説明

誘電泳動特性評価方法

【課題】ナノ粒子を含む微粒子の誘電泳動特性を、蛍光体の付着等の前処理を施すことなく、定量的に評価することのできる誘電遠藤特性評価装置を提供する。
【解決手段】媒体中に移動可能に粒子群が分散してなる液体もしくはゲル状試料を保持する容器1内に、当該容器1内で試料に接する位置または近接する位置に電極対2を設け、その電極対2に対して電源3から正負の交流電圧を印加するとともに、容器1内に光Lsを導入して当該光Lsの通過部位における試料の屈折率を検出する屈折率検出手段5を備え、その屈折率検出手段5の出力を取り込み、電極対2に電圧を印加した状態での屈折率の経時変化から、媒体中の粒子群の誘電泳動特性に係る情報を収集するデータ収集部6を設けた構成とすることで、容器1内の粒子群の誘電泳動による濃度分布の発生に起因する屈折率変化から、粒子群の誘電泳動の向きと大きさ等の定量的評価を可能とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ナノ粒子をはじめとする微小粒子の媒体中での誘電泳動特性を評価する装置に関する。
【背景技術】
【0002】
粒子径が100nm以下のいわゆるナノ粒子は、同じ材質であっても通常のバルク物質とは異なる性質を表し、さまざまな分野で利用され始めている。このようなことから、微小粒子の性質を評価することが重要となってきている。
【0003】
ナノ粒子をはじめとする微小粒子の評価方法として、誘電泳動法が知られている。誘電泳動現象電荷を持たない粒子であっても、強い不均一電界をかけることで粒子に電気分極を生起させ、均一でない電界であるが故に分極した正負の電荷に対する引力平衡の崩れで粒子が移動する現象である。
【0004】
微粒子の誘電泳動特性を観察する方法の典型的なものは、従来、泳動中の粒子を顕微鏡で観察する方法である。しかし、粒子のサイズが光学顕微鏡で観察できる限界を下回るナノ粒子については、顕微鏡で観察することができないことから、蛍光体をナノ粒子に化学的に結合させることで、粒子が光学分解以下であっても蛍光発光の輝度分布を観察する方法がある。このような方法で粒子が誘電泳動で移動する様子を、顕微鏡を介して蛍光発光の強度分布としてビデオに記録する方法が知られている(例えば非特許文献1参照)。
【非特許文献1】鷲津正夫,川端智久,黒沢修,鈴木誠一 ”誘電泳動による生体分子のハンドリング技術と分離技術への応用”,電子情報通信学会論文誌 C Vol.J83−C No.1,pp1−8 2000年8月
【発明の開示】
【発明が解決しようとする課題】
【0005】
以上のような従来の蛍光体を粒子に付着させてビデオ観察を行う誘電泳動法による粒子の評価方法では、粒子に蛍光体を付着させるための手間が必要であるばかりでなく、蛍光体を付着できない粒子については評価できないという問題がある。
【0006】
また、ビデオ撮影結果から評価するため、泳動力の定量化が困難であり、更に、ナノ粒子のような微小粒子では、誘電泳動力が粒子径の3乗(体積)に比例するので、粒子径が小さいほど極度に誘電泳動力が小さくなり、ビデオ撮影結果からの検出が困難となる。
【0007】
本発明はこのような実情に鑑みてなされたもので、ナノ粒子を含む微粒子の誘電泳動特性を、蛍光体の付着等の前処理を施すことなく、定量的に評価することのできる誘電泳動特性評価装置の提供をその課題としている。
【課題を解決するための手段】
【0008】
上記の課題を解決するため、本発明の誘電泳動特性評価装置は、媒体中に移動可能に粒子群が分散してなる液体またはゲル状試料を保持する容器と、その容器内に、当該容器内の試料に接する位置または近接する位置に設けられた電極対と、その電極対に対して正負の電圧を印加する電源と、上記容器内に導入するための光を発生する光源と、その導入された光を用いて当該光の通過部位における試料の屈折率を検出する屈折率検出手段と、その屈折率検出手段の出力を取り込み、上記電極対に電圧を印加した状態での屈折率の経時変化から、媒体中の粒子群の誘電泳動特性に係る情報を収集するデータ収集部を備えていることをによって特徴付けられる(請求項1)。
【0009】
ここで、本発明においては、上記光源からの光に対して、上記容器を電極対の形成面に直交する方向に移動させる移動機構を備えている構成(請求項2)を採用することができる。
【0010】
また、本発明においては、上記容器に対する上記光源からの光の導入位置を、電極対の形成面に直交する方向に移動させる機構を備えている構成(請求項3)を構成することもできる。
【0011】
そして、以上の請求項2または3に係る発明を採用する場合、データ収集・解析部には、容器または光の導入位置を移動させて得た各位置での屈折率検出結果の差分値を求める手段を含んだ構成(請求項4)を採用することが好ましい。
【0012】
また、屈折率検出手段としては、上記光源から上記容器内の粒子群の濃度勾配が生じている部位に導入されたサンプル光と、上記光源から上記濃度勾配の影響を受けない位置を経たリファレンス光とを用いた光ヘテロダイン法に基づく検出手段とすること(請求項5)ができる。
【0013】
本発明は、容器内で媒体中に移動可能に分散する粒子群に対して交流電圧を印加することによって粒子の誘電泳動を生起させ、これによって生じる容器内の粒子の局所的な濃度変化を、容器外から照射する光の屈折率を検出することによって測定することで、課題を解決しようとするものである。
【0014】
すなわち、容器内で媒体中に移動可能に分散する粒子群に対して電極対を通じて交流電圧を印加すると、粒子群は誘電泳動によりその電極対に対して引き寄せられ(正の誘電泳動)、あるいは遠ざけられる(負の誘電泳動)。これにより、容器内の粒子濃度は一様ではなく、電極対との位置関係に関連した分布を持つ状態となる。
【0015】
一方、粒子群が分散している媒体の屈折率は、粒子群の濃度によって変化する。そこで、電極対に交流電圧を印加して粒子群が誘電泳動している状態で、容器内の所定位置に光を照射し、その屈折率の経時的変化を検出することにより、粒子群の移動の速さや向きに係る情報、つまり誘電泳動の強さや向き等に係る情報を得ることができる。ここで、誘電泳動の向きは、例えば電極対から離れた位置に光を照射する場合、正の誘電泳動の場合は粒子群は次第に電極対へと向けて移動することから、粒子濃度は次第に低下していき、これをもって正の誘電泳動であると把握できる。
【0016】
また、請求項2に係る発明、あるいは請求項3に係る発明のように、容器を移動させるか、容器に対する光の導入位置を移動させる機構を備えることにより、容器内での光の照射位置、従って容器内での屈折率の検出位置の電極対に対する位置を任意に変化させることができる。このような光の照射位置の変更を同じ試料に対して行うことにより、例えば誘電泳動現象の及ぶ範囲を容易に把握することが可能となる。
【0017】
そして、請求項4に係る発明のように、上記した容器もしくは光の導入位置を移動させる機構を用いて、上記と同様に同じ試料に対する光の照射位置を変化させて得た各位置での屈折率の検出結果について、例えば屈折率が大きくなった位置と小さくなった位置における検出結果の差分をとることで、各検出結果が微弱であっても高感度で誘電泳動特性の評価を行うことが可能となる。
【発明の効果】
【0018】
本発明によれば、無機の微粒子のみならず、端白質やDNAなどの生体分子等、各種微粒子の誘電泳動特性を定量的に測定することができ、特に、従来の測定方法では蛍光体を付着してビデオ観察しかできなかったナノ粒子をはじめとする微粒子の誘電泳動特性の定量的な測定が可能となり、各種分野でのナノ粒子の使用に際しての特性掌握に有用な測定ツールとして期待される。
【発明を実施するための最良の形態】
【0019】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の全体構成図であり、機械的・光学的構成を表す模式図とシステム構成を表すブロック図とを併記して示す図であり、図2はその容器1の構造を表す斜視図である。
【0020】
容器1はこの例において直方形であり、その内部に、媒体中に被測定粒子が移動可能に分散している試料が収容される。容器1の底面1aには2本の電極2a,2bからなる電極対2が形成されている。この電極対2には、電源3から交流電圧(高周波電圧)が印加される。
【0021】
容器1を構成する各壁体のうち、少なくとも互いに対向する2枚の側壁1b,1cはガラス等法に基づく屈折率計測のためのサンプル光Lsが導かれる。そのサンプル光Lsは、電極対2の形成面である容器1の底面1aから上方に所定の距離を隔てた位置を通過するように容器1内に導かれ、他方の側壁1cを介して外部へと向かう。また、容器1の外部にはリファレンス光Lrが導かれる。これらのサンプル光Lsおよびリファレンス光Lrは、位相が揃った変調光が用いられる。
【0022】
すなわち、共通の光源4からの光をハーフミラー4aによって分岐させ、一方をサンプル光Lsとして容器1内に導き、他方をリファレンス光Lrとして容器1外に導いている。容器1を経たサンプル光Lsはミラー4bによってハーフミラー4cへと導かれるとともに、リファレンス光Lrはミラー4dにより同じくハーフミラー4cへと導かれ、ここでサンプル光Lsとリファレンス光Lrとが重ね合わされる。そして、その重ね合わされたサンプル光Lsとリファレンス光Lrは検出部5に取り込まれる。
【0023】
サンプル光Lsは、後述するように、試料の屈折率に応じた位相の進み/遅れが生じるのに対し、リファレンス光Lrは光源4から出力された位相を維持し、これにより両光を重ね合わせることによってビートが生じる。検出部5は、そのサンプル光の位相の進み/遅れ、従って容器1内の試料の屈折率変化をビート信号の変化量として捕らえる。
【0024】
検出部5の出力はデータ収集・解析部6に取り込まれる。このデータ収集・解析部6は、検出部5によって検出された試料のビート信号から、屈折率の経時変化に係る情報を求め、その結果等を表示器7に表示する。
【0025】
容器1は上下動機構10に搭載されており、この上下動機構10を駆動することによって容器1が鉛直方向に移動し、これにより、図2に示すように、サンプル光Lsの容器1に対する入射位置が例えばLs(1)〜Ls(3)と鉛直方向に変化し、容器1の底面に形成されている電極対2とサンプル光Lsとの距離が変化する。
【0026】
前記した電源3,光源4、検出部5、データ収集・解析部6、表示部7並びに上下動機構10は、いずれも制御部8の制御下に置かれており、この制御部8は以下の一連の測定動作を制御する。
【0027】
次に、以上の本発明の実施の形態の作用について述べる。図3および図4はその説明図であり、それぞれ容器1内における粒子群の挙動を表す模式図と容器1内の上下方向への屈折率の分布を表すグラフトを併記して示す図である。なお、図3,図4においてPは粒子を表している。ここで、以下の説明では、粒子の屈折率が媒体よりも大きい場合について説明する。
【0028】
容器1内に粒子群P・・Pを液体等の媒体中に分散させた試料を収容した状態で、電極対2に交流(高周波)電圧を印加すると、この媒体と粒子との組み合わせた試料が正の誘電泳動特性を持つ場合、図3のように粒子Pは電極対2に引き寄せられていく。この粒子群Pの誘電泳動により、容器1内の屈折率分布は右のグラフに示される通りとなり、電極対2から遠ざかるほど屈折率が低くなっていく。逆に、負の誘電泳動特性を持つ場合には、図4に示すように、電極対2への交流電圧の印加により粒子は電極対2から遠ざかっていき、右のグラフに示されるように屈折率分布を生じる。
【0029】
さて、例えば図3にLs(1)で示される、電極対2に近い位置を通過するサンプル光の光軸上において、屈折率が高くなるとそのサンプル光Ls(1)の位相は遅れ、屈折率が低くなると位相は進むことになるが、この変化は、光ヘテロダイン計測では、図5にグラフを示すように、サンプル光とリファレンス光のビート信号の変化量として捕らえることができる。
【0030】
図6は、電極対2に交流電圧を印加して粒子Pを誘電泳動させたときのサンプル光Ls(1)の位相変化と屈折率変化の時間的な関係を示すグラフで、誘電泳動特性が正の場合を例にとって示している。粒子Pを液体等の媒体中に分散させた試料を容器1内に充填した状態で、電極対2に対して交流電圧を印加すると、粒子Pは電極対2へと向けて誘電泳動し、電極対2付近に集まった粒子によってサンプル光Ls(1)の位相変化、つまり屈折率変化を生じる。その変化の向きにより、誘電泳動が正であるか負であるかを知ることができ、また、その変化の速さから誘電泳動の強さを知ることができる。
【0031】
ここで、サンプル光の光束が大きい場合や、誘電泳動力が弱い場合には、以上の屈折率変化の検出感度が低くなる。このような場合、上下動機構10を駆動して容器1を徐々に下降させる。これにより、サンプル光の容器1内の光軸は図3のLs(1)〜Ls(3)に示すように変化する。サンプル光の位置が例えばLs(1)とLs(2)に位置している状態での各屈折率の検出結果の差分をとることによって、高感度に誘電泳動特性を評価することが可能となる。
【0032】
ここで、以上の説明においては、粒子の屈折率が分散媒(媒体)の屈折率に比して大きい場合について述べたが、粒子の屈折率が分散媒の屈折率に比して小さいときは、逆に粒子濃度が高くなるほど屈折率が低くなり、サンプル光の位相は進む。従って、本発明を適用して誘電泳動特性を評価するに当たっては、粒子と分散媒の屈折率の大小は既知であることが望ましい。
【0033】
また、サンプル光の電極対2に対する距離を変化させて計測を行うことにより、各計測結果から誘電泳動が及ぶ範囲を知ることもできる。
【0034】
次に、実際に粒子を誘電泳動させ、電極から遠い領域と近い領域のそれぞれにおいて屈折率の時間的変化を測定した結果について述べる。
【0035】
粒子はDuke社製の直径50nmのポリスチレン粒子とし、媒体は水として、粒子を濃度0.1Vol%で分散させた試料を用いた。容器1と電極対の構成は、図7に示したものを用いた。この図7の構成においては、電極対を形成する各電極20a,20bをそれぞれ櫛形として、それぞれの電極指が互いに平行に交互に位置するように配置した。各櫛形の電極20a,20bは、ライン幅(各電極指とこれらを接続する部分)およびスペース幅(隣接する電極指相互の間隔)をそれぞれ10μmとし、厚さ50〜100nmのAu電極とした。この電極20a,20b間に、200kHz,100Vppの交流電圧を2秒間にわたって印加し、各粒子Pを誘電泳動させ、その後、38秒間にわたって電圧停止状態とし、その間、サンプル光を図中Ls(1)で示すように電極形成面にほぼ沿わせた位置としてサンプル光の位相変化を計測した。また、その位置から200μm上方のLs(2)で示す位置として、他は全く同じ条件のもとに計測を行った。その各計測結果を図8および図9にグラフで示す。
【0036】
図8,図9から明らかなように、容器1内で電極20a,20bに沿った位置(図8)と離れた位置(図9)では、位相のシフトする向きが異なる結果を得た。この結果から、本発明装置により、粒子の誘電泳動の向きと強さに係る情報を、ほぼ定量的に把握することが可能であることが確かめられた。
【0037】
ここで、以上の実施の形態においては、容器1を電極対2の形成面に直交する方向に移動させることにより、サンプル光の容器1中での透過位置を変化させた例を示したが、これとは逆に、容器1を固定し、サンプル光の光軸を上記と同方向に移動させても、同様の作用効果を得ることができる。なお、光ヘテロダイン計測のための光学系を2組用意し、それぞれのサンプル光が容器中を透過する位置を上記と同様の方向に相違させることも考えられるが、装置が大掛かりとなってコストも高くなる。
【0038】
また、以上の実施の形態においては、リファレンス光Lrについて容器1の外を通した例を示したが、リファレンス光Lrは図10に示すように、容器1内の粒子の濃度勾配の影響を受けない位置を通過させてもよい。更に、電極対の形状や構成については、上記した例に限定されるものではないことは言うまでもない。
【図面の簡単な説明】
【0039】
【図1】本発明の実施の形態の全体構成図であり、機械的・光学的構成を表す模式図とシステム構成を表すブロック図とを併記して示す図である。
【図2】図1における容器1の構造を表す斜視図である。
【図3】本発明の実施の形態の作用説明図で、粒子の屈折率が媒体よりも高く、かつ、正の誘電泳動特性を持つ場合の説明図である。
【図4】同じく本発明の実施の形態の作用説明図で、粒子の屈折率が媒体よりも高く、かつ、負の誘電泳動特性を持つ場合の説明図である。
【図5】本発明の実施の形態における光ヘテロダイン法に基づく屈折率の変化検出の説明図である。
【図6】本発明の実施の形態における測定動作を表すグラフであり、(A)は電極対への印加電圧波形、(B)はサンプル光の位相変化、(C)は試料の屈折率変化をそれぞれ表すグラフである。
【図7】本発明を適用した装置により実際に粒子の誘電泳動特性を計測したときに用いた容器1および電極構成の説明図である。
【図8】図7の容器を用いた誘電泳動特性の計測結果を示すグラフであり、図7のLs(1)の位置にサンプル光を通過させたときの位相変化の時間的変化を示すグラフである。
【図9】同じく図7の容器を用いた誘電泳動特性の計測結果を示すグラフであり、図7のLs(2)の位置にサンプル光を通過させたときの位相変化の時間的変化を示すグラフである。
【図10】本発明の他の実施の形態の要部構成の説明図で、リファレンス光を容器内を通過させる場合の説明図である。
【符号の説明】
【0040】
1 容器
2 電極対
2a,2b,20a,20b 電極
3 電源
4 光源
4a,4d ハーフミラー
4b,4c ミラー
5 検出部
6 データ収集・解析部
7 表示部
8 制御部
10 上下動機構
Ls サンプル光
Lr リファレンス光
P 粒子

【特許請求の範囲】
【請求項1】
媒体中に移動可能に粒子群が分散してなる液体またはゲル状試料を保持する容器と、その容器内に、当該容器内の試料に接する位置または近接する位置に設けられた電極対と、その電極対に対して正負の電圧を印加する電源と、上記容器内に導入するための光を発生する光源と、その導入された光を用いて当該光の通過部位における試料の屈折率を検出する屈折率検出手段と、その屈折率検出手段の出力を取り込み、上記電極対に電圧を印加した状態での屈折率の経時変化から、媒体中の粒子群の誘電泳動特性に係る情報を収集して解析するデータ収集・解析部を備えていることを特徴とする誘電泳動特性評価装置。
【請求項2】
上記光源からの光に対して、上記容器を当該光の進行方向に直交する方向に移動させる移動機構を備えていることを特徴とする請求項1に記載の誘電泳動特性評価装置。
【請求項3】
上記容器に対する上記光源からの光の導入位置を、当該光の進行方向に直交する方向に移動させる機構を備えていることを特徴とする請求項1に記載の誘電泳動特性評価装置。
【請求項4】
上記データ収集・解析部は、上記容器もしくは光の導入位置を移動させて得た各位置での屈折率検出結果の差分値を求める手段を含んでいることを特徴とする請求項2または3に記載の誘電泳動特性評価装置。
【請求項5】
上記屈折率検出手段は、上記光源から上記容器内の粒子群の濃度勾配が生じている部位に導入されたサンプル光と、上記光源から上記濃度勾配の影響を受けない位置を経たリファレンス光とを用いた光ヘテロダイン法に基づく検出手段であることを特徴とする請求項1、2、3または4のいずれか1項に記載の粒子径計測装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2008−96191(P2008−96191A)
【公開日】平成20年4月24日(2008.4.24)
【国際特許分類】
【出願番号】特願2006−276420(P2006−276420)
【出願日】平成18年10月10日(2006.10.10)
【出願人】(000001993)株式会社島津製作所 (3,708)
【Fターム(参考)】