説明

負極合材およびそれを用いたリチウム二次電池

【課題】本発明は、負極活物質が十分に分散され、厚みや密度のばらつきが少ない電極を作成することが出来る負極合材、およびそれを用いたリチウム二次電池を提供すること。
【解決手段】塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、塩基性官能基を有するトリアジン誘導体から選ばれる1種以上と、酸性官能基を有する樹脂と、負極活物質とを含む負極合材、および前記負極合材を使用して形成されるリチウム二次電池。酸性官能基を有する樹脂が特定の構成の樹脂であることを特徴とする上記リチウム二次電池。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、負極活物質が十分に分散され、厚みや密度のばらつきが少ない電極を作成することが出来る負極合材、その製造方法、およびそれを用いたリチウム二次電池に関する。
【背景技術】
【0002】
近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。また、自動車搭載用などの大型二次電池においても、従来の鉛蓄電池に代えて、大型の非水電解質二次電池の実現が望まれている。
【0003】
そのような要求に応えるため、リチウム二次電池の開発が活発に行われている。リチウム二次電池の電極としては、リチウムイオンを含む正極活物質と導電助剤と有機バインダーなどからなる電極合材を金属箔の集電体の表面に固着させた正極、及び、リチウムイオンの脱挿入可能な負極活物質と導電助剤と有機バインダーなどからなる電極合材を金属箔の集電体の表面に固着させた負極が使用されている。
【0004】
一般的に、負極活物質としては、黒鉛等の炭素系材料系、アンチモン系、スズ系、シリコン系等の合金材料系、チタン酸リチウム等の金属複合酸化物系等が用いられている。これら負極活物質の分散が不十分であると、電極シート上の粗大な凝集物残存や、凝集物が欠落して塗膜欠陥の原因となってしまう等、均一な電極膜を作成出来ないという問題が生じる場合がある。
【0005】
また、粗大な凝集粒子が存在すると、多数回充放電を繰り返した場合に集電体と負極合材層の界面の密着性が悪化し、電池性能が低下してしまう可能性がある。これは、充放電におけるリチウムイオンのドープ、脱ドープで活物質および電極合材層が膨張、収縮を繰り返すことにより電極合材層と集電体界面間に局部的なせん断応力が発生した場合に、凝集粒子により応力が緩和されにくくなるため、界面の密着性が悪化することが原因の一つであると考えられる。
【0006】
この様な問題を解決するため、特許文献1には、ニーダーで混練することにより活物質を含む合材を作成する方法が開示されている。しかしながら、単にニーダーで物理的な混練を行うだけでは、優れた分散性、分散安定性を得ることは難しいと思われる。
【0007】
特許文献2には、結着剤であるスチレンブタジエンゴムを有機溶剤により膨潤、増粘させ、負極活物質の分散性を向上させる方法が開示されている。この場合、合材ペーストの増粘効果は期待出来るが、負極活物質の凝集を十分に解きほぐし分散安定化するのは難しいと思われる。
【0008】
また、特許文献3には、界面活性剤を添加し負極活物質を分散混練する方法が開示されている。しかしながら、界面活性剤で良好な分散性、分散安定性を得るためにはその添加量を多くしなければならず、結果として電極中の活物質濃度が低下するため、電池容量が低下してしまうのではないかと思われる。
【0009】
特許文献4には、高分子分散剤を用いて炭素系負極活物質を分散する方法が開示されている。しかしながら、この場合も特許文献3と同様の問題が生じる可能性がある。
【特許文献1】特開平7−29605号公報
【特許文献2】特開2007−234418号公報
【特許文献3】特開平8−190912号公報
【特許文献4】特表2006−516795号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
本発明は、上記課題に鑑み、負極活物質の分散性、分散安定性を向上させ、均一かつ負極活物質が高密度に充填された電極を作成することが可能な負極合材を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明の負極合材は、塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、及び塩基性官能基を有するトリアジン誘導体からなる群から選ばれる1種以上と、酸性官能基を有する樹脂と、負極活物質とを含有することを特徴とする。
【0012】
更に本発明は、酸性官能基を有する樹脂が、
酸性官能基を有するポリフッ化ビニリデン系樹脂(A1)、
分子内に2つの水酸基と1つのチオール基とを有する化合物(s)の存在下、エチレン性不飽和単量体(m)をラジカル重合してなる、片末端に2つの水酸基を有するビニル重合体(a)中の水酸基と、テトラカルボン酸二無水物(b)中の酸無水物基とを反応させてなるポリビニル系樹脂(A2)、並びに、
下記一般式(1):
(HOOC−)m−R21−(−COO−[−R23−COO−]n−R22t (1)
〔一般式(1)中、R21は、4価のテトラカルボン酸化合物残基であり、R22は、モノアルコール残基であり、R23は、ラクトン残基であり、mは、2又は3であり、nは、1〜50の整数であり、tは、(4−m)である。〕
で表されるポリエステル系樹脂(A3)
からなる群から選ばれる1種類以上の酸性官能基を有する樹脂である上記負極合材に関する。
【0013】
また、本発明は、樹脂の酸性官能基が、カルボキシル基、スルホン酸基、及び燐酸基からなる群から選ばれる1種類以上の酸性官能基である上記負極合材に関する。
また、本発明は、負極活物質が炭素材料であることを特徴とする上記負極合材に関する。
また、本発明は、負極活物質が導電性物質で複合化された負極活物質であることを特徴とする上記負極合材に関する。
また、本発明は、負極活物質と複合化する導電性物質が、炭素材料であることを特徴とする上記負極合材に関する。
また、本発明は、更に酸性官能基を有する樹脂以外のバインダー成分を含んでなる上記負極合材に関する。
また、本発明は、更に導電助剤としての炭素材料を含むことを特徴とする上記負極合材に関する。
【0014】
また、本発明は、塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、及び塩基性官能基を有するトリアジン誘導体からなる群から選ばれる1種以上と、酸性官能基を有する樹脂の存在下、負極活物質と、導電助剤としての炭素材料とを共分散することを特徴とする上記負極合材の製造方法に関する。
【0015】
更に、本発明は、集電体上に正極合材層を有する正極と、集電体上に負極合材層を有する負極と、リチウムを含む電解質とを具備するリチウム二次電池であって、前記負極合材層が、上記の負極合材を用いて作成されたことを特徴とするリチウム二次電池に関する。
【発明の効果】
【0016】
本発明の負極合材は、負極活物質の凝集物を大きく低減させることが可能であり、再凝集もほとんど発生せず保存安定性にも優れている。本発明の負極合材をリチウム電池に使用することにより、均一かつ活物質が高密度に充填された電極膜を作成することが可能になる。
【発明を実施するための最良の形態】
【0017】
まず、本発明の負極合材に含まれる材料について説明する。
【0018】
<塩基性官能基を有する各種誘導体>
本発明では、負極合材に、塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性基官能基を有するアクリドン誘導体および、塩基性官能基を有するトリアジン誘導体の群から選ばれる1種以上を添加する。
とりわけ、下記一般式(2)で示されるトリアジン誘導体、または一般式(7)で示される有機色素誘導体の使用が好ましい。
【0019】
一般式(2)
【0020】
【化1】


は、−NH−、−O−、−CONH−、−SONH−、−CHNH−、−CHNHCOCHNH−または−X−Y−X−を表し、Xは、−NH−、−O−、−CONH−、−SONH−、−CHNH−、−NHCO−または−NHSO−を表し、Xはそれぞれ独立に−NH−または、−O−を表し、Yは炭素数1〜20で構成された、置換基を有してもよいアルキレン基、置換基を有してもよいアルケニレン基または、置換基を有してもよいアリーレン基を表す。
Pは、一般式(3)、(4)または、一般式(5)のいずれかで示される置換基を表す。
Qは、−O−R、−NH−R、ハロゲン基、−X−Rまたは、一般式(3)、(4)もしくは、一般式(5)のいずれかで示される置換基を表す。
は、水素原子、置換基を有してもよいアルキル基または、置換基を有してもよいアルケニル基もしくは、置換基を有してもよいアリール基を表す。
【0021】
一般式(3)
【0022】
【化2】

【0023】
一般式(4)
【0024】
【化3】

【0025】
一般式(5)
【0026】
【化4】


は、直接結合、−SO2−、−CO−、−CH2NHCOCH2−、−CH2NHCONHCH2−、−CH2−または、−X−Y−X−を表す。Xは、−NH−または、−O−を表し、Xは、直接結合、−SO2−、−CO−、−CH2NHCOCH2−、−CH2NHCONHCH2−または、−CH2−を表す。Yは炭素数1〜20で構成された、置換基を有してもよいアルキレン基、置換基を有してもよいアルケニレン基または、置換基を有してもよいアリーレン基を表す。
vは、1〜10の整数を表す。
、Rはそれぞれ独立に、水素原子、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいアリール基、またはR、Rとで一体となって更なる窒素、酸素または硫黄原子を含む置換されていてもよい複素環残基を表す。とりわけ、水素原子であることが、電池内での金属析出を抑える効果が高いと思われ好ましい。
、R、R、Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、置換されていてもよいアルケニル基または置換されていてもよいアリール基を表す。
は、置換されていてもよいアルキル基、置換されていてもよいアルケニル基または置換されていてもよいアリール基を表す。
nは、1〜4の整数を表す。
は有機色素残基、置換基を有していてもよい複素環残基、置換基を有していてもよい芳香族環残基または下記一般式(6)で示される基を表す。
【0027】
一般式(6)
【0028】
【化5】

Tは、−X−R10または、Wを表し、Uは、−X−R11または、Wを表す。
およびWは、それぞれ独立に−O−R、−NH−R、ハロゲン基または、一般式(3)、(4)もしくは、一般式(5)のいずれかで示される置換基を表す。
は、水素原子、置換基を有してもよいアルキル基または、置換基を有してもよいアルケニル基もしくは、置換基を有してもよいアリール基を表す。
は−NH−または−O−を表し、XおよびXは、それぞれ独立に−NH−、−O−、−CONH−、−SONH−、−CHNH−または−CHNHCOCHNH−を表す。
Yは炭素数1〜20で構成された、置換基を有してもよいアルキレン基、置換基を有してもよいアルケニレン基または、置換基を有してもよいアリーレン基を示す。
10およびR11はそれぞれ独立に、有機色素残基、置換基を有していてもよい複素環残基、置換基を有していてもよい芳香族環残基を表す。
【0029】
一般式(2)のRおよび、一般式(6)のR10、R11で表される有機色素残基としては、例えばジケトピロロピロール系色素、アゾ、ジスアゾ、ポリアゾ等のアゾ系色素、フタロシアニン系色素、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系色素、キナクリドン系色素、ジオキサジン系色素、ぺリノン系色素、ぺリレン系色素、チオインジゴ系色素、イソインドリン系色素、イソインドリノン系色素、キノフタロン系色素、スレン系色素、金属錯体系色素等が挙げられる。とりわけ、金属による電池の短絡を抑制する効果を高めるためには、金属錯体系色素ではない有機色素残基の使用が好ましい。
【0030】
一般式(2)のRおよび、一般式(6)のR10、R11で表される複素環残基および芳香族環残基としては、例えば、チオフェン、フラン、ピリジン、ピラジン、トリアジン、ピラゾール、ピロール、イミダゾール、イソインドリン、イソインドリノン、ベンズイミダゾロン、ベンズチアゾール、ベンズトリアゾール、インドール、キノリン、カルバゾール、アクリジン、ベンゼン、ナフタリン、アントラセン、フルオレン、フェナントレン、アントラキノン、アクリドン等が挙げられる。これらの複素環残基および芳香族環残基は、アルキル基(メチル基、エチル基、ブチル基等)、アミノ基、アルキルアミノ基(ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基等)、ニトロ基、水酸基、アルコキシ基(メトキシ基、エトキシ基、ブトキシ基等)、ハロゲン(塩素、臭素、フッ素等)、フェニル基(アルキル基、アミノ基、アルキルアミノ基、ニトロ基、水酸基、アルコキシ基、ハロゲン等で置換されていてもよい)、およびフェニルアミノ基(アルキル基、アミノ基、アルキルアミノ基、ニトロ基、水酸基、アルコキシ基、ハロゲン等で置換されていてもよい)等の置換基を有していてもよい。
【0031】
一般式(2)および、一般式(6)のYは、炭素数20以下の置換基を有していてもよいアルキレン基、アルケニレン基またはアリーレン基を表すが、好ましくは置換されていてもよいフェニレン基、ビフェニレン基、ナフチレン基または炭素数が10以下の側鎖を有していてもよいアルキレン基が挙げられる。
【0032】
一般式(7)
【0033】
【化6】


Zは、下記一般式(8)、(9)または、一般式(10)で示される群から選ばれる少なくとも1つのものである。nは、1〜4の整数を表す。
【0034】
一般式(8)
【0035】
【化7】

【0036】
一般式(9)
【0037】
【化8】

【0038】
一般式(10)
【0039】
【化9】


は、直接結合、−SO2−、−CO−、−CH2NHCOCH2−、−CH2NHCONHCH2−、−CH2−または、−X−Y−X−を表す。Xは、−NH−または、−O−を表し、Xは、直接結合、−SO2−、−CO−、−CH2NHCOCH2−、−CH2NHCONHCH2−または、−CH2−を表す。Yは炭素数1〜20で構成された、置換基を有してもよいアルキレン基、置換基を有してもよいアルケニレン基または、置換基を有してもよいアリーレン基を表す。
vは、1〜10の整数を表す。
、Rはそれぞれ独立に、水素原子、置換されていてもよいアルキル基、置換されていてもよいアルケニル基、置換されていてもよいフェニル基、またはR、Rとで一体となって更なる窒素、酸素または硫黄原子を含む置換されていてもよい複素環残基を表す。とりわけ、水素原子であることが、電池内での金属析出を抑える効果が高いと思われ好ましい。
、R、R、Rは、それぞれ独立に、水素原子、置換されていてもよいアルキル基、置換されていてもよいアルケニル基または置換されていてもよいアリール基を表す。
は、置換されていてもよいアルキル基、置換されていてもよいアルケニル基または置換されていてもよいアリール基を表す。
12は有機色素残基、置換基を有していてもよい複素環残基、置換基を有していてもよい芳香族環残基す。
【0040】
12で表される有機色素残基としては、例えばジケトピロロピロール系色素、アゾ、ジスアゾ、ポリアゾ等のアゾ系色素、フタロシアニン系色素、ジアミノジアントラキノン、アントラピリミジン、フラバントロン、アントアントロン、インダントロン、ピラントロン、ビオラントロン等のアントラキノン系色素、キナクリドン系色素、ジオキサジン系色素、ぺリノン系色素、ぺリレン系色素、チオインジゴ系色素、イソインドリン系色素、イソインドリノン系色素、キノフタロン系色素、スレン系色素、金属錯体系色素等が挙げられる。とりわけ、金属による電池の短絡を抑制する効果を高めるためには、金属錯体系色素ではない有機色素残基の使用が好ましい。
【0041】
また、R12で表される複素環残基および芳香族環残基としては、例えば、チオフェン、フラン、ピリジン、ピラゾール、ピロール、イミダゾール、イソインドリン、イソインドリノン、ベンズイミダゾロン、ベンズチアゾール、ベンズトリアゾール、インドール、キノリン、カルバゾール、アクリジン、ベンゼン、ナフタリン、アントラセン、フルオレン、フェナントレン、アントラキノン、アクリドン等が挙げられる。これらの複素環残基および芳香族環残基は、アルキル基(メチル基、エチル基、ブチル基等)、アミノ基、アルキルアミノ基(ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基等)、ニトロ基、水酸基、アルコキシ基(メトキシ基、エトキシ基、ブトキシ基等)、ハロゲン(塩素、臭素、フッ素等)、フェニル基(アルキル基、アミノ基、アルキルアミノ基、ニトロ基、水酸基、アルコキシ基、ハロゲン等で置換されていてもよい)、およびフェニルアミノ基(アルキル基、アミノ基、アルキルアミノ基、ニトロ基、水酸基、アルコキシ基、ハロゲン等で置換されていてもよい)等の置換基を有していてもよい。
【0042】
一般式(3)〜(5)および、一般式(8)〜(10)で示される置換基を形成するために使用されるアミン成分としては、例えば、ジメチルアミン、ジエチルアミン、メチルエチルアミン、N,N−エチルイソプロピルアミン、N,N−エチルプロピルアミン、N,N−メチルブチルアミン、N,N−メチルイソブチルアミン、N,N−ブチルエチルアミン、N,N−tert−ブチルエチルアミン、ジイソプロピルアミン、ジプロピルアミン、N,N−sec−ブチルプロピルアミン、ジブチルアミン、ジ−sec−ブチルアミン、ジイソブチルアミン、N,N−イソブチル−sec−ブチルアミン、ジアミルアミン、ジイソアミルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジ(2−エチルへキシル)アミン、ジオクチルアミン、N,N−メチルオクタデシルアミン、ジデシルアミン、ジアリルアミン、N,N−エチル−1,2−ジメチルプロピルアミン、N,N−メチルヘキシルアミン、ジオレイルアミン、ジステアリルアミン、N,N−ジメチルアミノメチルアミン、N,N−ジメチルアミノエチルアミン、N,N−ジメチルアミノアミルアミン、N,N−ジメチルアミノブチルアミン、N,N−ジエチルアミノエチルアミン、N,N−ジエチルアミノプロピルアミン、N,N−ジエチルアミノヘキシルアミン、N,N−ジエチルアミノブチルアミン、N,N−ジエチルアミノペンチルアミン、N,N−ジプロピルアミノブチルアミン、N,N−ジブチルアミノプロピルアミン、N,N−ジブチルアミノエチルアミン、N,N−ジブチルアミノブチルアミン、N,N−ジイソブチルアミノペンチルアミン、N,N−メチルーラウリルアミノプロピルアミン、N,N−エチルーヘキシルアミノエチルアミン、N,N−ジステアリルアミノエチルアミン、N,N−ジオレイルアミノエチルアミン、N,N−ジステアリルアミノブチルアミン、ピペリジン、2−ピペコリン、3−ピペコリン、4−ピペコリン、2,4−ルペチジ ン、2,6−ルペチジン、3,5−ルペチジン、3−ピペリジンメタノール、ピペコリン酸、イソニペコチン酸、イソニコペチン酸メチル、イソニコペチン酸エチル、2−ピペリジンエタノール、ピロリジン、3−ヒドロキシピロリジン、N−アミノエチルピペリジン、N−アミノエチル−4−ピペコリン、N−アミノエ チルモルホリン、N−アミノプロピルピペリジン、N−アミノプロピル−2−ピペコリン、N−アミノプロピル−4−ピペコリン、N−アミノプロピルモルホリン、N−メチルピペラジン、N−ブチルピペラジン、N−メチルホモピペラジン、1−シクロペンチルピペラジン、1−アミノ−4−メチルピペラジン、1−シクロペンチルピペラジン等が挙げられる。
【0043】
本発明の塩基性官能基を有する有機色素誘導体、アントラキノン誘導体およびアクリドン誘導体、また塩基性官能基を有するトリアジン誘導体の合成方法としては、特に限定されるものではないが、特開昭54−62227号公報、特開昭56−118462号公報、特開昭56−166266号公報、特開昭60−88185号公報、特開昭63−305173号公報、特開平3−2676号公報、特開平11−199796号公報等に記載されている方法で合成することができる。
【0044】
例えば、有機色素、アントラキノン、もしくはアクリドンに式(11)〜式(14)で示される置換基を導入した後、これら置換機とアミン成分(例えば、N,N−ジメチルアミノプロピルアミン、N−メチルピペラジン、ジエチルアミンまたは4−[4−ヒドロキシ−6−[3−(ジブチルアミノ)プロピルアミノ]−1,3,5−トリアジン−2−イルアミノ]アニリン等)を反応させることによって、合成することができる。
式(11) −SOCl
式(12) −COCl
式(13) −CHNHCOCHCl
式(14) −CHCl
また、例えば、式(11)で示される置換基を導入する場合には、有機色素、アントラキノン、もしくはアクリドンをクロロスルホン酸に溶解して、塩化チオニル等の塩素化剤を反応させるが、このときの反応温度、反応時間等の条件により、有機色素、アントラキノン、もしくはアクリドンに導入する式(11)で示される置換基数をコントロールすることができる。
【0045】
また、式(12)で示される置換基を導入する場合には、まずカルボキシル基を有する有機色素、アントラキノン、もしくはアクリドンを公知の方法で合成した後、ベンゼン等の芳香族溶媒中で塩化チオニル等の塩素化剤を反応させる方法等が挙げられる。
【0046】
式(11)〜式(14)で示される置換基とアミン成分との反応時には、式(11)〜式(14)で示される置換基の一部が加水分解して、塩素が水酸基に置換することがある。その場合、式(11)で示される置換基はスルホン酸基となり、式(12)で示される置換基はカルボン酸基となるが、いずれも遊離酸のままでもよく、また、1〜3価の金属もしくは、上記のアミンと塩を形成していてもよい。
【0047】
また、有機色素がアゾ系色素である場合は、式(8)〜式(10)または、下記一般式(15)で示される置換基をあらかじめジアゾ成分またはカップリング成分に導入し、その後カップリング反応を行うことによってアゾ系有機色素誘導体を製造することもできる。
【0048】
一般式(15)
【0049】
【化10】


は、−NH−、−O−、−CONH−、−SONH−、−CHNH−、−CHNHCOCHNH−または−X−Y−X−を表し、Xは、−NH−、−O−、−CONH−、−SONH−、−CHNH−、−NHCO−または−NHSO−を表し、Xはそれぞれ独立に−NH−または−O−を表し、Yは炭素数1〜20で構成された、置換基を有してもよいアルキレン基、置換基を有してもよいアルケニレン基または、置換基を有してもよいアリーレン基を表す。
【0050】
Pは、一般式(3)、(4)または、一般式(5)のいずれかで示される置換基を表す。
Qは、−O−R、−NH−R、ハロゲン基、−X−Rまたは、一般式(3)、(4)もしくは、一般式(5)のいずれかで示される置換基を表す。
は、水素原子、置換基を有してもよいアルキル基または、置換基を有してもよいアルケニル基もしくは、置換基を有してもよいアリール基を表す。
【0051】
また、本発明の塩基性官能基を有するトリアジン誘導体は、例えば、塩化シアヌルを出発原料とし、塩化シアヌルの少なくとも1つの塩素に式(8)〜式(10)または、一般式(15)で示される置換基を形成するアミン成分(例えば、N,N−ジメチルアミノプロピルアミンまたはN−メチルピペラジン等)を反応させ、次いで塩化シアヌルの残りの塩素と種々のアミンまたはアルコール等を反応させることによって得られる。
【0052】
本発明で使用する塩基性官能基を有する各種誘導体は、負極活物質表面に作用(例えば吸着)することにより、分散効果を発揮するものと思われる。塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、又は塩基性官能基を有するトリアジン誘導体から選ばれる1種以上を、溶剤中に完全ないしは一部溶解させ、その溶液中に負極活物質材料を添加、混合することで、負極活物質材料への作用が進むものと思われる。また、後述する酸性官能基を有する樹脂の酸性官能基と上記誘導体が有する塩基性官能基の相互作用(例えば酸−塩基相互作用)により、樹脂の立体障害による反発が生じ負極活物質材料の分散性、分散安定性が増すと考えられる。
【0053】
また、本発明の負極合材を使用した電極は、負極活物質材料表面に極性官能基である塩基性官能基を有する各種誘導体が存在していると考えられるため、負極活物質材料の電解液に対する濡れ性が向上するとともに、上述の均一分散効果とあいまって電極の電解液に対する濡れ性が向上する。
【0054】
<酸性官能基を有する樹脂>
次に、本発明で使用する酸性官能基を有する樹脂について説明する。酸性官能基を有する樹脂の好ましい酸性官能基としては、カルボキシル基、スルホン酸基、及び燐酸基が挙げられる。酸性官能基を有する樹脂は、分散安定性の観点から、以下の(A1)〜(A3)の三つのタイプが好ましい。
【0055】
上記の酸性官能基を有する樹脂は、負極活物質と導電助剤としての炭素材料を結着する、または、負極活物質及び導電助剤としての炭素材料を集電極に結着するためのバインダーとしても機能するが、塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、塩基性官能基を有するトリアジン誘導体から選ばれる1種以上と併用することにより、負極活物質材料の分散性、分散安定性及を向上させることができる。
【0056】
<酸性官能基を有するポリフッ化ビニリデン系樹脂(A1)>
酸性官能基を有するポリフッ化ビニリデン系樹脂(A1)は、特に限定されるものではないが、特公昭52−24959号公報、特開58−136605号公報、特開平2−604号公報、特開平6−172452号公報、WO2004−049475号公報、特許第3121943号公報、又は特許第3784494号公報等を参考に合成することができる。以下、具体例を示すが、モノマーとは、エチレン性不飽和単量体を意味する。
【0057】
例えば、スルホン酸基を有するポリフッ化ビニリデン系樹脂は、フッ化ビニリデンのホモポリマー(単独重合体)、又は、フッ化ビニリデンと、フッ化ビニリデン以外のフッ素を有するモノマー、及びフッ素を有しないその他のモノマーからなる群から選ばれた1種
類以上のモノマーと、のコポリマー(共重合体)を、スルホン化することにより得られる。フッ化ビニリデン以外のフッ素を有するモノマーとしては、例えばトリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、及びフルオロアルキルビニルエーテル等が挙げられる。又、その他のモノマーとは、フッ化ビニリデンと共重合可能なモノマーであり、例えば、エチレン、クロロエチレン、プロピレン、(メタ)アクリル酸アルキル、及びスチレン等が挙げられる。スルホン化は、例えば濃硫酸、発煙硫酸、クロロスルホン酸、アミド硫酸、三酸化硫黄、又はトリエチルホスフェート錯体のようなスルホン化剤により、ポリフッ化ビニリデン系樹脂における重合単位中の水素をスルホン酸基に置換することで行われる。
【0058】
例えば、カルボキシル基を有するポリフッ化ビニリデン系樹脂は、フッ化ビニリデンと、カルボキシル基を有するモノマーと、フッ化ビニリデン以外のフッ素を有するモノマー、及びフッ素を有しないその他のモノマーからなる群から選ばれた1種類以上のモノマーと、を共重合することにより、得ることができる。
【0059】
カルボキシル基を有するモノマーとしては、例えば、アクリル酸、メタクリル酸、及びクロトン酸等の不飽和一塩基酸、並びに、イタコン酸、マレイン酸、及びシトラコン酸等の不飽和二塩基酸(及びそれらのモノエステル)等が挙げられる。
【0060】
又、フッ素を有するモノマーとしては、例えばトリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、及びフルオロアルキルビニルエーテル等が挙げられる。
【0061】
又、その他のモノマーとは、フッ化ビニリデンと共重合可能なモノマーであり、例えば、エチレン、クロロエチレン、プロピレン、(メタ)アクリル酸アルキル、及びスチレン等が挙げられる。
【0062】
又、市販のカルボキシル基含有ポリフッ化ビニリデン系の樹脂としては、KFポリマーW#9100、W#9200、及びW#9300(クレハ社製)等が挙げられる。
例えば、燐酸基を有するポリフッ化ビニリデン系樹脂は、フッ化ビニリデンと、燐酸基を有するモノマーと、フッ化ビニリデン以外のフッ素を有するモノマー、及びフッ素を有しないその他のモノマーからなる群から選ばれた1種類以上のモノマーと、を共重合するこ
とにより、得ることができる。
【0063】
燐酸基を有するモノマーとしては、アルキレンオキサイド変性リン酸(メタ)アクリレート、アルキレンオキサイド変性ジ(メタ)アクリレート、アルキレンオキサイド変性トリ(メタ)アクリレート、アルキレンオキサイド変性アルコキシリン酸(メタ)アクリレート、アルキレンオキサイド変性アルコキシリン酸ジ(メタ)アクリレート、グリシジル基を含む(メタ)アクリレートとリン酸とを反応させて得られるアダクト体等が挙げられる。
【0064】
又、フッ素を有するモノマーとしては、例えばトリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、及びフルオロアルキルビニルエーテル等が挙げられる。
又、その他のモノマーとは、フッ化ビニリデンと共重合可能なモノマーであり、例えば、エチレン、クロロエチレン、プロピレン、(メタ)アクリル酸アルキル、及びスチレン等が挙げられる。
【0065】
更に、燐酸基を有するポリフッ化ビニリデン系樹脂は、水酸基を有するポリフッ化ビニリデン系樹脂に燐酸化剤である燐酸、五酸化燐、オキシ塩化燐、ポリ燐酸、又はオルト燐酸等を作用させて燐酸エステルとして得ることができる。
水酸基を有するポリフッ化ビニリデン系樹脂は、フッ化ビニリデンと、水酸基を有するモノマーと、フッ化ビニリデン以外のフッ素を有するモノマー、及びフッ素を有しないその他のモノマーからなる群から選ばれた1種類以上のモノマーと、を共重合することにより
、得ることができる。
【0066】
水酸基を有するモノマーとしては、(メタ)アクリレート類とアリルエーテル類があり、(メタ)アクリレート類としては、2-ヒドロキシエチル(メタ)アクリレート、2−ヒド
ロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、6−ヒドロキシヘキシル(メタ)アクリレート、3−ヒドロキシ−2−エチルヘキシル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリシジルメタクリレート−(メタ)アクリル酸付加物、1,1,1−トリメチロールプロパン又はグリセロールのジ(メタ)アクリル酸エステル等が挙げられる。水酸基を有するアリルエーテル類としては、エチレングリコールモノアリルエーテル、ジエチレングリコールモノアリルエーテル、トリエチレングリコールモノアリルエーテル、ポリエチレングリコールモノアリルエーテル、プロピレングリコールモノアクリレート、ジプロピレングリコールモノアクリレート、トリプロピレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレート、1,2−ブチレングリコールモノアリルエーテル、1,3−ブチレングリコールモノアリルエーテル、ヘキシレングリコールモノアリルエーテル、オコチレングリコールモノアリルエーテル、トリメチロールプロパンモノアリルエーテル、トリメチロールプロパンジアリルエーテル、グリセリンモノアリルエーテル、グリセリンジアリルエーテル、ペンタエリスリトールモノアリルエーテル、ペンタエリスリトールトリアリルエーテル、ペンタエリスリトールジアリルエーテル等が挙げられる。
又、フッ素を有するモノマーとしては、例えばトリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、及びフルオロアルキルビニルエーテル等が挙げられる。
【0067】
又、その他のモノマーとは、フッ化ビニリデンと共重合可能なモノマーであり、例えば、エチレン、クロロエチレン、プロピレン、(メタ)アクリル酸アルキル、及びスチレン等が挙げられる。
【0068】
酸性官能基を有するポリフッ化ビニリデン系樹脂(A1)の重量平均分子量は、3,000〜1,000,000が好ましい。ただし、バインダー成分として、酸性官能基を有するポリフッ化ビニリデン系樹脂(A1)のみを使用する場合は、10,000〜1,000,0000が好ましい。分子量が小さいと、バインダーとしての耐性が低下することがある。又、分子量が大きくなると、バインダーの耐性は向上するものの、バインダー自体の粘度が高くなり作業性が低下するとともに、凝集剤として働き、合剤成分が凝集してしまう場合がある。
【0069】
<酸性官能基を有するポリビニル系樹脂(A2)>
酸性官能基を有するポリビニル系樹脂(A2)を製造するための第一の工程は、一般式(16)に示すように、分子内に2つの水酸基と1つのチオール基とを有する化合物(s)の存在下、エチレン性不飽和単量体(m)をラジカル重合して、片末端に2つの水酸基を有するビニル重合体(a)を製造する工程である。分子内に2つの水酸基と1つのチオール基とを有する化合物(s)のチオール基が連鎖移動剤として働き、エチレン性不飽和単量体(m)が重合した溶媒親和性ビニル重合体部位(M)の末端に、S原子を介して2つの水酸基が導入されたビニル重合体(a)が合成される。
一般式(16):
【0070】
【化11】

【0071】
分子内に2つの水酸基と1つのチオール基とを有する化合物(s)としては、例えば、1−メルカプト−1,1−メタンジオール、1−メルカプト−1,1−エタンジオール、3−メルカプト−1,2−プロパンジオール(チオグリセリン)、2−メルカプト−1,2−プロパンジオール、2−メルカプト−2−メチル−1,3−プロパンジオール、2−メルカプト−2−エチル−1,3−プロパンジオール、1−メルカプト−2,2−プロパンジオール、2−メルカプトエチル−2−メチル−1,3−プロパンジオール、及び2−メルカプトエチル−2−エチル−1,3−プロパンジオール等が挙げられる。
【0072】
分子内に2つの水酸基と1つのチオール基とを有する化合物(s)を、目的とするビニル重合体(a)の分子量にあわせて、エチレン性不飽和単量体(m)と、任意に重合開始剤とを混合して加熱することでビニル重合体(a)を得ることができる。好ましくは、エチレン性不飽和単量体100重量部に対して、1〜30重量部の水酸基とチオール基とを有する化合物(s)を用い、塊状重合又は溶液重合を行う。反応温度は40〜150℃、好ましくは50〜110℃、反応時間は3〜30時間、好ましくは5〜20時間である。
【0073】
重合の際、エチレン性不飽和単量体(m)100重量部に対して、任意に0.001〜5重量部の重合開始剤を使用することができる。重合開始剤としては、アゾ系化合物及び有機過酸化物を用いることができる。アゾ系化合物の例としては、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキサン1−カルボニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチル−4−メトキシバレロニトリル)、ジメチル2,2’−アゾビス(2−メチルプロピオネート)、4,4’−アゾビス(4−シアノバレリック酸)、及び2,2’−アゾビス(2−ヒドロキシメチルプロピオニトリル)、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等があげられる。有機過酸化物の例としては、過酸化ベンゾイル、t−ブチルパーベンゾエイト、クメンヒドロパーオキシド、ジイソプロピルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ(2−エトキシエチル)パーオキシジカーボネート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシビバレート、(3,5,5−トリメチルヘキサノイル)パーオキシド、ジプロピオニルパーオキシド、及びジアセチルパーオキシド等があげられる。これらの重合開始剤は、単独で、若しくは2種類以上組み合わせて用いることができる。
【0074】
溶液重合の場合には、重合溶媒として、酢酸エチル、酢酸n−ブチル、酢酸イソブチル、トルエン、キシレン、アセトン、ヘキサン、メチルエチルケトン、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、及びN−メチルピロリドン等が用いられるが特にこれらに限定されるものではない。これらの重合溶媒は、2種類以上混合して用いても良い。
【0075】
エチレン性不飽和単量体(m)としては、以下に示す一般的なエチレン性不飽和単量体(m1)が挙げられる。一般的なエチレン性不飽和単量体(m1)としては、例えば、
メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、及びラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート類;
シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、及びジシクロペンタニル(メタ)アクリレート等の脂肪族環を有する(メタ)アクリレート類;
テトラヒドロフルフリール(メタ)アクリレート等のヘテロ環を有する(メタ)アクリレート類;
フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、及びフェノキシジエチレングリコール(メタ)アクリレート等の芳香族環を有する(メタ)アクリレート類;
メトキシポリプロピレングリコール(メタ)アクリレート、及びエトキシポリエチレングリコール(メタ)アクリレート等のアルコキシポリアルキレングリコール(メタ)アクリレート類;
(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、及びアクリロイルモルホリン等のN置換型(メタ)アクリルアミド類;
N,N−ジメチルアミノエチル(メタ)アクリレート、及びN,N−ジエチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリレート類;
(メタ)アクリロニトリル等のニトリル類;
スチレン、α−メチルスチレン等のスチレン類;
エチルビニルエーテル、n−プロピルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル、及びイソブチルビニルエーテル等のビニルエーテル類;並びに、
酢酸ビニル、及びプロピオン酸ビニル等の脂肪酸ビニル類等があげられるが、特にこれらに限定されるものではなく、2種類以上を組み合わせたり、必要に応じて、以下に示す単量体を併用しても良い。
【0076】
エチレン性不飽和単量体(m)の一つとして、カルボキシル基含有エチレン性不飽和単量体(m2)を併用することもできる。カルボキシル基を有するエチレン性不飽和単量体(m2)としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマール酸、シトラコン酸、イタコン酸、クロトン酸、アクリル酸二量体、アクリル酸のカプロラクトン付加物(付加モル数は1〜5)、及びメタクリル酸のカプロラクトン付加物(付加モル数は1〜5)等から1種又は2種以上を選択することができる。
【0077】
本発明においては、上記に例示したエチレン性不飽和単量体(m)の中でも、ベンジル(メタ)アクリレートを単量体全体の20重量%〜70重量%使用するのが好ましい。20重量%未満では、溶媒親和性が低くなり、十分な立体反発効果が得られず、顔料分散性が低下する場合があり、70重量%を超えると、分散剤自身の溶剤への溶解性が上がるため顔料への吸着が不十分になったり、溶媒親和部同士の絡み合いにより、顔料組成物の粘度が高くなったりする場合がある。
【0078】
又、本発明においては、更に上記に例示したエチレン性不飽和単量体(m)と共に、ブロックイソシアネート基を有するエチレン性不飽和単量体(m3)、オキセタン基を有するエチレン性不飽和単量体(m4)、及びt−ブチル基を有するエチレン性不飽和単量体(m5)の少なくとも1つから選ばれるエチレン性不飽和単量体用いて、ビニル重合体(a)を製造することが出来る。これらの単量体を使用することにより、単量体中の架橋性官能基(それぞれブロックイソシアネート基、オキセタン基、t−ブチル基)が焼きつけにより架橋するため、本発明によるインクジェットインキを用いた展色物を熱硬化した後に耐薬品性、耐溶剤性、耐熱性、耐アルカリ性を更に向上することができる。
【0079】
ブロックイソシアネート基を有するエチレン性不飽和単量体(m3)としては、例えば、カレンズMOI−BM、及びカレンズMOI−BP(昭和電工製)等が挙げられる。オキセタン基を有するエチレン性不飽和単量体(m4)としては、例えば、ETERNACOLL OXMA(宇部興産製)等が挙げられる。t−ブチル基を有するエチレン性不飽和単量体(m5)としては、例えば、t−ブチルメタクリレート、及びt−ブチルアクリレート等が挙げられる。
【0080】
単量体の有するブロックイソシアネート基は、水酸基と併用すると水酸基と架橋反応するためより好ましく、オキセタン基はカルボキシル基と併用するとカルボキシル基と架橋反応するためより好ましく、t−ブチル基は、水酸基と併用すると水酸基と架橋反応し、オキセタン基と併用するとオキセタン基と架橋反応するためより好ましい。
【0081】
カルボキシル基を組み合わせる場合、本発明の硬化性分散剤中には、テトラカルボン酸二無水物(b)由来のカルボキシル基を硬化性部位として利用できるが、カルボキシル基を有するエチレン性不飽和単量体をエチレン性不飽和単量体(m2)として併用することで、硬化性分散剤にカルボキシル基を容易に導入することができる。
【0082】
カルボキシル基を有するエチレン性不飽和単量体(m2)としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、クロトン酸、アクリル酸二量体、アクリル酸のカプロラクトン付加物(付加モル数は1〜5)、及びメタクリル酸のカプロラクトン付加物(付加モル数は1〜5)等から1種又は2種以上を選択することができる。
【0083】
又、水酸基を組み合わせる場合、水酸基を有するエチレン性不飽和単量体(m6)をエチレン性不飽和単量体として併用することでも硬化性分散剤に水酸基を導入することができる。
【0084】
水酸基を有するエチレン性不飽和単量体(m6)としては、水酸基を有し、エチレン性不飽和二重結合を有する単量体であればどのようなものでも構わないが、例えば、
2−ヒドロキシエチル(メタ)アクリレート、2(又は3)−ヒドロキシプロピル(メタ)アクリレート、2(又は3、又は4)−ヒドロキシブチル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、及びグリセロール(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;
N−(2−ヒドロキシエチル)(メタ)アクリルアミド、N−(2−ヒドロキシプロピル)(メタ)アクリルアミド、及びN−(2−ヒドロキシブチル)(メタ)アクリルアミド等のN−(ヒドロキシアルキル)(メタ)アクリルアミド類;
2−ヒドロキシエチルビニルエーテル、2−(又は3−)ヒドロキシプロピルビニルエーテル、及び2−(又は3−、又は4−)ヒドロキシブチルビニルエーテル等のヒドロキシアルキルビニルエーテル類;並びに、
2−ヒドロキシエチルアリルエーテル、2−(又は3−)ヒドロキシプロピルアリルエーテル、及び2−(又は3−、又は4−)ヒドロキシブチルアリルエーテル等のヒドロキシアルキルアリルエーテル類が挙げられる。
【0085】
又、上記のヒドロキシアルキル(メタ)アクリレート類、N−(ヒドロキシアルキル)(メタ)アクリルアミド類、ヒドロキシアルキルビニルエーテル類、及びヒドロキシアルキルアリルエーテル類にアルキレンオキサイド又はラクトンを付加して得られるエチレン性不飽和単量体も、本発明で用いる水酸基を有するエチレン性不飽和単量体として用いることができる。付加されるアルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、1,2−、1,4−、2,3−又は1,3−ブチレンオキサイド、並びに、これらの2種以上の併用系が用いられる。2種以上のアルキレンオキサイドを併用するときの結合形式はランダム及び/又はブロックのいずれでもよい。付加されるラクトンとしては、δ−バレロラクトン、ε−カプロラクトン、炭素原子数1〜6のアルキル基で置換されたε−カプロラクトン、並びに、これらの2種以上の併用系が用いられる。アルキレンオキサイドとラクトンを両方とも付加したものでも構わない。
【0086】
本発明においては、ビニル重合体(a)に不飽和結合を導入することも出来る。
ビニル重合体(a)に不飽和結合を導入する方法としては、ビニル重合体(a)中に水酸基を導入し、後からイソシアネート基を有するエチレン性不飽和単量体(m7)を反応させる方法、ビニル重合体(a)中にカルボキシル基を導入し、後からエポキシ基を有するエチレン性不飽和単量体(m8)を反応させる方法、ビニル重合体(a)中にエポキシ基を導入し、後からカルボキシル基を有するエチレン性不飽和単量体(m2)を反応させる方法が挙げられる。
【0087】
イソシアネート基を有するエチレン性不飽和単量体(m7)としては、カレンズMOI(昭和電工製 2−メタクリロイルオキシエチルイソシアネート)、及びカレンズAOI(昭和電工製 2−アクリロイルオキシエチルイソシアネート)等が、挙げられる。エポキシ基を有するエチレン性不飽和単量体(m8)としては、グリシジル(メタ)アクリレート、及びサイクロマーM100(ダイセル化学工業製 3,4−エポキシシクロヘキシル(メタ)アクリレート)等が挙げられる。
【0088】
酸性官能基を有するポリビニル系樹脂(A2)製造のための第二の工程は、下記一般式(17)に示すように、第一の工程で得られた片末端に2つの水酸基を有するビニル重合体(a)と、テトラカルボン酸二無水物(b)とを反応させる工程である。
一般式(17):
【0089】
【化12】

【0090】
片末端に2つの水酸基を有するビニル重合体(a)のモル比をα、テトラカルボン酸二無水物(b)のモル比をβとすると、理論上、α=βでは、分子量が無限大に大きくなるので、α>βあるいはα<βとして、α/βの比率を変えて、目的とする分子量にコントロールすることが多い。例えば、α=β+1の場合、両末端が水酸基となり、それ以上分子量が大きくならず、酸性官能基を有するポリビニル系樹脂(A2-1)を安定に合成す
ることができる。一方、β=α+1の場合、両末端が酸無水物基となり、安定性が悪くなるため、酸無水物基を加水分解して、末端をカルボキシル基とした酸性官能基を有するポリビニル系樹脂(A2-2)を合成することができる。
【0091】
次に、酸性官能基を有するポリビニル系樹脂(A2)の第二の製造工程における各構成要素について説明する。
【0092】
本発明に使用するテトラカルボン酸二無水物(b)は、片末端に2つの水酸基を有するビニル重合体(a)と反応してエステル結合を形成し、かつ、生成するポリエステル主鎖上にペンダントカルボキシル基を残すことができる。一般式(17)の生成物中に残っている酸無水物基を加水分解すれば、この反応による生成物は、構造式中のX1部分にカル
ボキシル基を2個又は3個を有しており、この複数のカルボキシル基が導電助剤である炭素材料への吸着部位として有効である。
【0093】
しかしながら、X0に結合しているカルボキシル基が1個のみである場合(本発明の範
囲外)では、高い分散性、流動性、及び保存安定性を発現せず好ましくない。
本発明におけるX0は、テトラカルボン酸ニ無水物(b)が片末端に2つの水酸基を有す
るビニル重合体(a)と反応した後の反応残基である。好ましくは、下記一般式(18)、又は一般式(19)で示されるテトラカルボン酸二無水物が、水酸基を有するビニル重合体(a)と反応した後の反応残基である。
一般式(18):
【0094】
【化13】

〔一般式(18)中、kは1又は2である。〕
【0095】
一般式(19):
【0096】
【化14】

〔一般式(19)中、Q0は、直接結合、−O−、−CO−、−COOCH2CH2OCO
−、−SO2−、−C(CF32−、下記一般式(20):
【0097】
【化15】

で表される基、又は下記一般式(21):
【0098】
【化16】

で表される基である。〕
【0099】
本発明では、片末端に2つの水酸基を有するビニル重合体(a)とテトラカルボン酸二無水物(b)とを反応させることにより、上記一般式(17)における生成物中のX1
結合する複数のカルボキシル基部分が正極活物質への吸着部として機能し、ビニル重合体部分が溶媒親和部として機能する。
【0100】
片末端に2つの水酸基を有するビニル重合体(a)の重量平均分子量は、1,000〜10,000が好ましく、この部位が分散媒である溶剤への親和性部分となる。ビニル重合体(a)の重量平均分子量が1,000未満では、溶媒親和部による立体反発の効果が少なくなるとともに、導電助剤である炭素材料の凝集を防ぐことが困難となり、分散安定性が不十分となる場合がある。又、10、000を超えると、溶媒親和部の絶対量が増えてしまい、分散性の効果自体が低下する場合がある。更に、分散体の粘度が高くなる場合がある。ビニル重合体(a)は、分子量を上記範囲に調整することが容易であり、かつ、溶剤への親和性も良好である。酸性官能基を有するポリビニル系樹脂(A2)の第一の工程で説明したように、片末端に2つの水酸基を有するビニル重合体(a)の重量平均分子量は、エチレン性不飽和単量体(m)に対する分子内に2つの水酸基と1つのチオール基
とを有する化合物(s)の使用重量、反応温度、反応時間、エチレン性不飽和単量体(m)に対する必要に応じて使用する重合開始剤の使用重量、必要に応じて使用する重合溶剤の種類、及び重合時のエチレン性不飽和単量体(m)濃度によりコントロールできる。
【0101】
テトラカルボン酸二無水物(b)としては、
1,2,3,4−ブタンテトラカルボン酸無水物、1,2,3,4−シクロブタンテトラカルボン酸無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸無水物、1,2,3,4−シクロペンタンテトラカルボン酸無水物、2,3,5−トリカルボキシシクロペンチル酢酸無水物、3,5,6−トリカルボキシノルボルナン−2−酢酸無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸無水物、5−(2,5−ジオキソテトラヒドロフラル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、及びビシクロ[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸無水物等の脂肪族テトラカルボン酸無水物;並びに、
ピロメリット酸無水物、エチレングリコールジ無水トリメリット酸エステル、プロピレングリコールジ無水トリメリット酸エステル、ブチレングリコールジ無水トリメリット酸エステル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸無水物、3,3’, 4,4’−ビフェニルスルホンテトラカルボン酸無水物、1,4,5,8−ナフタレンテトラカルボン酸無水物、2,3,6,7−ナフタレンテトラカルボン酸無水物、3, 3’,4,4’−ビフェニルエーテルテトラカルボン酸無水物、3,3’,4,4’−ジメチルジフェニルシランテトラカルボン酸無水物、3,3’,4,4’−テトラフェニルシランテトラカルボン酸無水物、1,2,3,4−フランテトラカルボン酸無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン無水物、3,3’,4,4’−パーフルオロイソプロピリデンジフタル酸無水物、3,3’,4,4’−ビフェニルテトラカルボン酸無水物、ビス(フタル酸)フェニルホスフィンオキサイド無水物、p−フェニレン−ビス(トリフェニルフタル酸)無水物、m−フェニレン−ビス(トリフェニルフタル酸)無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルエーテル無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルメタン無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン酸無水物、9,9−ビス[4−(3,4−ジ
カルボキシフェノキシ)フェニル]フルオレン酸無水物、3,4−ジカルボキシ−1,2
,3,4−テトラヒドロ−1−ナフタレンコハク酸無水物、及び3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−6−メチル−1−ナフタレンコハク酸無水物等の芳香族テトラカルボン酸無水物が挙げられる。
【0102】
本発明で使用されるテトラカルボン酸二無水物(b)は上記に例示した化合物に限らず、カルボン酸無水物基を2つ持てばどのような構造をしていてもかまわない。これらは単独で用いても、併用してもかまわない。更に、本発明に好ましく使用されるものは、正極活物質分散体の低粘度化の観点から一般式(18)又は一般式(19)で表されるような、芳香族テトラカルボン酸無水物であり、更に好ましくは芳香族環を二つ以上有するテトラカルボン酸無水物である。又、分子中にカルボン酸無水物基を1つ持つ化合物や3つ以上持つ化合物を併用して使用することができる。
【0103】
本発明で用いることのできる酸性官能基を有するポリビニル系樹脂(A2)の第二の工程で用いられる触媒としては、公知の触媒を使用することができる。触媒としては3級アミン系化合物が好ましく、例えばトリエチルアミン、トリエチレンジアミン、N,N−ジメチルベンジルアミン、N−メチルモルホリン、1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン、及び1,5−ジアザビシクロ−[4.3.0]−5−ノネン等が挙げられる。
【0104】
本発明で用いることのできる酸性官能基を有するポリビニル系樹脂(A2)は、これまで挙げた原料のみで製造することも可能であるが、高粘度になり反応が不均一になる等の問題を回避すべく、溶剤を用いるのが好ましい。使用される溶剤としては、公知のものを使用できる。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、トルエン、キシレン、アセトニトリル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、及びN-メチルピロリドン等が挙げられる。反応に使用した溶媒は、反応終
了後、蒸留等の操作により取り除くか、あるいはそのまま製品の一部として使用することもできる。
【0105】
本発明で用いることのできる酸性官能基を有するポリビニル系樹脂(A2)は、片末端に2つの水酸基を有するビニル重合体(a)、テトラカルボン酸二無水物(b)を反応させることで得られる。テトラカルボン酸無水物(b)中の酸無水物基とビニル重合体(a)中の水酸基とのモル比は、ビニル重合体(a)のモル比をα、テトラカルボン酸二無水物(b)のモル比をβとすると、2β/2α=β/α=0.3〜1.2が、好ましく、更に好ましくはβ/α=0.5〜1.0、最も好ましくはβ/α=0.6〜0.8の場合である。β/α>1で反応させる場合は、残存する酸無水物基を必要量の水で加水分解して使用してもよい。0.3未満であると、正極活物質への吸着部である酸無水物残基が少なくなる場合があり、又、樹脂の酸価も低くなる場合もある。又、1.2を超えるとポリエステルが高分子量化を起こしてしまい、リチウム二次電池用正極合剤ペーストとして使用した時に、樹脂間の相互作用が強くなり逆に増粘が起きる場合がある。
【0106】
酸性官能基を有するポリビニル系樹脂(A2)の第二の工程の反応温度は80℃〜180℃、好ましくは、90℃〜160℃の範囲で行う。反応温度が80℃以下では反応速度が遅く、180℃以上ではカルボキシル基がエステル化反応してしまい、酸価の減少や、ゲル化を起こしてしまう場合がある。反応の停止は、赤外吸収で酸無水物の吸収がなくなるまで反応させるのが理想であるが、ポリエステルの酸価が5〜200の範囲に入ったとき、又は、水酸基価が20〜200の範囲に入った時に反応を止めてもよい。
【0107】
得られた酸性官能基を有するポリビニル系樹脂(A2)の重量平均分子量は、好ましくは、2,000〜25,000である。重量平均分子量が2,000未満であればリチウム二次電池用正極合剤ペーストの安定性が低下する場合があり、25,000を超えると樹脂間の相互作用が強くなり、リチウム二次電池用正極合剤ペーストの増粘が起きる場合がある。又、得られた酸性官能基を有するポリビニル系樹脂(A2)の酸価は、5〜200mgKOH/gが好ましい。更に好ましくは、5〜150mgKOH/gであり、特に好ましくは、5〜100mgKOH/gである。酸価が5未満では、正極活物質への吸着能が低下し分散性に問題がでる場合があり、200mgKOH/gを超えると、樹脂間の相互作用が強くなりリチウム二次電池用正極合剤ペーストの粘度が高くなる場合がある。
【0108】
<酸性官能基を有するポリエステル系樹脂(A3)>
本発明で用いることのできる酸性官能基を有するポリエステル系樹脂(A3)は、下記一般式(1)で表される構造を有する限り、その化学構造及び製造方法は特に限定されるものではない。その製造方法は、例えば、モノアルコールを開始剤として、ラクトンを開環重合して片末端に水酸基を有するポリエステルを製造する第一の工程と、該片末端に水酸基を有するポリエステルと、テトラカルボン酸二無水物を反応させる第二の工程とからなる方法であることが好ましい。
一般式(1):
(HOOC−)m−R21−(−COO−[−R23−COO−]n−R22t (1)
〔一般式(1)中、R21は、4価のテトラカルボン酸化合物残基であり、R22は、モノアルコール残基であり、R23は、ラクトン残基であり、mは、2又は3であり、nは、1〜50の整数であり、tは、(4−m)である。〕
酸性官能基を有するポリエステル系樹脂(A3)の製造に用いることのできるモノアルコールとしては、水酸基を一つ有する化合物であれば、特に限定されない。脂肪族モノアルコールとしては、例えば、好ましくは炭素原子数1〜30(より好ましくは炭素原子数1〜25)の直鎖状若しくは分岐状の置換若しくは非置換の飽和脂肪族モノアルコール、あるいは炭素原子数1〜30(より好ましくは炭素原子数1〜25)の置換若しくは非置換の飽和脂環式モノアルコールを挙げることができる。飽和脂肪族モノアルコール又は飽和脂環式モノアルコールの置換基としては、例えば、カルボキシル基を挙げることができる。
【0109】
脂肪族モノアルコールを例示すると、メタノール、エタノール、1−プロパノール、イソプロパノール、1−ブタノール、イソブタノール、tert−ブタノール、1−ペンタノール、イソペンタノール、1−ヘキサノール、4−メチル−2−ペンタノール、1−ヘプタノール、1−オクタノール、イソオクタノール、2−エチルヘキサノール、1−ノナノール、イソノナノール、1−デカノール、1−ドデカノール、1−ミリスチルアルコール、セチルアルコール、1−ステアリルアルコール、イソステアリルアルコール、2−オクチルデカノール、2−オクチルドデカノール、2−ヘキシルデカノール、ベヘニルアルコール、及びオレイルアルコール等を挙げることができる。脂環式モノアルコールとしては、例えば、シクロヘキサノール等を挙げることができる。
【0110】
脂肪族モノアルコールとしては、分岐脂肪族モノアルコールが好ましく、例えば、2−エチルヘキサノール、イソステアリルアルコール、2−オクチルデカノール、2−オクチルドデカノール、及び2−ヘキシルデカノール等の炭素原子数8〜20のものが好ましい。
【0111】
前記モノアルコールとしては、炭素原子数6〜30(より好ましくは炭素原子数6〜25)の置換若しくは非置換の芳香族モノアルコール、例えば、フェノール又はクミルフェノールを用いることもできる。又、炭素原子数1〜6の脂肪族基部分を有し、炭素原子数6〜10の芳香族基で置換された飽和脂肪族モノアルコール、例えば、ベンジルアルコールを用いることもできる。
【0112】
更に、前記モノアルコールとして、片末端に水酸基を有するモノアルキレングリコールモノエーテル又は片末端に水酸基を有するポリアルキレングリコールモノエーテルを用いることもできる。これらのモノアルキレングリコールモノエーテル又はポリアルキレングリコールモノエーテルとしては、好ましくは、モノ若しくはポリエチレングリコール又はモノ若しくはポリプロピレングリコールの炭素原子数1〜8のアルキルモノエーテルを挙げることができ、具体的には、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノ−2−エチルヘキシルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノヘキシルエーテル、プロピレングリコールモノ−2−エチルヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノ−2−エチルヘキシルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル、ジプロピレングリコールモノヘキシルエーテル、ジプロピレングリコールモノ−2−エチルヘキシルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノプロピルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールモノヘキシルエーテル、トリエチレングリコールモノ−2−エチルヘキシルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノプロピルエーテル、トリプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノヘキシルエーテル、トリプロピレングリコールモノ−2−エチルヘキシルエーテル、テトラエチレングリコールモノメチルエーテル、テトラエチレングリコールモノエチルエーテル、テトラエチレングリコールモノプロピルエーテル、テトラエチレングリコールモノブチルエーテル、テトラエチレングリコールモノヘキシルエーテル、テトラエチレングリコールモノ−2−エチルヘキシルエーテル、テトラプロピレングリコールモノメチルエーテル、テトラプロピレングリコールモノエチルエーテル、テトラプロピレングリコールモノプロピルエーテル、テトラプロピレングリコールモノブチルエーテル、テトラプロピレングリコールモノヘキシルエーテル、テトラプロピレングリコールモノ−2−エチルヘキシルエーテル、及びテトラジエチレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテルを挙げることができる。
【0113】
更に、酸性官能基を有するポリエステル系樹脂(A3)の製造に用いることのできるモノアルコールとしては、エチレン性不飽和二重結合1つ又はそれ以上を有するモノアルコールを挙げることができる。前記エチレン性不飽和二重結合の例としては、ビニル基又は(メタ)アクリロイル基を挙げることができ、(メタ)アクリロイル基が好ましい。これらは、1つの化合物中に異なる種類の二重結合を有する化合物であることができる。
【0114】
前記のエチレン性不飽和二重結合を有するモノアルコールとしては、例えば、エチレン性不飽和二重結合1つ、2つ、又は3つ以上を有する不飽和モノアルコール化合物を用いることができる。エチレン性不飽和二重結合の数が1つのモノアルコールとしては、(メタ)アクリル酸の炭素原子数1〜8のヒドロキシアルキルエステル、例えば、2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、エチル2−(ヒドロキシメチル)アクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、及び1,4−シクロヘキサンジメタノールモノ(メタ)アクリレート等を挙げることができる。
【0115】
エチレン性不飽和二重結合の数が2つのモノアルコールとしては、例えば、2−ヒドロキシ−3−アクリロイロキシプロピルメタクリレート、又はグリセリンジ(メタ)アクリレート等を挙げることができる。エチレン性不飽和二重結合の数が3つのモノアルコールとしては、例えば、ペンタエリスリトールトリアクリレート、エチレン性不飽和二重結合の数が5つのモノアルコールとしては、例えば、ジペンタエリスリトールペンタアクリレートを挙げることができる。
【0116】
前記で例示した脂肪族モノアルコール、芳香族モノアルコール、及びエチレン性不飽和二重結合を有するモノアルコールの水酸基を開始基として、アルキレンオキサイドを付加重合して得られるアルコール、すなわち、片末端をエーテル化又はエステル化したポリアルキレングリコールも、酸性官能基を有するポリエステル系樹脂(A3)の製造に用いることができる。付加重合に用いるアルキレンオキサイドとしては、例えば、エチレンオキサイド、プロピレンオキサイド、又は1,2−、1,4−、2,3−若しくは1,3−ブチレンオキサイド、あるいはこれらの2種以上の混合物を用いることができる。2種以上のアルキレンオキサイドを併用するときの結合形式はランダム及び/又はブロックのいずれでもよい。アルキレンオキサイドの付加数は、一分子中、通常1〜300、好ましくは2〜250、特に好ましくは5〜100である。
【0117】
アルキレンオキサイドの付加は、公知方法、例えばアルカリ触媒の存在下、100〜200℃の温度で行うことができる。こうして得られる付加重合生成物の市販品としては、日本油脂社製ユニオックスシリーズ、又は日本油脂社製ブレンマーシリーズ等がある。
【0118】
具体的に例示すると、ユニオックスM−400、M−550、M−2000、ブレンマーPE−90、PE−200、PE−350、AE−90、AE−200、AE−400、PP−1000、PP−500、PP−800、AP−150、AP−400、AP−550、AP−800、50PEP−300、70PEP−350B、AEPシリーズ、55PET−400、30PET−800、55PET−800、AETシリーズ、30PPT−800、50PPT−800、70PPT−800、APTシリーズ、10PPB−500B、及び10APB−500B等がある。
【0119】
酸性官能基を有するポリエステル系樹脂(A3)の製造に用いることができるモノアルコールは、上記例示に限定されることなく、水酸基を一つ有する化合物であればいかなる化合物も用いることができ、又、単独で用いても、2種類以上を併用することもできる。
【0120】
上記モノアルコールのうち、例えば4−メチル−2−ペンタノール、イソペンタノール、イソオクタノール、2−エチルヘキサノール、イソノナノール、イソステアリルアルコール、2−オクチルデカノール、2−オクチルドデカノール、若しくは2−ヘキシルデカノール等の分岐脂肪族モノアルコール、又は片末端に水酸基を有するポリアルキレングリコールを用いることで、結晶性が低下し、室温で液状になる場合があるので、作業性の点と、他の樹脂との相溶性の点で好ましい。
【0121】
前記モノアルコールを開始剤として、ラクトンを開環重合することによって、片末端に水酸基を有し、前記樹脂型分散剤の製造に用いることができるポリエステルを得ることができる。前記開環重合に用いることができるラクトンは、好ましくは4員環〜10員環、より好ましくは5員環〜7員環のラクトンであり、環構成炭素原子は、置換されているかあるいは非置換であることができる。環構成炭素原子の置換基としては、炭素原子数1〜4のアルキル基を挙げることができる。又、環内にエチレン結合1つ又はそれ以上を含む不飽和ラクトン、又は芳香族化合物(例えば、ベンゼン)との縮合ラクトンも用いることができる。
【0122】
好適なラクトンとして、具体的には、β−ブチロラクトン、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、δ−カプロラクトン、ε−カプロラクトン、及びアルキル置換されたε−カプロラクトンを挙げることができ、このうちδ−バレロラクトン、ε−カプロラクトン、又はアルキル置換されたε−カプロラクトンを使用するのが開環重合性の点で好ましい。アルキル置換基としては、例えば、炭素原子数1〜4のアルキル基、特には、メチル基又はエチル基を挙げることができ、これらのアルキル置換基1つ又はそれ以上で置換されていることができる。
【0123】
前記ラクトンは、上記例示に限定されることなく用いることができ、又、単独で用いても、2種類以上を併用することもできる。2種類以上を併用することで結晶性が低下し、室温で液状になる場合があるので、作業性の点と、他の樹脂との相溶性の点で好ましい。
【0124】
前記モノアルコールと前記ラクトンとの開環重合は、公知方法、例えば、脱水管及びコンデンサを接続した反応器に、前記モノアルコール、前記ラクトン、及び重合触媒を仕込み、窒素気流下で行うことができる。前記モノアルコールとして低沸点のモノアルコールを用いる場合には、オートクレーブを用いて加圧下で反応させることができる。又、前記モノアルコールとしてエチレン性不飽和二重結合を有する化合物を使用する場合は、重合禁止剤を添加し、乾燥空気流下で反応を行うことが好ましい。
【0125】
前記モノアルコール1モルに対する前記ラクトンの付加モル数は、1〜50モル、好ましくは、3〜20モル、最も好ましくは4〜16モルである。付加モル数が、1モルより少ないと、正極活物質を分散させる効果を得ることができず、50モルより大きいと分子量が大きくなりすぎ、正極活物質の分散性やリチウム二次電池用正極合剤ペーストの流動性の低下を招く。
【0126】
前記開環重合用の重合触媒としては、例えば、テトラメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラブチルアンモニウムブロミド、テトラメチルアンモニウムヨード、テトラブチルアンモニウムヨード、ベンジルトリメチルアンモニウムクロリド、ベンジルトリメチルアンモニウムブロミド、及びベンジルトリメチルアンモニウムヨード等の四級アンモニウム塩; テトラメチルホスホニウムクロリド、テトラブチルホスホニウムクロリド、テトラメチルホスホニウムブロミド、テトラブチルホスホニウムブロミド、テトラメチルホスホニウムヨード、テトラブチルホスホニウムヨード、ベンジルトリメチルホスホニウムクロリド、ベンジルトリメチルホスホニウムブロミド、ベンジルトリメチルホスホニウムヨード、テトラフェニルホスホニウムクロリド、テトラフェニルホスホニウムブロミド、及びテトラフェニルホスホニウムヨード等の四級ホスホニウム塩; トリフェニルフォスフィン等のリン化合物; 酢酸カリウム、酢酸ナトリウム、安息香酸カリウム、及び安息香酸ナトリウム等の有機カルボン酸塩; ナトリウムアルコラート、及びカリウムアルコラート等のアルカリ金属アルコラート; 三級アミン類; 有機錫化合物; 有機アルミニウム化合物; 有機チタネート化合物; 並びに、塩化亜鉛等の亜鉛化合物等を挙げることができる。触媒の使用量は0.1ppm〜3000ppm、好ましくは1ppm〜1000ppmである。触媒量が3000ppm以上となると、酸性官能基を有するポリエステル系樹脂(A3)の着色が激しくなり、製品の安定性に悪影響を与える。逆に、触媒の使用量が0.1ppm以下では環状エステルの開環重合速度が極めて遅くなるので好ましくない。
【0127】
前記開環重合反応は、無溶剤で実施するか、又は適当な脱水有機溶媒を使用することもできる。前記開環重合反応に使用した溶媒は、反応終了後、蒸留等の操作により取り除くか、あるいはそのまま電池用組成物の一部として使用することもできる。
【0128】
前記開環重合反応は、好ましくは100℃から220℃、より好ましくは110℃〜210℃の範囲で行う。反応温度が100℃未満では反応速度がきわめて遅く、210℃を超えるとラクトンの付加反応以外の副反応、例えばラクトン付加体のラクトンモノマーへの分解、環状のラクトンダイマーやトリマーの生成等が起こりやすい。
【0129】
エチレン性不飽和二重結合を有するモノアルコールを使用する場合に使用されるラジカル重合禁止剤としては、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、p−ベンゾキノン、2,4−ジメチル−6−t−ブチルフェノール、及びフェノチアジン等が好ましく、これらを単独で用いるかあるいは併用することができ、使用量は、好ましくは0.01%〜6%、より好ましくは0.05%〜1.0%の範囲である。
【0130】
本発明で用いる酸性官能基を有するポリエステル系樹脂(A3)は、前記の第一の工程で得られた片末端に水酸基を有するポリエステルの水酸基と、テトラカルボン酸二無水物とを反応させる(第二の工程)ことにより得ることが好ましい。
【0131】
第二の工程で使用されるテトラカルボン酸二無水物としては、脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物、複素環式テトラカルボン酸二無水物、及び多環式テトラカルボン酸二無水物を挙げることができる。
【0132】
具体的には、
1,2,3,4−ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物;
1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、3,5,6−トリカルボキシノルボルナン−2−酢酸二無水物、及びビシクロ[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物;並びに、
2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、及び5−(2,5−ジオキソテトラヒドロフラル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物等の複素環式テトラカルボン酸二無水物を挙げることができる。
【0133】
更に、ピロメリット酸二無水物、エチレングリコールジ無水トリメリット酸エステル、プロピレングリコールジ無水トリメリット酸エステル、ブチレングリコールジ無水トリメリット酸エステル、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’−テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4−フランテトラカルボン酸二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’−パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p−フェニレン−ビス(トリフェニルフタル酸)二無水物、m−フェニレン−ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)−4,4’−ジフェニルメタン二無水物、9,9−ビス(3,4−ジカルボキシフェニル)フルオレン二酸無水物、9,9−ビス[4−(3,4−ジカルボキシフェノキシ)フェニル]フルオレン二酸無水物等の芳香族テトラカルボン酸二無水物、3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−1−ナフタレンコハク酸二無水物、及び3,4−ジカルボキシ−1,2,3,4−テトラヒドロ−6−メチル−1−ナフタレンコハク酸二無水物等の多環式テトラカルボン酸二無水物を挙げることができる。
【0134】
芳香族テトラカルボン酸二無水物としては、特に、芳香族環2つ以上を有する芳香族テトラカルボン酸二無水物が好ましく、特には、3,3’,4,4’−ビフェニルテトラカルボン酸無水物、エチレングリコールジ無水トリメリット酸エステル、及び9,9−ビス(3,4−ジカルボキシフェニル)フルオレン二酸無水物が好ましい。
【0135】
酸性官能基を有するポリエステル系樹脂(A3)の製造に用いることができるテトラカルボン酸二無水物は、上記に例示した化合物に限らず、カルボン酸無水物を二つ持てばどのような構造をしていてもかまわない。これらは単独で用いても、併用してもかまわない。更に、酸性官能基を有するポリエステル系樹脂(A3)の製造に好適に用いることができるテトラカルボン酸二無水物は、リチウム二次電池用正極合剤ペーストの低粘度化の観点から、芳香族テトラカルボン酸二無水物であり、更に好ましくは芳香族環2つ以上(特には2〜4)を有するテトラカルボン酸二無水物である。
【0136】
第二の工程での反応比率は、片末端に水酸基を有するポリエステルの水酸基のモル数〈H〉に対する、テトラカルボン酸無水物の無水環のモル数〈N〉の比率〔〈H〉/〈N〉〕が、好ましくは0.5<〈H〉/〈N〉<1.2、更に好ましくは0.7<〈H〉/〈N〉<1.1、最も好ましくは〈H〉/〈N〉=1である。〈H〉/〈N〉<1で反応させる場合は、残存する酸無水物を必要量の水で加水分解して使用してもよい。
【0137】
第二の工程には触媒を用いてもかまわない。触媒としては、3級アミン系化合物としては、例えばトリエチルアミン、トリエチレンジアミン、N,N−ジメチルベンジルアミン、N−メチルモルホリン、及び1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ−[4.3.0]−5−ノネン等を挙げることができる。
【0138】
第一の工程、第二の工程ともに無溶剤で行ってもよいし、適当な脱水有機溶媒を使用してもよい。反応に使用した溶媒は、反応終了後、蒸留等の操作により取り除くか、あるいはそのまま製品の一部として使用することもできる。
【0139】
反応温度は80℃〜180℃、好ましくは、90℃〜160℃の範囲で行う。反応温度が80℃以下では反応速度が遅く、180℃以上ではハーフエステル化したものが、再度環状無水物を生成し、反応が終了しにくくなる場合がある。
【0140】
前記一般式(1)において、nは好ましくは1〜30の整数、より好ましくは2〜20の整数である。前記一般式(1)において、nとtとの少なくとも一方が2以上である場合には、前記一般式(1)に存在する複数のR23は、全てが同じ基であるか、複数種の基を含むことができる。
【0141】
前記一般式(1)で表される酸性官能基を有するポリエステル系樹脂(A3)として好ましい化合物は、R21が、一般式(22):
【0142】
【化17】

で表される基、一般式(23):
【0143】
【化18】

で表される基、又は一般式(24):
【0144】
【化19】

(式中、A0は、直接結合、−O−、−CO−、−COOCH2CH2OCO−、−SO2−、−C(CH32−、−C(CF32−、一般式(25):
【0145】
【化20】

で表される基、又は一般式(26):
【0146】
【化21】

で表される基である。)
で表される基であり、R22が、炭素原子数8〜20の脂肪族アルキル基、又は分子量200〜1500の末端エーテル若しくはエステルポリオキシアルキレン(アルキレン部分の炭素原子数が2〜4)基であり、R23が、ヘキサメチレン基、ペンタメチレン基、又はアルキル置換されたヘキサメチレン基であり、mが、2又は3であり、nが、3〜20の整数であり、そしてtが、(4−m)である一般式(1)で表される酸性官能基を有するポリエステル系樹脂(A3)である。
【0147】
酸性官能基を有する樹脂は、上記記載の三つのタイプのみに限定されるものでなく、三つのタイプ以外のポリビニル系、ポリウレタン系、ポリエステル系、ポリエーテル系、ホルマリン縮合物、シリコーン系、及びこれらの複合系ポリマー等が挙げられる。更に、これらの酸性官能基を有する樹脂は2種類以上を併用することもできる。
【0148】
<その他の市販の酸性官能基を有する樹脂>
市販の酸性官能基を有する樹脂としては、特に限定されないが、例えば、以下のものが挙げられる。これらは単独で用いても、併用してもかまわない。
ビックケミー社製の酸性官能基を有する樹脂としては、 Anti−Terra−U、U100、203、204、205、Disperbyk−101、102、106、107、110、111、140、142、170、171、174、180、2001、BYK−P104、P104S、P105、9076、及び220S等が挙げられる。
【0149】
日本ルーブリゾール社製の酸性官能基を有する樹脂としては、SOLSPERSE3000、21000、26000、36000、36600、41000、41090、43000、44000、及び53095等が挙げられる。
エフカアディティブズ社製の酸性官能基を有する樹脂としては、EFKA4510、4530、5010、5044、5244、5054、5055、5063、5064、5065、5066、5070、及び5071等が挙げられる。
味の素ファインテクノ社製の酸性官能基を有する樹脂としては、アジスパーPN411、及びアジスパーPA111等が挙げられる。
ELEMENTIS社製の酸性官能基を有する樹脂としては、NuosperseFX−504、600、605、FA620、2008、FA−196、及びFA−601等が挙げられる。
【0150】
ライオン社製の酸性官能基を有する樹脂としては、ポリティA−550、及びポリティPS−1900等が挙げられる。
楠本化成社製の酸性官能基を有する樹脂としては、ディスパロン2150、KS−860、KS−873SN、1831、1860、PW−36、DA−1200、DA−703−50、DA−7301、DA−325、DA−375、及びDA−234等が挙げられる。
BASFジャパン製の酸性官能基を有する樹脂としては、JONCRYL67、678、586、611、680、682、683、690、52J、57J、60J、61J、62J、63J、70J、HPD−96J、501J、354J、6610、PDX−6102B、7100、390、711、511、7001、741、450、840、74J、HRC−1645J、734、852、7600、775、537J、1535、PDX−7630、352J、252D、538J7640、7641、631、790、780、及び7610等が挙げられる。
三菱レイヨン製の酸性官能基を有する樹脂としては、ダイヤナールBR−60、64、73、77、79、83、87、88、90、93、102、106、113、116等が挙げられる。
【0151】
<負極活物質>
本発明で使用する負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiFe、LiFe、LiWO、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ−p−フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が挙げられる。
これら負極活物質は、1種または複数を組み合わせて使用することも出来る。
【0152】
本発明で使用する負極活物質としては、導電性物質で複合化されたものも好適に用いられる。導電性物質としては、炭素材料、導電性高分子材料、金属等が挙げられるが、本発明の分散剤との相互作用を考慮すると、炭素材料もしくは導電性高分子材料が好ましい。
【0153】
導電性高分子材料としては、例えばポリアニリン、ポリピロール、ポリチオフェン、ポリフェニレン誘導体等が挙げられる。炭素質材料としては、黒鉛質炭素として天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類、非晶質炭素としてアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、繊維状炭素材料としてカーボンナノチューブ、カーボンナノファイバー等が挙げられる。金属としては、Al,Ti,Fe,Ni,Cu,Zn,Ag,Sn等が挙げられる。
これらの複合化処理は、必要に応じ複数を組み合わせて行っても良い。
【0154】
負極活物質を導電性物質で複合化する方法としては、例えば炭素材料、金属を複合化する場合であれば、特開2003−308845号、特許第3985263号に記載のメカノフュージョン、ハイブリダイゼーション処理等の機械的処理、導電性高分子材料を複合化する場合であれば、特開2001−68096号に記載の、導電性高分子が溶解している有機溶剤溶液に浸漬させ、乾燥、熱処理する方法等が挙げられる。更には、CVD法による有機物の熱分解物被覆法やプラズマ法を用いた活物質表面への被覆層の形成法なども挙げられる。また、その他の活物質粒子表面に導電性材料を被覆する方法として、結着剤を用いる方法、気相中に分散された粉体が互いに接触するときに生じる摩擦帯電を利用して表面吸着を行う方法等を用いることも出来る。
【0155】
また、金属系、金属酸化物系の負極活物質、もしくは金属で複合化した負極活物質については、本発明で使用する分散剤との相互作用を考慮し、シランカップリング剤等のカップリング剤で表面を処理することも可能である。
【0156】
<導電助剤>
本発明の負極合材に使用される導電助剤としては、炭素材料、リチウムと合金化し難い金属、導電性高分子材料等が挙げられるが、炭素材料が好ましい。炭素材料としては、導電性を有する炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー、フラーレン等を単独で、もしくは2種類以上併せて使用することができる。
【0157】
導電助剤として用いるカーボンブラックは、酸化処理したカーボンを用いることも可能ではある。カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。
【0158】
市販のカーボンブラックとしては、例えば、
トーカブラック#4300、#4400、#4500、及び#5500等の東海カーボン社製ファーネスブラック;プリンテックスL等のデグサ社製ファーネスブラック;Raven7000、5750、5250、5000ULTRAIII、5000ULTRA、Conductex SC ULTRA、975 ULTRA、PUER BLACK100、115、及び205等のコロンビヤン社製ファーネスブラック;#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、及び#5400B等の三菱化学社製ファーネスブラック;MONARCH1400、1300、900、VulcanXC−72R、及びBlackPearls2000等のキャボット社製ファーネスブラック;Ensaco250G、Ensaco260G、Ensaco350G、及びSuperP−Li等のTIMCAL社製ファーネスブラック;ケッチェンブラックEC−300J、及びEC−600JD等のアクゾ社製ケッチェンブラック; 並びに、デンカブラック、デンカブラックHS−100、FX−35等の電気化学工業社製アセチレンブラック等が挙げられるが、これらに限定されるものではない。
【0159】
<バインダー成分>
本発明の負極合材には、更に、バインダー成分を含有させることが好ましい。使用するバインダーとしては、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリロニトリル、スチレン、ビニルブチラール、ビニルアセタール、ビニルピロリドン等を構成単位として含む重合体または共重合体、ポリウレタン樹脂、ポリイミド樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、アクリル樹脂、ホルムアルデヒド樹脂、シリコン樹脂、ポリフッ化ビニリデンやポリテトラフルオロエチレン等のフッ素樹脂、カルボキシメチルセルロースのようなセルロース樹脂、スチレン−ブタジエンゴム、フッ素ゴムのようなゴム類、ポリアニリン、ポリアセチレンのような導電性樹脂等が挙げられる。また、これらの樹脂の変性体や混合物、および共重合体でも良い。
【0160】
<溶剤>
本発明の負極合材に使用される溶剤としては、例えば、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類、水等が挙げられるが、これに限定されない。
【0161】
<組成>
負極合材中の総固形分に占める負極活物質の割合は、80重量%以上、98.5重量%以下で使用することが望ましい。負極活物質の割合が80重量%を下回ると、十分な導電性、放電容量を得ることが難しくなる場合があり、98.5重量%を超えると、バインダー成分の割合が低下するため、集電体への密着性が低下し、負極活物質が脱離しやすくなる場合がある。
【0162】
また、負極合材中の総固形分に占める、導電助剤の固形分の割合は、0.5重量%以上、19重量%以下、好ましくは1.0重量%以上、15重量%以下で使用することが望ましい。導電助剤の割合が、0.5重量%を下回ると、十分な導電性を得ることが難しくなる場合があり、19重量%を超えると、電池性能に大きく関与する正極活物質の割合が低下するため、放電容量が低下する等の問題が発生する場合がある。
【0163】
また、負極合材中の総固形分に占める、バインダー成分の割合は、1重量%以上、10重量%以下が好ましい。バインダー成分の割合が1重量%を下回ると、結着性が低下するため、集電体から負極活物質や導電助剤としての炭素材料等が脱離しやすくなる場合があり、10重量%を超えると、負極活物質及び導電助剤としての炭素材料の割合が低下するため、電池性能の低下に繋がる場合がある。
【0164】
また、負極合材の適正粘度は、その塗工方法によるが、一般には、100mPa・s以上、30,000mPa・s以下とするのが好ましい。
【0165】
<製造方法>
次に、本発明の負極合材の製造方法について説明する。
【0166】
本発明の負極合材は、例えば、塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、塩基性官能基を有するトリアジン誘導体から選ばれる1種以上と、酸性官能基を有する樹脂と、負極活物質とを溶剤に分散し、該分散体に、必要に応じて導電助剤としての炭素材料、バインダーを混合することにより製造することができる。各成分の添加順序等については、これに限定されるわけではない。また、必要に応じて更に溶剤を追加しても良い。
【0167】
上記製造方法は、塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、塩基性官能基を有するトリアジン誘導体から選ばれる1種以上の誘導体と、酸性官能基を有する樹脂とを、溶剤中に完全又は一部溶解させ、その溶液中に負極活物質を添加、混合することで、これらを負極活物質に作用(例えば吸着)させつつ、溶剤に分散するものである。このときの分散体中における負極活物質の濃度は、使用する負極活物質の比表面積や表面官能基量等の負極活物質固有の特性値等にもよるが、1重量%以上、90重量%以下が好ましく、更に好ましくは10重量%以上、80重量%以下である。負極活物質の濃度が低すぎると、生産効率が悪くなり、更に合剤ペーストの粘度が低くなりやすく経時で負極活物質が沈降しやすくなり、均一な電極が作成しにくい場合がある。一方、負極活物質の濃度が高すぎると、分散体の粘度が著しく高くなり、分散効率や分散体のハンドリング性が低下する場合がある。
【0168】
塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、塩基性官能基を有するトリアジン誘導体から選ばれる1種以上の誘導体の添加量は、用いる負極活物質の比表面積等により決定される。一般には、前記誘導体を、負極活物質100重量部に対して、0.01重量部以上、30重量部以下、好ましくは0.05重量部以上、25重量部以下、更に好ましくは、0.1重量部以上、20重量部以下で添加する。添加量が少ないと十分な効果が得られず、必要以上に添加しても顕著な分散性向上は見られない。
【0169】
酸性官能基を有する樹脂の添加量についても、用いる負極活物質の比表面積等により決定される。一般には、前記樹脂を、負極活物質100重量部に対して、0.01重量部以上、30重量部以下、好ましくは0.05重量部以上、25重量部以下、更に好ましくは、0.1重量部以上、20重量部以下で添加する。添加量が少ないと十分な効果が得られず、必要以上に添加しても顕著な分散性向上は見られない。
【0170】
負極活物質を分散するための装置としては、例えば、顔料分散等に通常用いられている以下の様な分散機が使用できる。
【0171】
分散機の例としては、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS−5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;又は、その他ロールミル等が挙げられるが、これらに限定されるものではない。又、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。
【0172】
金属混入防止処理としては、例えばメディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。メディアとしては、ガラスビーズ、又は、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。又、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。
【0173】
強い衝撃で粒子が割れたり、潰れたりしやすい負極活物質の場合は、メディア型分散機よりは、ロールミルやホモジナイザー等のメディアレス分散機が好ましい。
【0174】
本発明における負極合材は、負極活物質の分散性が優れるため、負極合材ペーストを作成する際に混合・分散する際のエネルギーが、負極活物質の凝集物に阻害されることなく効率よく炭素材料(導電助剤)に伝わり、結果的に炭素材料(導電助剤)の分散性も向上させることができると考えられる。
【0175】
負極活物質と導電助剤としての炭素材料を共分散すると、本発明で使用する塩基性官能基を有する各種誘導体および酸性官能基を有する樹脂は、導電助剤としての炭素材料にも分散効果があると思われるため、導電助剤としての炭素材料の分散性も向上すると考えられる。
【0176】
塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、塩基性官能基を有するトリアジン誘導体から選ばれる1種以上の誘導体で、あらかじめ処理された負極活物質を使用することも出来る。負極活物質を、塩基性官能基を有する各種誘導体であらかじめ処理した後、酸性官能基を有する樹脂と、必要に応じて更に塩基性官能基を有する各種誘導体を添加し、上述した方法で負極合材を作成することが出来る。
【0177】
塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、塩基性官能基を有するトリアジン誘導体から選ばれる1種以上の誘導体であらかじめ処理された負極活物質を得る方法としては、乾式処理による方法および、液相中での処理による方法が挙げられる。
【0178】
乾式処理としては、例えば、常温もしくは加熱下で、乾式処理装置により負極活物質および分散剤の、混合、粉砕等を行いながら、負極活物質表面に分散剤を作用(例えば吸着)させる方法が挙げられる。使用する装置としては特に限定されるものではく、ペイントコンディショナー(レッドデビル社製)、ボールミル、アトライター、振動ミル等のメディア型分散機、ニーダー、ローラーミル、石臼式ミル、プラネタリーミキサー、フェンシェルミキサー、ハイブリダイザー((株)奈良機械製作所)、メカノマイクロス((株)奈良機械製作所)、メカノフュージョンシステムAMS(ホソカワミクロン(株))等のメディアレス分散・混錬機が使用できるが、金属コンタミ等を考慮し、メディアレスの分散・混錬機を使用するのが好ましい。
【0179】
液相処理としては、溶剤中で、塩基性官能基を有する各種誘導体と負極活物質とを混合し、前記誘導体を負極活物質に作用(例えば吸着)させる工程と、前記誘導体が作用した負極活物質を凝集させ、凝集粒子を得る工程を含むことが好ましい。
【0180】
特に、塩基性官能基を有する各種誘導体を、溶剤に完全ないしは一部溶解させ、その溶液中に負極活物質を添加して混合・分散することで、これら分散剤を負極活物質に作用(例えば吸着)させるのが好ましい。
【0181】
塩基性官能基を負極活物質に作用(例えば吸着)させる工程において使用する溶剤としては、比誘電率が15以上の極性溶剤を使用することが好ましい。とりわけ、処理液中での負極活物質の濃度を上げ、処理効率を高めるためには、比誘電率が15以上、200以下、好ましくは15以上、100以下、更に好ましくは、20以上、100以下の極性溶剤を使用するのが好ましい。
比誘電率が15を下回る溶剤では前記誘導体の溶解性が著しく低下し、負極活物質の分散性は低下するため、負極活物質濃度を上げることができないことが多く、また、比誘電率が200を超える溶剤を使用しても、顕著な効果が得られないことが多い。
【0182】
負極活物質を溶剤に混合・分散させつつ、上記誘導体を負極活物質に作用(例えば吸着)させるための装置としては、顔料分散等に通常用いられている上述した分散機が使用できる。処理の効率や生産性の観点から、ミキサーやメディア型分散機の使用が好ましい。また、装置からの金属混入防止処理を施したものを用いることが好ましい。
【0183】
塩基性官能基を有する各種誘導体が作用した負極活物質を液中で凝集させ、凝集粒子を得る工程としては、上述の処理物を加熱および/もしくは減圧して、溶剤を留去する方法が挙げられる。
【0184】
また、負極活物質表面にある塩基性官能基を有する各種誘導体の溶剤に対する溶解性または分散性を低下させて凝集させる方法として、上述の処理スラリーにを比誘電率が15未満、さらに好ましくは10以下の溶剤と混合することで凝集させる方法等が挙げられる。比誘電率が15未満の溶剤としては特に限定されるものではないが、例えば、メチルイソブチルケトン(比誘電率:13.1)、酢酸エチル(6.0)、酢酸ブチル(5.0)、ジエチルエーテル(4.2)、キシレン(2.3)、トルエン(2.2)、ヘプタン(1.9)、ヘキサン(1.9)、ペンタン(1.8)等が挙げられる。そしてこれらの凝集物を、濾過または遠心分離等により取り出す。得られた処理物はそのまま使用することもできるが、その後、洗浄、乾燥、粉砕して使用するのが好ましい。
【0185】
水系であらかじめ処理を行う場合、水はイオン交換水または精製水を使用するのが好ましい。また、分散剤の溶解性を上げるために、処理液のpHは、0.05<pH<7が好ましく、1<pH≦7が更に好ましい。処理液のpHを酸性にする為に酸性化合物を添加する。酸性化合物としては、塩酸、硫酸、硝酸、燐酸、強酸と弱塩基の反応によって得られる塩類の無機化合物、カルボン酸類、スルホン酸類などの有機酸、水に溶解して酸性を示す化合物等を用いることができる。中でも揮発性のカルボン酸類や塩酸の使用が好ましい。
【0186】
塩基性官能基を有する各種誘導体が作用した負極活物質を液中で凝集させ、凝集粒子を得る工程としては、上述の処理物を加熱および/もしくは減圧して、水分を留去する方法が挙げられる。また、負極活物質表面にある前記誘導体の、水に対する溶解性または分散性を低下させて凝集させる方法として、処理液のpHを中性ないしは塩基性化して凝集させる方法等が挙げられる。この際に添加する塩基性化合物としては、アルカリ金属等の金属水酸化物類、弱酸と強塩基の反応により得られる塩類、アンモニア、有機アミン類等、水に溶解して塩基性を示す化合物を用いることができる。中でも、電極作製時の乾燥工程で分解または揮発する塩基の使用が好ましい。これらの凝集物は、濾過または遠心分離等により取り出す。得られた処理物はそのまま使用することもできるが、その後、洗浄、乾燥、粉砕して使用するのが好ましい。
【0187】
<リチウム二次電池>
次に、本発明の組成物を用いたリチウム二次電池について説明する。
【0188】
リチウム二次電池は、集電体上に正極合材層を有する正極と、集電体上に負極合材層を有する負極と、リチウムを含む電解質とを具備する。前記正極合材層と前記集電体との間や、前記負極合材層と前記集電体との間には、電極下地層が形成されていてもよい。
【0189】
電極について、使用する集電体の材質や形状は特に限定されず、材質としては、アルミニウム、銅、ニッケル、チタン、ステンレス等の金属や合金が用いられるが、特に正極材料としてはアルミニウムが、負極材料としては銅の使用が好ましい。また、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化したものや、穴あき箔状のもの、およびメッシュ状のものも使用できる。
【0190】
正極合材層は、正極活物質、導電助剤、バインダー成分等からなる。正極活物質としては、特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、および導電性高分子等を使用することができる。例えば、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。具体的には、MnO、V、V13、TiO等の遷移金属酸化物粉末、層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末、オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料、TiS、FeSなどの遷移金属硫化物粉末等が挙げられる。また、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性ポリマーを使用することもできる。また、上記の無機化合物や有機化合物を混合して用いてもよい。
【0191】
導電助剤としては、炭素材料、リチウムと合金化し難い金属、導電性高分子材料等を使用することができる。また、バインダー成分としては、エチレン、プロピレン、塩化ビニル、酢酸ビニル、ビニルアルコール、マレイン酸、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリロニトリル、スチレン、ビニルブチラール、ビニルアセタール、ビニルピロリドン等を構成単位として含む重合体または共重合体;ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、アクリル樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂;カルボキシメチルセルロースのようなセルロース樹脂;スチレン−ブタジエンゴム、フッ素ゴムのようなゴム類;ポリアニリン、ポリアセチレンのような導電性樹脂等が挙げられる。また、これらの樹脂の変性体や混合物、および共重合体でも良い。特に、耐性面から分子内にフッ素原子を含む高分子化合物、例えば、ポリフッ化ビニリデン、ポリフッ化ビニル、テトラフルオロエチレン等の使用が好ましい。
【0192】
集電体上に電極合材層を形成する方法としては、集電体上に上述の電極合材ペーストを直接塗布し乾燥する方法、および集電体上に電極下地層を形成した後に電極合材ペーストを塗布し乾燥する方法などが挙げられる。また、電極下地層の上に電極合材層を形成する場合、集電体上に電極下地ペーストを塗布した後、湿潤状態のうちに電極合材ペーストを重ねて塗布し、乾燥を行っても良い。電極合材層の厚みとしては、一般的には1μm以上、500μm以下であり、好ましくは10μm以上、300μm以下である。
【0193】
塗布方法については、特に制限はなく公知の方法を用いることができる。具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法、静電塗装法等が挙げられる。また、塗布後に平版プレスやカレンダーロール等による圧延処理を行っても良い。
【0194】
本発明のリチウム二次電池を構成する電解液としては、リチウムを含んだ電解質を非水系の溶剤に溶解したものを用いる。電解質としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiCFSO、Li(CFSON、LiCSO、Li(CFSOC、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN、LiBPh等が挙げられるがこれらに限定されない。
【0195】
非水系の溶剤としては特に限定はされないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート類、γ−ブチロラクトン、γ−バレロラクトン、γ−オクタノイックラクトン等のラクトン類、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−メトキシエタン、1,2−エトキシエタン、1,2−ジブトキシエタン等のグライム類、メチルフォルメート、メチルアセテート、メチルプロピオネート等のエステル類、ジメチルスルホキシド、スルホラン等のスルホキシド類、アセトニトリル等のニトリル類、が挙げられる。またこれらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。
【0196】
更に上記電解液を、ポリマーマトリクスに保持しゲル状とした高分子電解質とすることもできる。ポリマーマトリクスとしては、ポリアルキレンオキシドセグメントを有するアクリレート系樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン系樹脂、ポリアルキレンオキシドセグメントを有するポリシロキサン等が挙げられるがこれらに限定されない。
【0197】
本発明の組成物を用いたリチウム二次電池の構造については特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレーターとから構成され、ペーパー型、円筒型、ボタン型、積層型など、使用する目的に応じた種々の形状とすることができる。
【0198】
[実施例]
以下、実施例に基づき本発明を更に詳しく説明するが、本発明は、実施例に限定されるものではない。実施例中、部は重量部を、%は重量%をそれぞれ表す。
実施例で使用した分散剤について構造を表1〜表4に示す。
【0199】
【表1】

【0200】
【表2】

【0201】
【表3】

【0202】
【表4】

【0203】
<負極活物質分散体の調製>
[負極活物質分散体1〜26]
表5に示す組成に従い、容器に、溶剤、塩基性官能基を有する各種誘導体、酸性官能基を有する樹脂を仕込み、混合攪拌して該誘導体を完全ないしは一部溶解させた。次に、負極活物質を加え、メディアレス分散機であるフィルミックス(プライミクス社製)で分散し、負極活物質分散体(1)〜(26)を得た。
【0204】
負極活物質としては、メソフェーズカーボンMFC(mesophase carbon)(MCMB 6−28、平均粒径5〜7μm、比表面積4m/g大阪ガスケミカル社製)、球状黒鉛(平均粒径約10〜20μm、日本黒鉛社製)、チタン酸リチウム(LiTi12、平均一次粒子径0.3μm、比表面積15m/g)、リチウムバナジウム酸化物(Li1.10.9、特開2008−153177記載の方法で作成したもの)のいずれかを使用した。
また、複合化負極活物質については、後述する方法で調整した複合化負極活物質(a)〜(d)を用いた。
【0205】
塩基性官能基を有する各種誘導体であらかじめ処理した負極活物質については、後述する方法で調整した、誘導体前処理負極活物質(e)を用いた。
【0206】
酸性官能基を有する樹脂については、後述する方法で作成したものを使用した。また、酸性官能基を有する樹脂(A1)、(A2)、(A3)以外の酸性官能基を有する樹脂として、Disperbyk−111(燐酸基を有する樹脂、ビックケミー社製)を使用した。
尚、表5中のアニオン性の界面活性剤は、デモールN(β−ナフタレンスルホン酸−ホルマリン縮合物のナトリウム塩、花王社製)を使用した。
【0207】
<複合化負極活物質の調製>
[複合化負極活物質の調整(a)]
メソフェーズカーボンMFC(mesophase carbon)(MCMB 6−28、平均粒径5〜7μm、比表面積4m/g大阪ガスケミカル社製)47部、アセチレンブラック(デンカブラックHS−100、一次粒径48nm、比表面積48m/g、電気化学工業社製)3部を、ハイブリダイゼーション(奈良機会製作所社製)で処理し複合化負極活物質(a)を得た。
[複合化負極活物質の調整(b)]
チタン酸リチウム(LiTi12、平均一次粒子径0.3μm、比表面積15m/g)47部、アセチレンブラック(デンカブラックHS−100、一次粒径48nm、比表面積48m/g、電気化学工業社製)3部を、ハイブリダイゼーション(奈良機会製作所社製)で処理し複合化負極活物質(b)を得た。
[複合化負極活物質の調整(c)]
リチウムバナジウム酸化物(Li1.10.9、特開2008−153177記載の方法で作成したもの)、アセチレンブラック(デンカブラックHS−100、一次粒径48nm、比表面積48m/g、電気化学工業社製)3部を、ハイブリダイゼーション(奈良機会製作所社製)で処理し複合化負極活物質(c)を得た。
[複合化負極活物質の調整(d)]
ケイ素粉末(平均一次粒子径3μm)を、炭素源としてトルエンを用いCVD処理し、カーボンコーティングされた複合化負極活物質(d)を得た。
【0208】
<誘導体前処理負極活物質の調製>
[誘導体前処理負極活物質の調整(e)]
イオン交換水2000部に、分散剤J5部を添加した。ディスパーにて攪拌混合しつつ酢酸を添加し、液のpHを約4とし、分散剤を溶解させた。続いて、メソフェーズカーボンMFC(mesophase carbon)(MCMB 6−28、平均粒径5〜7μm、比表面積4m/g大阪ガスケミカル社製)100部を加え、pHを3.5〜4.5の範囲で維持しながら攪拌混合した。次に、処理スラリーを磁石つきのストレーナーを通した後、アンモニア水を加え、液のpHを8〜9とした。このとき液の粘度が急激に上昇するため、適宜イオン交換水を追加した。凝集物を濾取した後、イオン交換水で洗浄、その後乾燥、粉砕して分散剤前処理処理負極活物質(e)を得た。
【0209】
<酸性官能基を有する樹脂>
● 酸性官能基を有するポリフッ化ビニリデン系樹脂(A1)タイプ
(A1−1)スルホン酸基を有するポリフッ化ビニリデン系樹脂:重量平均分子量約1万。
(A1−2)燐酸基含有ポリフッ化ビニリデン系樹脂:重量平均分子量約1万。
(A1−3)KFポリマーW#9100(クレハ社製):
カルボキシル基を有するポリフッ化ビニリデン系樹脂、重量平均分子量約28万。
【0210】
<スルホン酸基を有するポリフッ化ビニリデン系樹脂(A1−1)の調整>
スルホン酸基を有するポリフッ化ビニリデン系樹脂の調製は、特許第3784494号公報に準じた。即ち、1Lのセパラブルフラスコ中で各種分子量のポリフッ化ビニリデン系樹脂100gをクロロホルム400mLに分散させ、攪拌しながらクロロスルホン酸100mLを滴下した後に、2時間加熱還流させた。その後、反応液を氷水中に注ぎ、固形物を濾別し、水洗、乾燥を経て、スルホン酸変性ポリフッ化ビニリデン樹脂を得た。
重量平均分子量約1万のポリフッ化ビニリデン系樹脂としては、公知の方法で合成した1,1-ジフルオロエチレンのホモポリマーを使用し、重量平均分子量約28万及び約100万のポリフッ化ビニリデン系樹脂としては、それぞれKFポリマーW#1100、W#7300(クレハ社製、1,1-ジフルオロエチレンのホモポリマー)を使用した。
【0211】
<燐酸基を有するポリフッ化ビニリデン系樹脂(A1−2)の調整>
まず、特開平6−172452号公報に準じて以下の様に、ヒドロキシル基を有するポリフッ化ビニリデン系樹脂を合成した。即ち、2Lのオートクレーブに、イオン交換水1040g、メチルセルロース0.8g、酢酸エチル2.5g、ジイソプロピルパーオキシジカーボネート4g、フッ化ビニリデン396g、2-ヒドロキシエチルアクリレート4gを仕込み、28℃で45時間懸濁重合を行った。重合完了後、重合体スラリーを脱水、水洗後、80℃で20時間乾燥して重合体を得た。次に、窒素ガス導入管及び、コンデンサをつけた1Lのセパラブルフラスコ中で上記のヒドロキシル基含有ポリフッ化ビニリデン系樹脂100gをクロロホルム400mLに分散させ、窒素下で攪拌しながらオルトリン酸換算含有量116%のポリリン酸100gを混合した後、2時間加熱還流させた。その後、反応液を氷水中に注ぎ、固形物を濾別し、水洗、乾燥を経て、燐酸変性ポリフッ化ビニリデン樹脂(A1−2)を得た。
【0212】
● 酸性官能基を有するポリビニル系樹脂(A2)タイプ
<カルボキシル基を有するポリビニル系樹脂(A2−1)の調整>
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、n−ブチルメタクリレート100部とベンジルメタクリレート100部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、3‐メルカプト‐1,2‐プロパンジオール12部に、2,2’−アゾビスイソブチロニトリル0.1部を溶解した溶液を添加して、10時間反応した。固形分測定により95%が反応したことを確認した。ピロメリット酸無水物19部、N-メチル−2−ピロリドン231部、触媒として1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン0.40部を追加し、120℃で7時間反応させた。酸価の測定で98%以上の酸無水物がハーフエステル化していることを確認し反応を終了し、固形分50%のカルボキシル基を有するポリビニル系樹脂(A2−1)溶液を得た。得られたポリビニル系樹脂(A2−1)の重量平均分子量(Mw)は8,500、酸価は 43mgKOH/gであった。
【0213】
<カルボキシル基を有するポリビニル系樹脂(A2−2)の調整>
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、メチルメタクリレート180部とメタクリル酸20部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、3‐メルカプト‐1,2‐プロパンジオール12部に、2,2’−アゾビスイソブチロニトリル0.1部を溶解した溶液を添加して、10時間反応した。固形分測定により95%が反応したことを確認した。ピロメリット酸無水物19部、N-メチル−2−ピ
ロリドン231部、触媒として1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン0.40部を追加し、120℃で7時間反応させた。酸価の測定で98%以上の酸無水物がハーフエステル化していることを確認し反応を終了し、固形分50%のカルボキシル基を有するポリビニル系樹脂(A2−2)溶液を得た。得られたポリビニル系樹脂(A2−2)の重量平均分子量(Mw)は8,600、酸価は 93mgKOH/gであった。
【0214】
<カルボキシル基を有するポリビニル系樹脂(A2−3)の調整>
ガス導入管、温度計、コンデンサ、攪拌機を備えた反応容器に、エチルアクリレート160部とメチルメタクリレート30部とメタクリル酸10部を仕込み、窒素ガスで置換した。反応容器内を80℃に加熱して、3‐メルカプト‐1,2‐プロパンジオール12部に、2,2’−アゾビスイソブチロニトリル0.1部を溶解した溶液を添加して、10時間反応した。固形分測定により95%が反応したことを確認した。ピロメリット酸無水物19部、N-メチル−2−ピロリドン231部、触媒として1,8−ジアザビシクロ−[5.4.0]−7−ウンデセン0.40部を追加し、120℃で7時間反応させた。酸価の測定で98%以上の酸無水物がハーフエステル化していることを確認し反応を終了し、固形分50%のカルボキシル基を有するポリビニル系樹脂(A2−3)溶液を得た。得られたポリビニル系樹脂(A2−3)の重量平均分子量(Mw)は8,400、酸価は 70mgKOH/gであった。
【0215】
● 酸性官能基を有するポリエステル系樹脂(A3)タイプ
<カルボキシル基を有するポリエステル系樹脂(A3−1)の調整>
ガス導入管、温度計、コンデンサ、及び攪拌機を備えた反応容器に、1−ドデカノール62.6部、ε−カプロラクトン287.4部、及び触媒としてモノブチルスズ(IV)オキシド0.1部を仕込み、窒素ガスで置換した後、120℃で4時間加熱、撹拌した。固形分測定により98%が反応したことを確認したのち、無水ピロメリット酸36.6部を加え、120℃で2時間反応させカルボキシル基を有するポリエステル系樹脂(A3−1)を得た。得られたポリエステル系樹脂(A3−1)は、常温で白色ワックス状固体であった。
【0216】
<カルボキシル基を有するポリエステル系樹脂(A3−2)の調整>
ガス導入管、温度計、コンデンサ、及び攪拌機を備えた反応容器に、メトキシPEG400(片末端メトキシ化ポリエチレングリコール;分子量400)169.0部、ε−カプロラクトン96.4部、δ−バレロラクトン84.6部、及び触媒としてモノブチルスズ(IV)オキシド0.1部を仕込み、窒素ガスで置換した後、120℃で4時間加熱、撹拌した。固形分測定により98%が反応したことを確認したのち、3,3',4,4'−ビフェニルテトラカルボン酸二無水物62.2部を加え、120℃で2時間反応させカルボキシル基を有するポリエステル系樹脂(A3−2)を得た。得られたポリエステル系樹脂(A3−2)は、常温で淡黄色透明液体であった。
【0217】
【表5】


表5中、略称は以下に示す通りである。
DMF:N,N’−ジメチルホルムアミド
BYK111:Disperbyk−111(燐酸基を有する樹脂、ビックケミー社製)
【0218】
<負極活物質と導電助剤の共分散体調整>
表6に示す組成に従い、容器に、溶剤、酸性官能基を有する各種誘導体を仕込み、混合攪拌して該誘導体を完全ないしは一部溶解させた。次に、負極活物質、導電助剤を加え、メディアレス分散機であるフィルミックス(プライミクス社製)で分散し、負極活物質導電助剤共分散体(27)〜(30)を得た。
導電助剤としては以下のものを使用した。
・デンカブラックHS−100(電気化学工業社製):
アセチレンブラック、一次粒径48nm、比表面積48m2/g。
・デンカブラックFX−35(電気化学工業社製):
アセチレンブラック、一次粒径23nm、比表面積133m2/g。
・Super−P Li(TIMCAL社製):
ファーネスブラック、一次粒径40nm、比表面積62m2/g。
【0219】
【表6】


表6中、略称は以下に示す通りである。
DMF:N,N’−ジメチルホルムアミド
【0220】
<分散処理負極活物質の濡れ性評価>
負極活物質分散体1、2、7、9、21、22、23については、分散処理後の負極活物質の濡れ性評価を行った。
【0221】
各負極活物質分散体の溶剤をエバポレーターにて減圧留去した後、得られた残渣を80℃で10時間減圧乾燥した。続いて乾燥物をメノウ製の乳鉢で粉砕した後、更に80℃で12時間減圧乾燥した。得られた乾燥物を再度メノウ製乳鉢で粉砕した後、錠剤成型器(Specac社製)にて500kgf/cmで荷重をかけ、負極活物質のペレットを作製(直径10mm、厚0.5mm)した。このペレットにマイクロシリンジにて、エチレンカーボネートとジエチルカーボネートを1:1混合した液滴を落とし、液滴がペレットに浸透する時間を測定した。この測定を各サンプルとも5回行い、それらの平均浸透時間が1秒未満であったものを「◎」、1秒以上、5秒未満であったものを「○」、5秒以上、10秒未満であったものを「△」、10秒以上であったものを「×」とした。
【0222】
結果を表7に示す。本発明の、塩基性官能基を有する各種誘導体と、酸性官能基を有する樹脂を用いて分散した負極活物質は、比較例1のものと比べて、電解液に対する濡れ性が向上している。
【0223】
【表7】

【0224】
<リチウム二次電池用負極合材ペーストの調製>
負極活物質分散体(1)〜(26)、負極活物質導電助剤共分散体(27)〜(30)を用い、以下の様にして負極合材ペースト(1)〜(30)を作成した。組成を表8および表9に示す。
【0225】
[負極合材ペースト(1)〜(5)、(7)〜(11)、(13)〜(26)]
負極活物質分散体146.5部、バインダーとしてポリフッ化ビニリデン(KFポリマーW1100、クレハ社製)4.9部、導電助剤2部およびN−メチル−2−ピロリドン18部を加え、プラネタリーミキサーにより混練し、負極合材ペーストとした。
尚、複合化負極活物質を使用している負極活物質分散体については、導電助剤量を1部とした。
【0226】
[負極合材ペースト(6)、(12)]
負極活物質分散体146.5部、バインダーとしてポリフッ化ビニリデン(KFポリマーW1100、クレハ社製)4.9部、導電助剤2部およびN,N’−ジメチルホルムアミド18部を加え、プラネタリーミキサーにより混練し、負極合材ペーストとした。
尚、複合化負極活物質を使用している負極活物質分散体については、導電助剤量を1部とした。
【0227】
[負極合材ペースト(27)〜(29)]
負極活物質導電助剤共分散体148.5部、バインダーとしてポリフッ化ビニリデン(KFポリマーW1100、クレハ社製)4.9部、およびN−メチル−2−ピロリドン18部を加え、プラネタリーミキサーにより混練し、負極合材ペーストとした。
[負極合材ペースト(30)]
負極活物質導電助剤共分散体148.5部、バインダーとしてポリフッ化ビニリデン(KFポリマーW1100、クレハ社製)4.9部、およびN,N’−ジメチルホルムアミド18部を加え、プラネタリーミキサーにより混練し、負極合材ペーストとした。
【0228】
【表8】


表8中、略称は以下に示す通りである。
PVDF:ポリフッ化ビニリデン
DMF:N,N’−ジメチルホルムアミド
BYK111:Disperbyk−111(燐酸基を有する樹脂、ビックケミー社製)
【0229】
【表9】


表9中、略称は以下に示す通りである。
PVDF:ポリフッ化ビニリデン
DMF:N,N’−ジメチルホルムアミド
【0230】
<リチウム二次電池用負極の作製>
先に調製した各種負極合材ペーストを、集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥、圧延処理し、厚さ100μmの負極合材層(1)〜(30)を作製した。
<リチウム二次電池負極評価用セルの組み立て>
先に作製した負極を、直径9mmに打ち抜き作用極とし、金属リチウム箔(厚さ0.15mm)を対極として、作用極および対極の間に多孔質ポリプロピレンフィルムからなるセパレーター(セルガード社製 #2400)を挿入積層し、電解液(エチレンカーボネートとジエチルカーボネートを1:1に混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水電解液)を満たして二極密閉式金属セル(宝仙社製 HSフラットセル)を組み立てた。セルの組み立てはアルゴンガス置換したグローブボックス内で行い、セル組み立て後、以下に示す電池特性評価を行った。
【0231】
<リチウム二次電池負極特性評価>
[充放電サイクル特性 実施例6−30、比較例2−6]
作製した電池評価用セルを室温(25℃)、充電レート0.2C、1.0Cの定電流定電圧充電にて、0.05Vで満充電とし、充電時と同じレートの定電流で電圧が1.5Vになるまで放電を行う充放電を1サイクル(充放電間隔休止時間30分)とした。
まず5回この充放電操作を行い、6回目の放電容量を初期値とした。その後、このサイクルを合計20サイクル行い、充放電サイクル特性評価(評価装置:北斗電工製SM−8)を行った。また、評価後のセルを分解し、電極塗膜不良の有無を目視にて確認し、問題の無いものは「○」とした。評価結果を表10および表11に示す。
【0232】
【表10】


BYK111:Disperbyk−111(燐酸基を有する樹脂、ビックケミー社製)
【0233】
【表11】


表10および表11の結果から分かる通り、実施例6〜30は、本発明で添加する分散剤を使用していない比較例2〜6と比べて、負極活物質の分散性が優れていて粗大な凝集粒子が存在しないため、20サイクル容量維持率が向上した。
[負極活物質分散体保存試験 実施例31、32、比較例7、8]
負極合材ペースト(1)、(14)、(22)、(23)について、40℃で1週間保存した後、上述した方法で負極および評価用セルを作成し、実施例6〜30および比較例2〜6と同様に充放電サイクル試験を行った。結果を表12に示す。
【0234】
【表12】

【0235】
表12の結果から分かる通り、実施例31、32は負極活物質の分散安定性が優れているため、負極合材ペーストを40℃で1週間保存した後に評価を行うと、本発明で添加する分散剤を使用していない比較例7、8と比べて、20サイクル容量維持率が高かった。






【特許請求の範囲】
【請求項1】
塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、及び塩基性官能基を有するトリアジン誘導体からなる群から選ばれる1種以上と、酸性官能基を有する樹脂と、負極活物質とを含むことを特徴とする負極合材。
【請求項2】
酸性官能基を有する樹脂が、
酸性官能基を有するポリフッ化ビニリデン系樹脂(A1)、
分子内に2つの水酸基と1つのチオール基とを有する化合物(s)の存在下、エチレン性不飽和単量体(m)をラジカル重合してなる、片末端に2つの水酸基を有するビニル重合体(a)中の水酸基と、テトラカルボン酸二無水物(b)中の酸無水物基とを反応させてなるポリビニル系樹脂(A2)、並びに、
下記一般式(1):
(HOOC−)m−R21−(−COO−[−R23−COO−]n−R22t (1)
〔一般式(1)中、R21は、4価のテトラカルボン酸化合物残基であり、R22は、モノアルコール残基であり、R23は、ラクトン残基であり、mは、2又は3であり、nは、1〜50の整数であり、tは、(4−m)である。〕
で表されるポリエステル系樹脂(A3)、
からなる群から選ばれる1種類以上の酸性官能基を有する樹脂である請求項1記載の負極合材。
【請求項3】
樹脂の酸性官能基が、カルボキシル基、スルホン酸基、及び燐酸基からなる群から選ばれる1種類以上の酸性官能基である請求項1または2記載の負極合材。
【請求項4】
負極活物質が炭素材料であることを特徴とする請求項1ないし3いずれか記載の負極合材。
【請求項5】
負極活物質が導電性物質で複合化された負極活物質であることを特徴とする請求項1ないし4いずれか記載の負極合材。
【請求項6】
負極活物質と複合化する導電性物質が、炭素材料であることを特徴とする請求項5記載の負極合材。
【請求項7】
更に、酸性官能基を有する樹脂以外のバインダー成分を含んでなる請求項1ないし6いずれか記載の負極合材。
【請求項8】
更に、導電助剤としての炭素材料を含むことを特徴とする請求項1ないし7いずれか記載の負極合材。
【請求項9】
塩基性官能基を有する有機色素誘導体、塩基性官能基を有するアントラキノン誘導体、塩基性官能基を有するアクリドン誘導体、及び塩基性官能基を有するトリアジン誘導体からなる群から選ばれる1種以上と、酸性官能基を有する樹脂の存在下、負極活物質と、導電助剤としての炭素材料とを共分散することを特徴とする、請求項8記載の負極合材の製造方法。
【請求項10】
集電体上に正極合材層を有する正極と、集電体上に負極合材層を有する負極と、リチウムを含む電解質とを具備するリチウム二次電池であって、前記負極合材層が、請求項1ないし8いずれか記載の負極合材、および請求項9記載の製造方法により製造された負極合材、を用いて作成されたことを特徴とするリチウム二次電池。






【公開番号】特開2010−61930(P2010−61930A)
【公開日】平成22年3月18日(2010.3.18)
【国際特許分類】
【出願番号】特願2008−225384(P2008−225384)
【出願日】平成20年9月3日(2008.9.3)
【出願人】(000222118)東洋インキ製造株式会社 (2,229)
【Fターム(参考)】