’を導入する試薬導入口89,89’が長円筒状に,分析が終了した試料を廃液として取り出す廃液回収口40が円筒状に立ち上がった状態で設けられている。スペーサ82は,前述のように第1基板80と第2基板81を並行かつ一定距離に保つためのものであり,第1基板80と第2基板81との間をシールし,内部の湿度を保つことが可能である。
【0050】
図18,図19は,試料導入口88と試薬導入口89,89’部分の断面であり,どちらも長円筒状の立ち上がりの長手方向に断面して示している。試料導入口88と試薬導入口89,89’から試料搬送計測部17’内部に調整試料23若しくは試薬22,22’を導入する場合は,先端が水平方向にL型に折れ曲がった試薬投入部14,14’,若しくは,先端が水平方向にL型に折れ曲がったノズル41を図18,図19に示す順に移動し,前記L型の水平部分が第1基板30と第2基板31との間に入り込み,調整試料23もしくは,試薬22,22’を吐出して行う。
【0051】
試料搬送計測部17’中へ導入された調整試料23,及び,試薬22,22’は,図16に示すスイッチ74を選択的に接続,切断することで移動,停止しながら実施例1と同様に計測部15,及び,計測部15’で計測され,廃液回収口40で回収される。
【0052】
本実施例2の最初に述べたように,調整試料23,及び試薬22,22’の搬送方式以外は実施例1と同じであるため,搬送方式以外の説明は割愛する。特に,本発明での大きな特徴である界面活性剤の添加に関して,本実施例においても大きな効果を発揮する。
【実施例3】
【0053】
図20から図23を用い,本発明による液体分析システムについて,試料搬送計測部に搬送媒体流を用いた例を説明する。本実施例による液体分析システムも,前述の実施例2同様に,試料搬送計測部17の搬送方式が,静電力搬送方式から搬送媒体流搬送方式に変わっていること以外は実施例1と同じであるため,試料搬送計測部を17”として搬送方式のみ説明する。
【0054】
最初に搬送媒体流搬送方式の原理を説明する。図20は搬送媒体流搬送方式による試料搬送計測部を17”を示す図であり,部分的に断面した平面図である。図21は図20のAA部の断面図である。
【0055】
試料搬送計測部17”は,透明なガラス,セラミック,若しくは樹脂製の第1基板90,第1基板90と並行に配置された同様の材質からなる第2基板91,第1基板90と第2基板91を並行かつ一定距離に保つ外側スペーサ92,内側スペーサ93,93’,から構成されており,内部の空間から被搬送液体や搬送用媒体が漏れないように接合された後,第1基板90と第2基板91との間には,搬送媒体としてシリコーン若しくはフッ素系のオイル94が満たされている。第1基板90,第2基板91,外側スペーサ92からなる内部の空間に満たされたオイル94は,内側スペーサ93,93’により形成される流路内を媒体流発生部95により内部を循環する。媒体流発生部95は,試料などを搬送させるための搬送用媒体について,液流を発生させるものであり,一方端部から取り込んだ媒体を他方端部から吐き出し,媒体に循環する流れを発生させるポンプや水車状の部材を内部に持つ部品であり,流れを発生させる原理は問わない。流れの負荷に応じて流量を制御可能としてもよい。第1の基板90には,試料などの搬送される液体を捕捉する被搬送液体捕捉手段96を持つ。
【0056】
第2基板91には,試料搬送計測部17”に調整試料を導入する試料導入口97,試薬22,22’を導入する試薬導入口98,98’が長円筒状に,分析が終了した試料を廃液として取り出す廃液回収口99が,円筒状に立ち上がった状態で設けられている。試料導入口97から導入された調整試料23,試薬導入口98,98’から導入された試薬22,22’は,媒体流発生部95により発生されたオイル94の流れにより搬送され,被搬送液体捕捉手段96により捕捉されて停止する。この時,媒体流発生部95により発生されたオイル94の流れは滞ることなく,図22のように流れるように,流路幅Wよりも搬送液体捕捉手段96の幅Xと調整試料,試薬,若しくはその混合液の直径Dが小さくなるように設定されている。
【0057】
本実施例による被搬送液体捕捉手段96の捕捉原理を図23により説明する。図23は図21の部分拡大図である。第1の基板90の第2基板91と向かい合う側に導電薄膜による第1の電極100が被搬送液体捕捉位置に配置されており,電極100の表面は絶縁膜101で覆われ,更に,第2基板91と向かい合う側の表面は撥水処理されている。第1の電極100と絶縁膜101は非常に薄く,拡大しても書き表せないため,必要に応じて図23のように厚さ方向を誇張して表す。第2基板91には,第1基板90と向かい合う側の全面に,若しくは少なくとも第1の電極100と向かい合う部分をカバーする範囲に第2の電極102が配置されており,第1の電極100同様に絶縁膜103で覆われ,更に,第1基板90と向かい合う側の表面は撥水処理されている。尚,絶縁膜103は必ずしも必要ではなく,第1基板90と向かい合う側の面が撥水処理されていれば良い。第1の電極100と第2の電極102はスイッチ104を介し交流矩形波電源105に接続されている。また,第1の電極100は全て同電位になるように配線されていても良く,その場合はスイッチ104も1個で良い。
