説明

走査型電子顕微鏡

【目的】本発明は、走査型電子顕微鏡に関し、複数の近接した電子ビームを使って同時並列に画像を得るが、その際に、それぞれの電子ビーム走査によって発生する2次電子を分離して検出することを目的とする。
【構成】試料を搭載して平面内で試料を移動可能な移動機構と、複数の1次電子ビームをそれぞれ細く絞って移動機構に搭載した試料上にそれぞれ独立に照射する複数の微小対物レンズと、複数の微小対物レンズに対応付けて設け、それぞれ1次電子ビームを移動機構に搭載した試料上で走査するように偏向するそれぞれの偏向器と、複数の微小対物レンズに対応付けて設け、それぞれの試料から放出された2次電子が微小対物レンズの磁場で軸上に収束されて1次電子ビームの試料上への照射方向と逆の軸上の方向に設けた、それぞれ独立に2次電子を検出・増倍するそれぞれの検出器とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試料上を複数の1次電子ビームで走査してそれぞれの画像を取得する走査型電子顕微鏡に関するものである。
【背景技術】
【0002】
従来、半導体産業、あるいはMEMSなどの微細加工はリソグラフィー技術が広く応用されているが、性能の進化と生産性の向上のための微細化が進んだ結果、光リソグラフィーから電子リソグラフィーへの転換が検討されている。
【0003】
また,これらの技術による加工製品の検査も光から電子へ移行しなければ微細化に対応できなくなっている。
【0004】
したがってナノメータ領域の観察や測定には普通,走査型電子顕微鏡(SEM)が広く利用されている。
【0005】
しかし電子技術に共通の欠点として処理速度の低さが問題となっている。SEMでは細く収束した1本の電子ビームによって試料表面を走査してゆくために、分解能を高く、つまりビームを細く収束すればするほど、全体を観察する時間が長くなってしまう。
【0006】
従来、このような問題を解決するために複数の電子ビーム鏡筒を並べて同時並行的にSEM画像を取得する方法が提案されている。
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかし、上述した従来の方法ではそれぞれの鏡筒で個別のレンズを使用するためにビームの間隔を小さくできないし、小さくすれば検出器が接近するために2次電子を区別することが困難になるなどの問題があって実用化されていない。
【課題を解決するための手段】
【0008】
本発明は、これらの問題を解決するために、複数の近接した電子ビームを使って同時並列に画像を得るが、その際に、それぞれの電子ビーム走査によって発生する2次電子を分離して検出できる装置である。
【0009】
そのため、本発明は、試料上を複数の1次電子ビームで走査してそれぞれの画像を取得する走査型電子顕微鏡において、試料を搭載して平面内で試料を移動可能な移動機構と、複数の1次電子ビームをそれぞれ細く絞って移動機構に搭載した試料上にそれぞれ独立に照射する複数の微小対物レンズと、複数の微小対物レンズに対応付けて設け、それぞれ1次電子ビームを移動機構に搭載した試料上で走査するように偏向するそれぞれの偏向器と、複数の微小対物レンズに対応付けて設け、それぞれの試料から放出された2次電子が微小対物レンズの磁場で軸上に収束されて1次電子ビームの試料上への照射方向と逆の軸上の方向に設けた、それぞれ独立に2次電子を検出・増倍するそれぞれの検出器とを備え、複数の電子ビームを試料上に独立に照射しつつ走査し、同時並列に放出された2次電子をそれぞれ独立に検出・増倍して複数の2次電子画像を同時並列に生成するようにしている。
【0010】
この際、全ての偏向器が試料上を一定方向に1次電子ビームをそれぞれ走査すると共に、移動機構が走査方向と直角方向に試料を走査し、試料上を1次電子ビームで面走査するようにしている。
【0011】
また、微小対物レンズは、1組のコイルで励磁される円筒型の対物レンズの内側の上極に、孔を開けて微小対物レンズをそれぞれ構成するようにしている。
【0012】
また、円筒型の対物レンズの外側の下極は、開放、あるいは全面閉鎖して上極に平行な磁極板、とするようにしている。
【0013】
また、微小対物レンズに、偏向器、検出器をそれぞれ独立に設けると共に、更に、磁場非対称性成分および固有の収差の補正を行う非点補正器、焦点補正器の1つ以上をそれぞれ設けるようにしている。
【0014】
また、複数の1次電子ビームは、電子源から放出された1つの1次電子ビームを複数の微小孔を設けた絞り板を通過させて複数の1次電子ビームを形成するようにしている。
【0015】
また、複数の1次電子ビームは、1つの電子銃内に設けた複数の電子源からそれぞれ放出された、複数の1次電子ビームとするようにしている。
【発明の効果】
【0016】
本発明は、複数の近接した電子ビームを使って同時並列に画像を得るが、その際に、それぞれの電子ビーム走査によって発生する2次電子を分離して検出することにより、試料から拡大した複数画像を同時並列に取得して極めて高速に画像を生成することが可能となる。
【発明を実施するための最良の形態】
【0017】
本発明は、複数の近接した電子ビームを使って同時並列に画像を得るが、その際に、それぞれの電子ビーム走査によって発生する2次電子を分離して検出し、試料から拡大した複数画像を同時並列に取得して極めて高速に画像を生成することを実現した。
【実施例1】
【0018】
図1は、本発明の1実施例構造図を示す。
【0019】
図1において、電子源1は、1次電子ビーム2を放射するものであって、ショトキー型などの電子源である。
【0020】
1次電子ビーム2は、電子源1から放出された1次電子ビームであって、ここでは、図示のように、後段で例えば3つの1次電子ビーム5に分割する前の1次電子ビームである。
【0021】
電子レンズ3は、1次電子ビーム2を収束するものであって、ここでは、図示のようにビーム絞り4上の小さな孔に向けて1次電子ビームを照射(例えばほぼ平行に照射)するためのレンズ(静電レンズ、磁界レンズ)である。
【0022】
アライメントコイルは、図示していないが、電子源1から放出された1次電子ビーム2が電子レンズ3によってビーム絞り4の所望の場所に照射するように軸合わせするものである。
【0023】
ビーム絞り4は、1つの1次電子ビームから所望の数の1次電子ビームを取得するための小さい孔を有する絞りである。図示のビーム絞り4により、1つの1次電子ビーム2から、ここでは、3つの1次電子ビーム5に分割して生成している様子を模式的に示す。
【0024】
1次電子ビーム5は、ビーム絞り4により1つの1次電子ビーム2から分割して生成された1次電子ビームであって、微小対物レンズ10によりそれぞれ試料21上に微小なスポットにフォーカスするものでる。
【0025】
対物レンズ6は、上極および下極を有する円筒型の磁界レンズであって、図示の状態では下極9は開放となっている。尚、図示の下極9にカップ状の底面の閉鎖した磁極を装着して当該対物レンズ6の下極を閉鎖する構造としてもよい。
【0026】
コイル7は、対物レンズ6を励磁するコイルである。
【0027】
上極8は、円筒型の対物レンズ6の上極である。
【0028】
下極9は、円筒型の対物レンズ6の下極であって、図示の当該下極9は開放型の例である。閉鎖型の下極は、図示の下極9にカップ状の磁極を接続して完全に閉鎖して形成する(例えば試料21、ステージ22を含むカップ状の磁極を接続して完全に密閉する)。
【0029】
微小対物レンズ10は、円筒型の対物レンズ6の上極8の軸中心の近傍に、小さな孔を開けた独立の微小な対物レンズである。各微小対物レンズ10の孔の上から、分割された1次電子ビーム5がそれぞれ入射し、当該各微小対物レンズ10によりフォーカスされて試料12上にそれぞれスポットとして照射する。1次電子ビーム5のスポットで照射された試料12から放出された2次電子12は、当該各微小対物レンズ10の磁界により軸上を回転しながら上方に配置した検出器(例えばMCP)11に向かって走行して当該検出器11に衝突して検出・増倍される。
【0030】
検出器11は、2次電子12を検出・増倍するものであって、例えばMCP,シンチレータなどの2次電子検出・増倍器である。検出器11の中心には、1次電子ビーム5が試料21に向けて通過する孔が設けれている。また、検出器11には、正の電圧を印加して試料21から放出された2次電子12を、静電力で吸引するようにしてもよい。
【0031】
2次電子12は、試料21から放出された2次電子であって、ここでは、微小対物レンズ10の磁界により軸上を螺旋を描きながら、検出器11に向けて走行して当該検出器11に衝突して検出・増倍される2次電子である。
【0032】
偏向器13は、1次電子ビーム5を偏向し、当該細く絞った1次電子ビーム5が試料21上で一定方向に走査(あるいは更に直角方向に走査)するためのものである。更に、当該偏向器13には、微小対物レンズ10毎に設けて磁場非対称性成分および固有の収差(主に非点)の補正を行う4極、8極などからなる偏向器(焦点補正用、非点補正用などの偏向器)も併せて組み込む(あるいは重畳して電圧/電流を供給して動作させる)。
【0033】
収束磁場14は、対物レンズ6を構成する上極8と下極9とによって生成される収束磁場であって、ここでは、上極8に設けた孔でそれぞれ構成される微小対物レンズ10を形成するための磁場である。
【0034】
試料21は、複数の微小対物レンズ10により1次電子ビーム5をそれぞれ収束して平面走査する対象の試料であって、例えばマスク、ウェハなどである。
【0035】
ステージ22は、試料21を搭載してX、Y方向に移動するものであって、図示外のレーザ干渉計により精密に測定しつつ移動するものである。
【0036】
電子源電源31は、電子源1から1次電子ビームを放射するための電源を供給するものであって、数百ボルトから10KV程度の負高圧電源などである。
【0037】
レンズ電源/アライメント電源32は、電子レンズ3、図示外のアライメントコイルなどの電源を供給し、ビーム絞り4上の所望の1次電子ビーム2を形成するものである。
【0038】
検出信号増幅器33は、検出器11に所定の正の高電圧を印加し、当該検出器11に入射した2次電子を検出・増倍などし、試料21から放出された2次電子ビーム12を検出・増幅した信号を出力するものである。
【0039】
ビーム偏向電源34は、偏向器13に1次電子ビーム5を偏向する電源を供給したり、磁場非対称性成分および固有の収差(主に非点)の補正を行ってたりする電源(電圧/電流)を供給するものである。
【0040】
画像表示/画像保存装置35は、検出信号増幅器33からの2次電子検出信号を、ビーム偏向電源34から供給された走査信号に同期して画面上に2次電子画像として表示したり、2次電子画像をメモリに保存したりなどするものである。
【0041】
対物レンズ電源/補正電源36は、対物レンズ6のコイル7に電流を供給したりなどするものである。
【0042】
ステージ制御電源/補正電源37は、ステージ22を図示外のレーザ干渉計からの信号をもとに精密に移動制御する電源を供給するものである。
【0043】
図1の構造の概略動作は、下記の通りである。
【0044】
ステップ1:電子源から発生した1次電子ビーム2を複数の1次電子ビーム5に分ける。
【0045】
ステップ2:複数の1次電子ビーム5を並列に微小対物レンズ10に導き、試料21上に収束する。
【0046】
ステップ3:複数の1次電子ビーム5を試料21上の一定面積にわたって走査する。
【0047】
ステップ4:試料21上で発生した2次電子12を収束して個別の検出器11に導き検出する。
【0048】
ステップ5:検出した2次電子信号を増幅し、画像表示あるいは画像を保存する。
【0049】
以下、図1の構造について、図2から図4を用いて詳細に説明する。
【0050】
(1)ステップ1(電子源から発生した1次電子ビーム2を複数の1次電子ビーム5に分ける。):図2を用いて詳細に説明する。
【0051】
図2は、本発明の1次電子ビームの説明図を示す。
【0052】
図2の(a)は1つの1次電子ビーム2を複数に分割する例を示し、図2の(b)は複数の1次電子ビームを直接生成する例を示す。
【0053】
図2の(a−1)は全体の構造例を示し、図2の(a−2)はビーム絞り4の孔の例を示す。
【0054】
図2の(a−1)において、電子源1から発生した1次電子ビーム2を複数の1次電子ビーム5に分割する。電子源1からの電子ビーム2は角度の広がりをもつ。たとえばショットキー電子源1などでは±5〜6度である。この場合、電子源1から20mm離れると電子ビームの直径は4mm程度になるので、当該図2の(a−1)に示すビーム絞り4の中心と±1mmの位置に2個、合計3個のアパーチャを置けば3本の1次電子ビーム5を形成できる。当該図2の(a−1)では必要な1次電子ビーム2の広がりが得られた距離に電子レンズ3(集束レンズ)を置き中心軸と平行な1次電子ビーム2を形成している。ビーム絞り4は、1次電子ビーム2の広がる範囲内ならば、図2の(a−2)に示すような、いろいろな配置が可能である。
【0055】
図2の(a−2)において、(a−2−1)は図2の(a−1)のビーム絞り3に、中心と、その外の両側に直線状に2つ、合計5つの孔を設け、5つの1次電子ビーム5を生成する例を示す。
【0056】
図2の(a−2)において、(a−2−2)は図2の(a−1)のビーム絞り3に、4つの孔を図示のように設け、4つの1次電子ビーム5を生成する例を示す。
【0057】
図2の(a−2)において、(a−2−3)は図2の(a−1)のビーム絞り3に、ジグザグに5つの孔を図示のように設け、5つの1次電子ビーム5を生成する例を示す。この場合には、左右方向に偏向器13で微小対物レンズ10で絞った1次電子ビーム5を走査し、上下方向にステージ22で一定方向に走査することにより、試料21上を平面走査して2次電子画像を取得することが可能となる。
【0058】
また、図2の(b)は、電子源1から複数の1次電子ビーム2を放射する例を示す。電子源1の電子放出部分を複数設け、これらからそれぞれ1次電子ビーム2を図示のように放射することにより3つの1次電子ビーム2を放射し、必要に応じて更にビーム絞り4で必要な開角に制限して1次電子ビーム5を生成することが可能となる。
【0059】
(2)ステップ2(複数の1次電子ビーム5を並列に微小対物レンズ10に導き、試料21上に収束する。):図1、図3を用いて詳細に説明する。
【0060】
図3は、本発明の詳細構造図を示す。
【0061】
図3の(a)は1つのMCP112,微小対物レンズ10を設けた例を模式的に示し、図3の(b)は3つのMCP112,微小対物レンズ10の組を設けた例を模式的に示し、図3の(c)は2つのシンチレータ113,微小対物レンズ10を設けた例を模式的に示す。
【0062】
図1、および図3の(a)、(b)、(c)において、電子源1、電子レンズ(集束レンズ)3、およびビーム絞り4で形成された複数の1次電子ビーム5は、適切に設置された図示外のアライメントコイルにより相互の間隔を調整する。例えば既述した図2の(a−2−1)に示したビーム絞り4の5つの孔で形成された5本の電子ビームは、図示外の2段のアライメントコイルにより、間隔の拡がった5本の平行ビームとすることができる。さらに、間隔を広げられた各1次電子ビーム5に、各々アライメントコイルを設け、1次電子ビーム5毎にその方向を微調整する。これにより各微小対物レンズ10の孔の光軸に入射した各1次電子ビーム5は、微小対物レンズ10の作用(円筒対物レンズの作用)により、試料21上にスポットに収束される。各微小対物レンズ10の磁極孔付近に静電レンズ(静電電極)あるいは磁場レンズ(コイルのみ)を組みこむことが可能で、これにより、各1次電子ビームのフォーカスを微調整することができる。同様に、非点補正コイルを微小対物レンズ10にそれぞれ設けて、非点をそれぞれ補正することができる。
【0063】
(3)ステップ3(複数の1次電子ビーム5を試料21上の一定面積にわたって走査する。):図1を用いて詳細に説明する。
【0064】
図1において、微小対物レンズ10の磁場により試料21に収束される1次電子ビーム5は、例えば各微小対物レンズ10の磁極孔付近に設けられた偏向器(走査)13により、試料21上に走査される。偏向器(走査)13は、例えば、静電8極子で構成し、非点補正子を兼ねる。また、2段の走査偏向器13を微小対物レンズ10の磁極より電子源1の側に設置し、試料21上を走査するようにしてもよい。
【0065】
(4)ステップ4(試料面で発生した二次電子を収束して個別の検出器に導き検出する):図1を用いて詳細に説明する。
【0066】
図1において、試料21上で発生した2次電子12は各微小対物レンズ10の強い垂直磁場の中にあるので、小さな半径のサイクロトロン運動しつつ、発生時の初期速度(あるいは検出器11に正電圧を印加したときは対応する吸引力に相当する速度)によって図1(ここでは3本の1次電子ビーム5の例)の検出器11の方向に走行する。このとき試料21の付近の磁場を1000Gauss、2次電子12のエネルギーを10eVとすると、2次電子12のサイクロトロン半径は約0.1mmである(式1参照)。大部分の2次電子12のエネルギーは10eV以下であり、エネルギー(言い換えれば速度)が小さいほど同半径は小さくなるから2次電子12の軌道の横方向への広がりは微小対物レンズ10のレンズ場を通り過ぎるまでは発生点を中心とした半径0.1mm以内にとどまるとしてよい。2次電子12が検出器11に近づくに従い、レンズ磁場は弱まり軌道半径が大きくなるが、検出器11を微小対物レンズ10に近づけておけば、図示したように検出器11の検出面(たとえば直径20mm)内にはいると考えてよい。また1次電子ビーム5の走査範囲は最大でも直径1mm程度あれば実用的に十分である。したがって隣り合う1次電子ビームの走査で発生した2次電子12が隣の検出器11で検出されることはない。
【0067】
尚、磁束密度B、電子のエネルギーEとするとサイクロトロン半径Rは次式で求められる。
【0068】
R=(1/B)((2mV)/e)1/2 ・・・・ (式1)
ここで、m.V,eはそれぞれ電子の質量、電子のエネルギー(加速電圧表示)、電子の電荷である。
【0069】
(5)ステップ5(検出した2次電子信号を増幅し、蓄積して画像表示(あるいは画像情報として保存)する。):図1を用いて詳細に説明する。
【0070】
図1において、図示の3つの微小対物レンズ10、偏向器13、検出器11の組で同時に各偏向器13で試料上の1次電子ビーム5のスポットを走査、例えば左右方向に走査しつつステージ22を前後方向のいずれかの方向に一定速度で走査して面走査することにより、3組分の幅でステージ22により一定方向に走査することを繰り返して試料21の全面を平面走査することが可能となる。そして、3組の検出器11でそれぞれ検出した2次電子画像信号を合成することで、3つ分の幅の画像、更に繰り返して試料21の全面の画像をメモリに保存および表示装置上に表示することが可能となる。これにより、図1の例では、3並列に2次電子画像を同時並列に保存でき、1つの対物レンズを用いた場合に比し、3つの微小対物レンズ10を用いて3倍の速度で2次電子画像を生成して保存することが可能となる。
【0071】
以下図2から図4について個別に詳細に説明する。
【0072】
図2は、本発明の1次電子ビームの説明図を示す。
【0073】
図2の(a)は、1つの1次電子ビームを、複数の1次電子ビームに分割する例を示す。
【0074】
図2の(a−1)は全体構造図を模式的に示す。
【0075】
図2の(a−1)において、電子源1は、1つの1次電子ビームを発生する電子源(電子銃)であって、例えばショトキー型の電子源(電子銃)である。
【0076】
1次電子ビーム2は、電子源1から放出された1次電子ビームである。
【0077】
電子レンズ3は、電子源1から放出された1次電子ビーム2を収束してビーム絞り4上の所定領域を照射するように収束するものであって、静電収束レンズ、電磁収束レンズである。
【0078】
ビーム絞り4は、1つの1次電子ビーム2から複数の1次電子ビーム5を分割(生成)するものであって、複数の孔(図L2の(a−2)参照)を設けたものである。
【0079】
動作を説明する。
【0080】
電子源1から所定開き角度を持った1次電子ビーム2を放射する。放射した1次電子ビーム2を電子レンズ3で収束してビーム絞り4上で所定の領域を照射するように調整する。ビーム絞り4上の複数の穴をそれぞれ通過した1次電子ビーム5を生成する。そして、既述したように、これら生成(分割)した複数の1次電子ビーム5を、必要に応じて図示外の2段アライメントによりその間隔、場所を調整し、図1の微小対物レンズ10の軸に入射する。これにより、複数の微小対物レンズ10の軸にそれぞれ1次電子ビーム5を入射することが可能となる。
【0081】
図2の(a−2)は、図2の(a−1)のビーム絞り4上の穴の数、場所の例を示す。
【0082】
図2の(a−2−1)は、ビーム絞り4の中心と左右に2つの合計5つの孔を設けた例を示す。この場合には、上方から1次電子ビーム2を照射し、5つの孔を通過した5つの1次電子ビーム5に分割し、必要に応じて、図示外のアライメントコイルにより方向を調整して5つの微小対物レンズ10の軸にそれぞれ入射する。
【0083】
図2の(a−2−2)は、ビーム絞り4に4つの孔を対称位置に設けた例を示す。この場合には、上方から1次電子ビーム2を照射し、4つの孔を通過した4つの1次電子ビーム5に分割し、必要に応じて、図示外のアライメントコイルにより方向を調整して4つの微小対物レンズ10の軸にそれぞれ入射する。
【0084】
図2の(a−2−3)は、ビーム絞り4にジグザグに5つの孔を設けた例を示す。この場合には、上方から1次電子ビーム2を照射し、ジグザグの5つの孔を通過した5つの1次電子ビーム5に分割し、必要に応じて、図示外のアライメントコイルにより方向を調整してジグザグに配置した5つの微小対物レンズ10の軸にそれぞれ入射する。そして、1次電子ビーム5を偏向器13により左右方向に走査しつつステージ22を前後方向の一定方向に走査することにより、5つ分の幅で試料21上を1次電子ビーム5で走査することが可能となる。そして、5つ分の幅の2次電子画像を同時並列に生成して保存(表示)することにより、1つの微小対物レンズ10の場合に比し、5倍の速度で2次電子画像を取得して保存することが可能となる。
【0085】
図2の(b)は、電子源1が複数の1次電子ビーム2を放射する例を示す。図示の例では、電子源1が3つの1次電子ビーム2を同時並列に放射する。放射された3つの1次電子ビーム2は、電子レンズ3でビーム絞り4の所定領域に照射し、孔を通過した1次電子ビーム5を生成する。生成した1次電子ビーム5は、3つの微小対物レンズ10の軸に必要に応じて設けた図示外のアライメントコイルにより調整されて入射する。
【0086】
図3は、本発明の詳細構造図を示す。
【0087】
図3の(a)は、1つの微小対物レンズ10、検出器10などを設けた例であって、図1で示した複数の検出器のうちの1つを取り出したものを示す。ここで、上方から入射した1次電子ビーム5(図2のビーム絞り4の孔を通過した1次電子ビーム5)
は、検出器11の中心に設けた孔を通過して微小対物レンズ10の軸に入射して当該微小対物レンズ10の磁場により収束されて試料21上にフォーカスされる。試料21に1次電子ビームが照射されたことにより放出された2次電子12は、微小対物レンズ10の磁場により軸上を回転しながら検出器11の方に向かう。検出器11に到着した2次電子12(あるいは検出器11に印加された正電圧により吸引された2次電子12)は当該検出器11により検出・増幅、即ち、MCP(Micro-Channel-Plate)112で2次電子が検出・増倍され、コレクタ電極111に到達し、増幅された2次電子信号を生成する。
【0088】
図3の(b)は、3つの微小対物レンズ10、検出器10などの組を設けた例を示す。図3の(a)の1つの場合と同様に、各組でそれぞれ独立に2次電子信号が生成される。
【0089】
尚、MCPなど2次元型検出器を利用すれば1個の検出器11ですみコンパクト化できる。MCPは直径10μm程度の各チャネルが独立に2次電子を増幅するから、入射側の電子強度分布と出力側の分布が相似する。したがって入射側に分離して入射した2次電子は、出力側の個別のコレクタ電極によって分離して増幅出力される。ただし試料21を照射する1次電子ビーム5が通過するための貫通孔を空ける必要がある。こうすることにより隣接する1次電子ビーム5の間隔を狭くすることが可能になる。
【0090】
図3の(c)は、2つの微小対物レンズ10、検出器11などの組を設けた例を示す。図3の(c)では、検出器11として、シンチレータ113、ライトガイド114、フォトマル115を用いている他は図3の(b)、(a)と同じである。上方から入射した1次電子ビーム5は、検出器11(シンチレータ113)の中心に設けた孔を通過して微小対物レンズ10の軸に入射して当該微小対物レンズ10の磁場により収束されて試料21上にフォーカスされる。試料21に1次電子ビームが照射されたことにより放出された2次電子12は、微小対物レンズ10の磁場により軸上を回転しながら検出器11の方に向かう。検出器11(シンチレータ113)に到着した2次電子12(あるいは検出器11に印加された正電圧により吸引された2次電子12)は当該検出器11により検出・増幅、即ち、シンチレータ113に2次電子が衝突して光を発生し、当該発生した光がライトガイド114を経由してフォトマル115の受光面を照射し、当該照射により光電子が放出され、更に倍増されて2次電子信号を生成する。本例では、検出器11として、シンチレータ113、ライトガイド114を用いて2次電子を光に変換して当該光を外部に導き、フォトマル115により光ー電子変換して増幅しているため、2次電子12を検出する先頭部分を小さくでき、大きいフォトマル115を外部に設けることが可能となる。
【0091】
図4は、本発明の走査説明図を示す。図4は、ステージ上の試料21を上から見た図であって、1つの微小対物レンズ10を用いて走査する様子(図3の(a)参照)を示す。
【0092】
図4において、試料21は、図1の試料であって、ステージ22の上の搭載された試料である。
【0093】
1次電子ビーム走査範囲は、試料21上を1次電子ビーム5で走査、ここでは、上下方向に走査する様子を示す。
【0094】
ステージ走査範囲は、ステージ移動により試料21を走査、ここでは、右方向に一定に走査し、次に左方向に一定に走査するように、繰り返す様子を示す。
【0095】
以上のように、1次電子ビーム走査範囲に示すように、1つの微小対物レンズ10で絞った1次電子ビーム5を試料21上で走査(上下方向に走査)しつつ、ステージ走査範囲に示すように、ステージ22により左右方向のうちの右方向(あるいは左方向)に一定に試料21を走査(移動)することにより、上下方向に1次電子ビーム走査範囲の幅で、横方向にステージの移動によるステージ走査範囲(試料21の横方向の全範囲)を走査することを繰り返し、試料21の全面を平面走査することが可能となる。
【0096】
尚、図4は、1つの微小対物レンズ10を用いたが、複数の微小対物レンズ10を用いる場合、例えば図2の(a−2−1)の5つの1次電子ビーム5を6つの微小対物レンズ10を用いて同時並列に走査する場合には、図4の6倍の速度で試料21上を走査することが可能となる。
【0097】
図5は、本発明のアライメント説明図を示す。
【0098】
図5において、上方から下方に向かって、ここでは、3本の1次電子ビーム5(図1、図2でビーム絞り5で分割された3本の1次電子ビーム5)が、静電型のアライメント1、アライメント2の2段偏向器により3つの微小対物レンズ10の軸にそれぞれ入射するように場所、角度が図示のように調整される。これにより、3本の1次電子ビーム5は、任意の間隔でよく、2段のアライメント1,2により2段偏向(X,Yの両方向)において、微小対物レンズ10の軸上に入射するように調整されることとなる。
【0099】
図6は、本発明の微小対物レンズ例を示す。ここでは、微小対物レンズ10は、図1の対物レンズ6の内部磁極(上極8)の中心軸と、その両側に当該微小対物レンズ10のOL磁極孔を設けてそれぞれ形成している。
【0100】
図6において、OL中心軸は、内側磁極(上極8)の中心を示す。上極8には、3つの磁極孔が形成され、これにより3つの微小対物レンズ10が形成される。OL中心軸を含む磁極孔は、通常の磁界型レンズのように、上極8の中央に形成されている。OL中心軸から距離rの位置に形成された両側の磁極孔は、上極8の中央になく偏心している。図に示したように、上極8の半径をRとし、偏心度E=r/Rとする。例として、r=10mmとして、Rに対する偏心度を図7の(a)に示す。上述の上極8の中心軸を含む磁極孔では(r=0、即ちE=0)、磁極の非対称性に伴って生ずる非点収差は小さく抑えることができるが、r=10mmの位置に形成された磁極孔では、比較的大きな非点収差が生ずる。しかし、上極8(内側磁極)の径を大きくし、例えばR=100mmとすれば、偏心度は、E=0.1と小さくなり、磁極の非対称性から生ずる非点収差は小さく抑えることができる。さらに、生じた非点収差は、磁極毎に設けられた非点補正器により、補正することが可能である。
【0101】
上極8(内側磁極)の半径Rを大きくすれば、偏心度Eが小さくなり、非対称性に伴う非点収差を小さくできるが、対物レンズのフォーカス電流が大きくなる問題を生ずる。図7の(b)に、Rをパラメーターとして、上極8(磁極面)と試料21との距離(WD)に対する対物レンズのフォーカス起磁力(J/√V)の例を示す。また、図7の(c)に球面収差係数Csを、また図8の(d)に色収差係数Ccを示す。この例では、磁極孔(微小対物レンズ10)の径は4mmとした。Rを大きく、例えば80mmとすると、WD5mmでは、大きなフォーカス起磁力が必要であるが、WD20mm前後であれば、比較的に小さい起磁力でよく、十分実現可能である。
【0102】
図7の(c)より、WD=20mmでは、J/√V=57(AT/V1/2)、Cs=25mm、Cc=11mmである。これから、プローブ電流1nAの場合、加速電圧1.5KVにおけるプローブ径は18nm、また、加速電圧3KVにおけるプローブ径は11nmと見積もられる。更に、WD=10mmでは、J/√V=114(AT/V1/2)、Cs=15mm,Cc=7.7mmである。これから、プローブ電流1nAの場合、加速電圧1,5KVにおけるプローブ径は13nm、また、加速電圧3KVにおけるプローブ径は7.7nmと見積もられる。
【0103】
3本の1次電子ビーム5は、対物レンズのコイル7に流れる電流により、試料21の面に収束されるが、3つの微小対物レンズ10において試料21面に収束する起磁力は多少異なる。このため、図9の(a)に示すように、微小対物レンズ10の各磁極孔にフォーカスコイル131を設けることにより、各微小対物レンズ10にて同時にフォーカスさせることができる。このフォーカスコイル131は、静電レンズで構成してもよい。
【0104】
各1次電子ビーム5は、図9の(a)に示すように、静電8極子からなる走査偏向器132により試料21の面上を走査される。走査偏向器132は、磁場型で構成してもよい。
【0105】
上述したように、Rを大きくするとフォーカス起磁力が大きくなるため、あまりWDを小さくできない。しかし、微小対物レンズ10の各磁極部に図9の(b)に示すように、凸状の磁極を設ければ、フォーカス起磁力の増大を抑えながら、各微小対物レンズ10のWDを小さくして、より小さなCs,Ccを得ることにより、分解能を向上させることも可能である。
【0106】
図7および図8は、本発明の収差等の説明図を示す。
【0107】
図7の(a)は、偏心度を示す。横軸は既述した図6の上極8上のOL中心軸からの半径方向の距離Rmmであり、縦軸はそのときの偏心度である。
【0108】
図7の(b)は、フォーカス起磁力を示す。横軸は図6の上極8と試料21との間の距離であるWDmmを示し、縦軸はそのときにフォーカスする起磁力J/√U(AT/√V)を示す。4本の曲線は、上から順に、R=80mm,40mm,20mm,10mmのときの起磁力をそれぞれ示す。
【0109】
図7の(c)は、Cs(球面収差係数)を示す。横軸は図6のWDmmを示し、縦軸はそのときのCsmmを示す。図中の曲線は、上から順に、R=10mm,20mm,40mm,80mmの曲線をそれぞれ示す。
【0110】
図8の(d)は、Cc(色収差係数)を示す。横軸は図6のWDmmを示し、縦軸はそのときのCcmmを示す。図中の曲線は、上から順に、R=10mm,20mm,40mm,80mmの曲線をそれぞれ示す。
【0111】
図9は、本発明のフォーカスコイル/走査偏向器例を示す。
【0112】
図9の(a)は、通常の例を示す。この例では、上極8の中心と距離rの位置に孔をそれぞれ設けた微小対物レンズ10を3つ形成している。各微小対物レンズ10の内側には、図示のフォーカスコイル131および走査偏向器132を設けている。これらにより、微小対物レンズ10毎に1次電子ビーム5の試料21面へのフォーカス、および走査(一定方向への走査、あるいはXとYとの両方向への走査)をそれぞれ独立に制御することが可能となる。フォーカスコイル131、走査偏向器132は、電磁レンズ/電磁偏向あるいは静電レンズ/静電偏向のいずれでもよい。
【0113】
図9の(b)は、凸状磁極を設けた例を示す。この例では、各微小対物レンズ10の下方向に凸状磁極133を設けたため、フォーカス起磁力を小さくして各微小対物レンズ10のWDをより小さくすることが可能となる。
【図面の簡単な説明】
【0114】
【図1】本発明の1実施例構造図である。
【図2】本発明の1次電子ビームの説明図である。
【図3】本発明の詳細説明図である。
【図4】本発明の走査説明図である。
【図5】本発明のアライメント説明図である。
【図6】本発明の微小対物レンズ例である。
【図7】本発明の収差等の説明図である。
【図8】本発明の収差等の説明図(続き)である。
【図9】本発明のフォーカスコイル/走査偏向器例を示す。
【符号の説明】
【0115】
1:電子源
2、5:1次電子ビーム
3:電子レンズ
4:ビーム絞り
6:対物レンズ
7:コイル
8:上極
9:下極
10:微小対物レンズ
11:検出器
111:コレクタ電極
112:MCP
113:シンチレータ
114:ライトガイド
115:フォトマル
12:2次電子
13:偏向器
131:フォーカスコイル
132:走査偏向器
133:凸状磁極
14:収束磁場
21:試料
22:ステージ
31:電子源電源
32:レンズ電源/アライメント電源
33:検出信号増幅器
34:ビーム偏向電源
35:画像表示/画像保存装置
36:対物レンズ電源/補正電源
37:ステージ制御電源/補正電源

【特許請求の範囲】
【請求項1】
試料上を複数の1次電子ビームで走査してそれぞれの画像を取得する走査型電子顕微鏡において、
前記試料を搭載して平面内で当該試料を移動可能な移動機構と、
複数の1次電子ビームをそれぞれ細く絞って前記移動機構に搭載した試料上にそれぞれ独立に照射する複数の微小対物レンズと、
前記複数の微小対物レンズに対応付けて設け、それぞれ1次電子ビームを前記移動機構に搭載した試料上で走査するように偏向するそれぞれの偏向器と、
前記複数の微小対物レンズに対応付けて設け、それぞれの試料から放出された2次電子が当該微小対物レンズの磁場で軸上に収束されて1次電子ビームの試料上への照射方向と逆の軸上の方向に設けた、それぞれ独立に当該2次電子を検出・増倍するそれぞれの検出器と
を備え、
複数の電子ビームを試料上に独立に照射しつつ走査し、同時並列に放出された2次電子をそれぞれ独立に検出・増倍して複数の2次電子画像を同時並列に生成する走査型電子顕微鏡。
【請求項2】
前記全ての偏向器が前記試料上を一定方向に1次電子ビームをそれぞれ走査すると共に、前記移動機構が当該走査方向と直角方向に前記試料を走査し、当該試料上を1次電子ビームで面走査することを特徴とする請求項1記載の走査型電子顕微鏡。
【請求項3】
前記微小対物レンズは、1組のコイルで励磁される円筒型の対物レンズの内側の上極に、孔を開けて当該微小対物レンズをそれぞれ構成したことを特徴とする請求項1あるいは請求項2記載の走査型電子顕微鏡。
【請求項4】
前記円筒型の対物レンズの外側の下極は、開放、あるいは全面閉鎖して前記上極に平行な磁極板、としたことを特徴とする請求項3記載の走査型電子顕微鏡。
【請求項5】
前記微小対物レンズに、前記偏向器、検出器をそれぞれ独立に設けると共に、更に、磁場非対称性成分および固有の収差の補正を行う非点補正器、焦点補正器の1つ以上をそれぞれ設けたことを特徴とする請求項1から請求項4のいずれかに記載の走査型電子顕微鏡。
【請求項6】
前記複数の1次電子ビームは、電子源から放出された1つの1次電子ビームを複数の微小孔を設けた絞り板を通過させて複数の1次電子ビームを形成したことを特徴とする請求項1から請求項5のいずれかに記載の走査型電子顕微鏡。
【請求項7】
前記複数の1次電子ビームは、1つの電子銃内に設けた複数の電子源からそれぞれ放出された、複数の1次電子ビームであることを特徴とする請求項1から請求項5のいずれかに記載の走査型電子顕微鏡。
【請求項8】
前記微小対物レンズの試料に面する側に中心に孔の開いた凸状磁極をそれぞれ設けて当該微小対物レンズに必要となる起磁力を低減したことを特徴とする請求項1から請求項7のいずれかに記載の走査型電子顕微鏡。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate