説明

赤外線センサ

【課題】 赤外線検知用と温度補償用との感熱素子間で高い温度差分が得られると共に小型化が可能で、安価な構造を有している赤外線センサを提供すること。
【解決手段】 絶縁性フィルム2と、該絶縁性フィルム2の一方の面に互いに離間させて設けられた第1の感熱素子3A及び第2の感熱素子3Bと、絶縁性フィルム2の一方の面に形成され第1の感熱素子3A及び第2の感熱素子3Bに別々に接続された複数対の導電性の配線膜4と、第1の感熱素子3Aに対向して絶縁性フィルム2の他方の面に設けられた赤外線吸収膜5と、第2の感熱素子3Bに対向して絶縁性フィルム2の他方の面に設けられた赤外線反射膜6と、を備え、赤外線吸収膜5が、酸化チタン膜である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定対象物からの赤外線を検知して該測定対象物の温度等を測定する赤外線センサに関する。
【背景技術】
【0002】
従来、測定対象物から輻射により放射される赤外線を非接触で検知して測定対象物の温度を測定する温度センサとして、赤外線センサが使用されている。
例えば、特許文献1には、保持体に設置した樹脂フィルムと、該樹脂フィルムに設けられ保持体の導光部を介して赤外線を検知する赤外線検知用感熱素子と、樹脂フィルムに遮光状態に設けられ保持体の温度を検知する温度補償用感熱素子と、を備えた赤外線センサが提案されている。この赤外線センサでは、導光部の内側面に赤外線吸収膜を形成すると共に、樹脂フィルムにカーボンブラック等の赤外線吸収材料を含有させて赤外線の吸収を高めている。また、赤外線検知用感熱素子及び温度補償用感熱素子には、薄膜サーミスタが用いられている。
【0003】
また、特許文献2には、赤外線検知用感熱素子と、温度補償用感熱素子と、これらを密着固定する樹脂フィルムと、赤外線の入射窓側に赤外線検知用感熱素子を配置すると共に赤外線を遮蔽する遮蔽部側に温度補償用感熱素子を配置した枠体を有するケースと、を備えた赤外線検出器が提案されている。この赤外線検出器では、樹脂フィルムにカーボンブラック等の赤外線吸収材料を含有させて赤外線の吸収を高めていると共に、赤外線検知用感熱素子と温度補償用感熱素子との熱勾配を無くすために熱伝導の良い材料で枠体を形成している。また、赤外線検知用感熱素子及び温度補償用感熱素子には、リード線がサーミスタに接続された松葉型のサーミスタが採用されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2002−156284号公報(段落番号0026、図2)
【特許文献2】特開平7−260579号公報(特許請求の範囲、図2)
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記従来の技術には、以下の課題が残されている。
すなわち、特許文献1及び2の赤外線センサでは、樹脂フィルムにカーボンブラック等の赤外線吸収材料を含有させると共に一方の感熱素子側を温度補償用に遮光する構造が採用されているが、赤外線吸収材料を含有した樹脂フィルムの熱伝導が高く、赤外線検知用と温度補償用との感熱素子間で温度差分が生じ難いという不都合があった。また、これら感熱素子間で温度差分を大きくするためには、感熱素子間の距離を大きくする必要があり、全体形状が大きくなってしまい、小型化が困難になる問題がある。さらに、温度補償用の感熱素子を遮光する構造をケース自体に設ける必要があるため、高価になってしまう。
また、特許文献2では、熱伝導の良い枠体を採用しているため、赤外線吸収膜からの熱も放熱されてしまい感度が劣化する不都合がある。また、リード線が接続された松葉型のため、サーミスタとリード線との間で熱の空間伝導が生じてしまう。さらに、松葉型やチップ型のサーミスタの場合、スポット計測となってしまい、樹脂フィルムに温度の面内分布が生じた場合に測定誤差が生じてしまう不都合があった。
【0006】
本発明は、前述の課題に鑑みてなされたもので、赤外線検知用と温度補償用との感熱素子間で高い温度差分が得られると共に小型化が可能で、安価な構造を有している赤外線センサを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の赤外線センサは、絶縁性フィルムと、該絶縁性フィルムの一方の面に互いに離間させて設けられた第1の感熱素子及び第2の感熱素子と、前記絶縁性フィルムの一方の面に形成され前記第1の感熱素子及び前記第2の感熱素子に別々に接続された複数対の導電性の配線膜と、前記第1の感熱素子に対向して前記絶縁性フィルムの他方の面に設けられた赤外線吸収膜と、前記第2の感熱素子に対向して前記絶縁性フィルムの他方の面に設けられた赤外線反射膜と、を備え、前記赤外線吸収膜が、酸化チタン膜であることを特徴とする。
【0008】
この赤外線センサでは、第1の感熱素子に対向して絶縁性フィルムの他方の面に設けられた赤外線吸収膜と、第2の感熱素子に対向して絶縁性フィルムの他方の面に設けられた赤外線反射膜と、を備えているので、赤外線吸収膜による部分的な赤外線吸収と赤外線反射膜による部分的な赤外線反射とにより、薄く熱伝導性の低い絶縁性フィルム上で第1の感熱素子と第2の感熱素子との良好な温度差分を得ることができる。
すなわち、フィルムに赤外線吸収材料等を含有させていない低熱伝導性の絶縁性フィルムでも、赤外線吸収膜によって絶縁性フィルムの第1の感熱素子の直上部分のみに赤外線吸収による熱を伝導させることができる。特に、薄い絶縁性フィルムを挟んで赤外線吸収膜の熱が伝導されるため、感度の劣化がなく、高い応答性を有している。また、赤外線吸収膜の面積を任意に設定可能であるため、測定対象物との距離に合わせた赤外線検出の視野角を面積で設定でき、高い受光効率を得ることができる。
また、赤外線反射膜によって絶縁性フィルムの第2の感熱素子の直上部分における赤外線を反射してその吸収を阻止することができる。
なお、絶縁性フィルム上に赤外線吸収膜と赤外線反射膜とを形成しているので、赤外線吸収膜と赤外線反射膜との間の熱を伝導する媒体が、空気以外にこれら膜が対向した間の絶縁性フィルムのみとなり、伝導する断面積が小さくなる。したがって、相互の感熱素子への熱が伝わり難くなり、干渉が少なくなって検出感度が向上する。
このように、低熱伝導性の絶縁性フィルム上で互いに熱の影響が抑制された第1の感熱素子と第2の感熱素子とが、それぞれ赤外線吸収膜の直下と赤外線反射膜の直下との絶縁性フィルムの部分的な温度を測定する構造を有している。したがって、赤外線検知用とされる第1の感熱素子と温度補償用とされる第2の感熱素子との良好な温度差分を得られ、高感度化を図ることができる。
【0009】
また、第1の感熱素子と第2の感熱素子との熱結合が低いので、互いに近づけて配置することも可能になり、全体の小型化を図ることができる。さらに、枠体やケースによる遮光構造ではなく、赤外線反射膜によって赤外線の吸収を防いでいるので、安価に作製することができる。
また、赤外線吸収膜及び赤外線反射膜が導電性材料で構成されていても、絶縁性フィルムを挟んで設置された第1の感熱素子及び第2の感熱素子との絶縁が確保されているので、膜の絶縁性を問わずに効率の良い材料の選択が可能になる。
さらに、絶縁性フィルム上に薄く熱伝導性の低い配線膜を設けているので、従来のようにリード線とサーミスタとの間の空間伝導による他の箇所との熱結合を防ぐことができる。
また、赤外線吸収膜が、酸化チタン膜であるので、カーボンブラック等に比べて近赤外(波長700〜2500nm)の領域で高い赤外線の吸収性を有しており、高い感度を得ることができる。
【0010】
また、本発明の赤外線センサは、前記酸化チタン膜が、黒色酸化チタン膜であることを特徴とする。
すなわち、この赤外線センサでは、赤外線吸収膜が、黒色酸化チタン膜(いわゆるチタンブラック)であるので、熱伝導性が低く、素子外への熱伝導が少なくなり、空気など周囲媒体の対流の影響が軽減される。
【発明の効果】
【0011】
本発明によれば、以下の効果を奏する。
すなわち、本発明に係る赤外線センサによれば、第1の感熱素子に対向して絶縁性フィルムの他方の面に設けられた赤外線吸収膜と、第2の感熱素子に対向して絶縁性フィルムの他方の面に設けられた赤外線反射膜と、を備えているので、第1の感熱素子と第2の感熱素子との良好な温度差分を得ることができ、高感度化を図ることができると共に、小型かつ安価に作製可能である。さらに、赤外線吸収膜が、酸化チタン膜であるので、カーボンブラック等に比べて高い赤外線の吸収性を有しており、高い感度を得ることができる。特に、黒色酸化チタン膜を採用することで、対流熱の影響を軽減でき、より正確な検出が可能になる。
【図面の簡単な説明】
【0012】
【図1】本発明に係る赤外線センサの一実施形態を示す斜視図である。
【図2】本実施形態において、赤外線センサを示す正面図である。
【図3】チタンブラックとカーボンブラックとの波長に対する透過率を示すグラフである。
【発明を実施するための形態】
【0013】
以下、本発明に係る赤外線センサの一実施形態を、図1から図3を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。
【0014】
本実施形態の赤外線センサ1は、図1及び図2に示すように、絶縁性フィルム2と、該絶縁性フィルム2の一方の面(下面)に互いに離間させて設けられた第1の感熱素子3A及び第2の感熱素子3Bと、絶縁性フィルム2の一方の面に銅箔等でパターン形成され第1の感熱素子3A及び第2の感熱素子3Bに別々に接続された複数対の導電性の配線膜4と、第1の感熱素子3Aに対向して絶縁性フィルム2の他方の面(上面)に設けられた赤外線吸収膜5と、第2の感熱素子3Bに対向して絶縁性フィルム2の他方の面に設けられた赤外線反射膜6と、を備えている。
【0015】
すなわち、上記赤外線吸収膜5は、第1の感熱素子3Aの直上に配されていると共に、上記赤外線反射膜6は、第2の感熱素子3Bの直上に配されている。
上記絶縁性フィルム2は、赤外線透過性フィルムで形成されている。なお、本実施形態では、絶縁性フィルム2がポリイミド樹脂シートで形成されている。
【0016】
上記第1の感熱素子3A及び第2の感熱素子3Bは、両端部に端子電極3aが形成されたチップサーミスタである。このサーミスタとしては、NTC型、PTC型、CTR型等のサーミスタがあるが、本実施形態では、第1の感熱素子3A及び第2の感熱素子3Bとして、例えばNTC型サーミスタを採用している。このサーミスタは、Mn−Co−Cu系材料、Mn−Co−Fe系材料等のサーミスタ材料で形成されている。なお、これら第1の感熱素子3A及び第2の感熱素子3Bは、各端子電極3aを配線膜4上に接合させて絶縁性フィルム2に実装されている。
【0017】
上記赤外線吸収膜5は、絶縁性フィルム2よりも高い赤外線吸収率を有する材料であって酸化チタン膜で形成されている。特に、この酸化チタン膜は、黒色酸化チタン膜、いわゆるチタンブラックの膜が好ましい。このチタンブラックは、酸化チタン系で黒色を有するチタン系黒色顔料であり、例えば三菱マテリアル電子化成株式会社製のチタンブラックが採用される。
【0018】
この三菱マテリアル電子化成株式会社製のチタンブラックは、二酸化チタン白色顔料の酸素を一部取り除くことにより黒色の酸化物顔料としたものである。空気中で約300℃まで安定な耐熱性を有し、それ以上の温度では酸化されるが、酸素を取り込んで二酸化チタンに戻るだけであり、カーボンブラックのような有害な一酸化炭素を放出することもない特性を有している。
【0019】
このチタンブラックなどの酸化チタン膜は、図3に示すように、カーボンブラックの膜よりも近赤外(波長700〜250nm)の領域において、透過率が低く、赤外線の吸収率が高い特性を有している。したがって、酸化チタンの赤外線吸収膜5は、カーボンブラックよりも近赤外光を効率的に吸収することができる。また、チタンブラックは、カーボンブラックに比べて低い熱伝導性を有している。
【0020】
このように作製した赤外線吸収膜5によって測定対象物からの輻射による赤外線を吸収する。そして、赤外線を吸収し発熱した赤外線吸収膜5から絶縁性フィルム2を介した熱伝導によって、直下の第1の感熱素子3Aの温度が変化するようになっている。この赤外線吸収膜5は、第1の感熱素子3Aよりも大きなサイズでこれを覆うように形成されている。
【0021】
上記赤外線反射膜6は、絶縁性フィルム2よりも高い赤外線放射率を有する材料で形成され、例えば、鏡面のアルミニウム蒸着膜やアルミニウム箔等で形成されている。この赤外線反射膜6は、第2の感熱素子3Bよりも大きなサイズでこれらを覆うように形成されている。
【0022】
このように本実施形態の赤外線センサ1は、第1の感熱素子3Aに対向して絶縁性フィルム2の他方の面に設けられた赤外線吸収膜5と、第2の感熱素子3Bに対向して絶縁性フィルム2の他方の面に設けられた赤外線反射膜6と、を備えているので、赤外線吸収膜5による部分的な赤外線吸収と赤外線反射膜6による部分的な赤外線反射とにより、薄く熱伝導性の低い絶縁性フィルム2上で第1の感熱素子3Aと第2の感熱素子3Bとの良好な温度差分を得ることができる。
【0023】
すなわち、フィルムに赤外線吸収材料等を含有させていない低熱伝導性の絶縁性フィルム2でも、図2に示すように、赤外線吸収膜5によって絶縁性フィルム2の第1の感熱素子3Aの直上部分のみに赤外線吸収による熱を伝導させることができる。特に、薄い絶縁性フィルム2を挟んで赤外線吸収膜5の熱が伝導されるため、感度の劣化がなく、高い応答性を有している。また、赤外線吸収膜5の面積を任意に設定可能であるため、測定対象物との距離に合わせた赤外線検出の視野角を面積で設定でき、高い受光効率を得ることができる。
【0024】
また、赤外線反射膜6によって絶縁性フィルム2の第2の感熱素子3Bの直上部分における赤外線を反射してその吸収を阻止することができる。
なお、絶縁性フィルム2上に赤外線吸収膜5と赤外線反射膜6とを形成しているので、赤外線吸収膜5と赤外線反射膜6との間の熱を伝導する媒体が、空気以外にこれら膜が対向した間の絶縁性フィルム2のみとなり、伝導する断面積が小さくなる。したがって、相互の感熱素子への熱が伝わり難くなり、干渉が少なくなって検出感度が向上する。
【0025】
このように、低熱伝導性の絶縁性フィルム2上で互いに熱の影響が抑制された第1の感熱素子3Aと第2の感熱素子3Bとが、それぞれ赤外線吸収膜5の直下と赤外線反射膜6の直下との絶縁性フィルム2の部分的な温度を測定する構造を有している。したがって、赤外線検知用とされる第1の感熱素子3Aと温度補償用とされる第2の感熱素子3Bとの良好な温度差分を得られ、高感度化を図ることができる。
【0026】
また、第1の感熱素子3Aと第2の感熱素子3Bとの熱結合が低いので、互いに近づけて配置することも可能になり、全体の小型化を図ることができる。さらに、枠体やケースによる遮光構造ではなく、赤外線反射膜6によって赤外線の吸収を防いでいるので、安価に作製することができる。
【0027】
また、赤外線吸収膜5及び赤外線反射膜6が導電性材料で構成されていても、絶縁性フィルム2を挟んで設置された第1の感熱素子3A及び第2の感熱素子3Bとの絶縁が確保されているので、膜の絶縁性を問わずに効率の良い材料の選択が可能になる。
さらに、絶縁性フィルム2上に薄く熱伝導性の低い配線膜4を設けているので、従来のようにリード線とサーミスタとの間の空間伝導による他の箇所との熱結合を防ぐことができる。
【0028】
また、絶縁性フィルム2が、赤外線透過性フィルムで形成されているので、赤外線吸収膜5及び赤外線反射膜6の周囲の絶縁性フィルム2自体による赤外線吸収を極力抑制して、周囲からの熱伝導による第1の感熱素子3A及び第2の感熱素子3Bへの影響を低減することができる。
【0029】
また、赤外線吸収膜5が、酸化チタン膜であるので、カーボンブラック等に比べて近赤外(波長700〜2500nm)の領域で高い赤外線の吸収性を有しており、高い感度を得ることができる。特に、赤外線吸収膜5として、黒色酸化チタン膜(チタンブラック)を採用することで、熱伝導性が低く、素子外への熱伝導が少なくなり、空気など周囲媒体の対流の影響が軽減される。
【0030】
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
【0031】
例えば、上記実施形態では、チップサーミスタの第1の感熱素子及び第2の感熱素子を採用しているが、薄膜サーミスタで形成された第1の感熱素子及び第2の感熱素子を採用しても構わない。
なお、感熱素子としては、上述したように薄膜サーミスタやチップサーミスタが用いられるが、サーミスタ以外に焦電素子等も採用可能である。
【0032】
また、絶縁性フィルムの一方の面に固定されて該絶縁性フィルムを支持する筐体を設け、該筐体に、第1の感熱素子及び第2の感熱素子をそれぞれ個別に収納すると共に絶縁性フィルムよりも熱伝導率の低い空気や発泡樹脂で覆う第1の収納部及び第2の収納部を設けても構わない。
【符号の説明】
【0033】
1…赤外線センサ、2…絶縁性フィルム、3A…第1の感熱素子、3B…第2の感熱素子、4…配線膜、5…赤外線吸収膜、6…赤外線反射膜

【特許請求の範囲】
【請求項1】
絶縁性フィルムと、
該絶縁性フィルムの一方の面に互いに離間させて設けられた第1の感熱素子及び第2の感熱素子と、
前記絶縁性フィルムの一方の面に形成され前記第1の感熱素子及び前記第2の感熱素子に別々に接続された複数対の導電性の配線膜と、
前記第1の感熱素子に対向して前記絶縁性フィルムの他方の面に設けられた赤外線吸収膜と、
前記第2の感熱素子に対向して前記絶縁性フィルムの他方の面に設けられた赤外線反射膜と、を備え、
前記赤外線吸収膜が、酸化チタン膜であることを特徴とする赤外線センサ。
【請求項2】
請求項1に記載の赤外線センサにおいて、
前記酸化チタン膜が、黒色酸化チタン膜であることを特徴とする赤外線センサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−32233(P2012−32233A)
【公開日】平成24年2月16日(2012.2.16)
【国際特許分類】
【出願番号】特願2010−170878(P2010−170878)
【出願日】平成22年7月29日(2010.7.29)
【出願人】(000006264)三菱マテリアル株式会社 (4,417)
【Fターム(参考)】