【0058】
この状態でオイル94の流れにより搬送されてきた調整試料23,試薬22,22’は,図23(a)のようにスイッチ104を接続状態にしておくと,静電力により搬送液体捕捉手段96の位置で捕捉され,図23(b)のようにスイッチ104を解放状態にするとオイル94の流れにより搬送され,廃液回収口99で回収される。
【0059】
本実施例3の最初に述べたように,調整試料23,及び,試薬22,22’の搬送方式以外は実施例1と同じであるため,搬送方式以外の説明は割愛する。特に,本発明での大きな特徴である界面活性剤の添加に関して,本実施例においても大きな効果を発揮する。また,第1の電極100と第2の電極102に印加する交流矩形波電源105からの電圧が交流矩形波であることにより,電極表面の絶縁膜や撥水処理剤の帯電を防止し,長時間安定に動作することを可能にしている。
【図面の簡単な説明】
【0060】
【図1】本発明による液体分析システムの構成例を示す平面図である。
【図2】本発明による液体分析システムの構成例を示す正面側からの断面図である。
【図3】試料カセット部の断面図である。
【図4】試料搬送計測部を部分断面した平面図である。
【図5】図4を正面から見た断面図である。
【図6】図5の部分断面図である。
【図7】図5の部分断面図である。
【図8】調整試料の移動の様子を時系列に表わした,試料搬送計測部の部分断面図である。
【図9】計測部領域を表した,試料搬送計測部の部分断面図である。
【図10】廃液回収部を表した,試料搬送計測部の部分断面図である。
【図11】試料搬送計測部の部分断面図である。
【図12】界面活性剤の模式図である。
【図13】静電力を用いた微量液体の移動時の駆動力と抵抗力を求めたグラフである。
【図14】静電力を用いた微量液体の移動時の駆動力を求める式である。
【図15】超音波搬送方式の原理図を示す平面図である。
【図16】超音波搬送方式の試料搬送計測部の説明図である。
【図17】図16を正面から見た断面図である。
【図18】試料導入口と試薬導入口部分の断面図である。
【図19】試料導入口と試薬導入口部分の断面図である。
【図20】搬送媒体流搬送方式による試料搬送計測部の説明図である。
【図21】図20のAA部の断面図である。
【図22】流路幅に対する搬送液体捕捉手段と液の直径を表す平面図である。
【図23】図21の部分拡大図である。
【符号の説明】
【0061】
1…試料カセット投入搬送部,2…試料カセット,3…攪拌機構,4…試料用ディスペンサ洗浄機構,5…試料用ディスペンサ,6…試料調整ディスク,7…界面活性剤タンク,8…界面活性剤用ディスペンサ,9…洗浄機構,10…試料調整部,11…調整試料投入ディスペンサ,12…調整試料投入ディスペンサ洗浄機構,13…試料搬送デバイス,14…試薬投入部,14’…試薬投入部,15…計測部,15’…計測部,16…廃液回収部,17…試料搬送計測部,18…試料,19…試料チューブ,20…試料調整チューブ,21…界面活性剤,21’…界面活性剤を含む希釈液,22…試薬,22’…試薬,23…調整試料,30…第1基板,31…第2基板,32…スペーサ,33…オイル,34…第1の電極,35…絶縁膜,36…第2の電極,37…絶縁膜,38…試料導入口,39…試薬導入口,39’…試薬導入口,40…廃液回収口,41…ノズル,42…電源,43…スイッチ,44…スイッチ,50…スイッチ,51…交流矩形波電源,52…光,53…光源,54…受光部,55…廃液,56…シッパー,57…ノズル,58…バルブ,60…タンパク質,61…界面活性剤,62…親水基,63…疎水基,70…圧電体基板,71…液滴,72…櫛型パターン,72’…櫛型パターン,73…電極,74…スイッチ,75…交流電源,76…移動領域,80…第1基板,81…第2基板,82…スペーサ,88…試料導入口,89’…試薬導入口,89…試薬導入口,90…第1基板,91…第2基板,92…外側スペーサ,93…内側スペーサ,93’…内側スペーサ,94…オイル,95…媒体流発生部,96…被搬送液体捕捉手段,97…試料導入口,98…試薬導入口,98’…試薬導入口,99…廃液回収口,100…第1の電極,101…絶縁膜,102…第2の電極,103…絶縁膜,104…スイッチ,105…交流矩形波電源。

【特許請求の範囲】
【請求項1】
試料に界面活性剤を添加する試料調整部と,
第1基板と前記第1基板に実質的に平行な第2基板と,
前記第1基板と前記第2基板との間に前記界面活性剤が添加された試料を導入する試料導入部と,
前記第1基板と前記第2基板との間に導入された前記界面活性剤を添加された試料を,前記第1基板と前記第2基板の間に設定された搬送路に沿って搬送する搬送部と,
前記第1基板と前記第2基板との間に設定された前記搬送路上に試薬を導入する試薬導入部と,
前記第1基板と前記第2基板との間に搬送媒体を導入する搬送媒体導入部と,
前記試料に含まれる成分量を分析する分析部と
を有することを特徴とする試料分析システム。
【請求項2】
請求項1記載の試料分析システムにおいて,前記試料調整部は,前記試料に対して添加後の界面活性剤の濃度が臨界ミセル濃度程度となるように前記界面活性剤を添加することを特徴とする試料分析システム。
【請求項3】
請求項1記載の試料分析システムにおいて,前記試料調整部は,前記試料に対して添加後の対重量濃度が0.01%以上0.3%以下となるように前記界面活性剤を添加することを特徴とする試料分析システム。
【請求項4】
請求項1記載の試料分析システムにおいて,前記界面活性剤は非イオン性界面活性剤であることを特徴とする試料分析システム。
【請求項5】
請求項1記載の試料分析システムにおいて,前記界面活性剤は非イオン性の高分子系界面活性剤であることを特徴とする試料分析システム。
【請求項6】
請求項1記載の試料分析システムにおいて,前記界面活性剤は,Polyoxyethylene(10)Octylphenyl Ether,Polyoxyethylene(20)Sorbitan Monolaurate,Polyoxyethylene(20)Sorbitan Monopalmitate,Polyoxyethylene(20)Sorbitan Monostearate,Polyoxyethylene(20)Sorbitan Monooleateのいずれかを含むことを特徴とする試料分析システム。
【請求項7】
請求項1記載の試料分析システムにおいて,前記搬送媒体はシリコーンオイルもしくはフッ素オイルであることを特徴とする試料分析システム。
【請求項8】
請求項1記載の試料分析システムにおいて,前記搬送部は,電圧印加部,超音波印加部,搬送流生成部のいずれかを有することを特徴とする試料分析システム。
【請求項9】
請求項1記載の試料分析システムにおいて,前記搬送部は,交流矩形波を印加する電圧印加部であることを特徴とする試料分析システム。
【請求項10】
請求項1記載の試料分析システムにおいて,前記搬送部は,周波数が10Hz以上10kHz以下の交流矩形波を印加する電圧印加部であることを特徴とする試料分析システム。
【請求項11】
試料に界面活性剤を添加し調整試料とする工程と,
第1基板と前記第1基板に実質的に平行な第2基板との間に搬送媒体を導入する工程と,
前記第1基板と前記第2基板との間に前記調整試料を導入する工程と,
導入された前記調整試料を前記第1基板と前記第2基板との間で搬送する工程と
を有することを特徴とする試料搬送方法。
【請求項12】
請求項11記載の試料搬送方法において,前記調整試料とする工程は,前記試料に対して添加後の界面活性剤の濃度が臨界ミセル濃度程度となるように前記界面活性剤を添加することを特徴とする試料搬送方法。
【請求項13】
請求項11記載の試料搬送方法において,前記調整試料とする工程は,前記試料に対して添加後の対重量濃度が0.01%以上0.3%以下となるように前記界面活性剤を添加することを特徴とする試料搬送方法。
【請求項14】
請求項11記載の試料搬送方法において,前記界面活性剤は非イオン性界面活性剤であることを特徴とする試料搬送方法。
【請求項15】
請求項11記載の試料搬送方法において,前記界面活性剤は非イオン性の高分子系界面活性剤であることを特徴とする試料搬送方法。
【請求項16】
請求項11記載の試料搬送方法において,前記界面活性剤は,Polyoxyethylene(10)Octylphenyl Ether,Polyoxyethylene(20)Sorbitan Monolaurate,Polyoxyethylene(20)Sorbitan Monopalmitate,Polyoxyethylene(20)Sorbitan Monostearate,Polyoxyethylene(20)Sorbitan Monooleateのいずれかを含むことを特徴とする試料搬送方法。
【請求項17】
請求項11記載の試料搬送方法において,前記搬送媒体はシリコーンオイルもしくはフッ素オイルであることを特徴とする試料搬送方法。
【請求項18】
請求項11記載の試料搬送方法において,前記搬送する工程は,静電力搬送,超音波搬送,搬送媒体の流れのいずれかの方法によるものであることを特徴とする試料搬送方法。
【請求項19】
請求項11記載の試料搬送方法において,前記搬送する工程は,交流矩形波を印加する静電力搬送によるものであることを特徴とする試料搬送方法。
【請求項20】
請求項11記載の試料搬送方法において,前記搬送する工程は,周波数が10Hz以上10kHz以下の交流矩形波を印加する静電力搬送によるものであることを特徴とする試料搬送方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate