説明

走査透過型電子顕微鏡

【課題】
高い倍率で安定して再現性の良い鮮明な走査透過型電子顕微鏡像の観察を可能にする。
【解決手段】
試料5にその表面に沿った成分を有する任意の方向の電場6を印加する電場印加機構部として電極13〜16を設置し、この電場印加機構部を用いて電場を印加することにより、収束電子線によって試料5表面上に局所的に帯電する電荷を速やかに移動させる。更に、この電場による電子線8スポット中心が検出器10中心から移動するのを補正するため、電子線振り戻し機構部17〜20を設ける。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、走査透過型電子顕微鏡、特に透過電子ビームの位相や強度を検出する装置に関する。
【背景技術】
【0002】
一般に顕微鏡は様々な波を試料に照射し、その波の強度や位相の変化を検出することで試料の構造を描き出す装置である。波として電子線を利用した電子顕微鏡は光学顕微鏡よりもはるかに高い空間分解能を有し、様々な材料のナノメートルレベルの構造や特性評価に用いられている。さて、電子顕微鏡は大別すると走査型電子顕微鏡(Scanning Electron Microscope;SEM)と透過型電子顕微鏡(Transmission Electron Microscope;TEM)の2種類があり、後者で特に収束した電子線を試料上で走査する方式を走査透過型電子顕微鏡(Scanning TEM;STEM)と呼び、区別している。一般にSEMは試料表面の情報を与えるのに対し、TEM、STEMは試料内部の情報を与えることが異なっている。TEM、STEM、いずれの方式でも特殊な電子光学素子や検出器を使用すると電子ビームが試料を透過するときに受ける強度変化だけでなく位相変化をも検出できるようになり、試料内部の材質あるいは結晶学的構造だけではなく電磁気的な構造をも高い分解能で調べることができる。すなわち、試料内部の電位分布を計測することができる。
【0003】
試料表面の電位分布の測定方法としては電子線を使った手法の他にも一般に走査プローブ顕微鏡(Scanning Probe Microscope;SPM)と呼ばれる手法が存在する。本手法は試料表面に細い探針の先端を接近させて、試料表面の電荷と針の間に働く静電力、あるいは誘導電流を計測し、試料表面の電荷分布を可視化するものである。また、STEMを用いて試料内部の電磁場を計測する手法が、特許文献1、2に開示されている。
【0004】
【特許文献1】特開平6-138196号公報
【特許文献2】特開平7-335172号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
電位コントラストを用いたSEM、あるいはSPMを用いた計測手法では、試料内部の電位あるいは電荷分布に関する情報を得ることはできない。一方、TEMでは試料内部の電位あるいは電荷分布に関する情報が得られる。また、TEMでは高い電圧で加速された高速の電子線をサブナノメートルまで収束して試料に照射し、空間分解能は収束した電子線の大きさで決まるので、一般に空間分解能は1ナノメートル以下と高い。また、高速の電子線はほとんどが試料に吸収されることなく、試料を透過してしまうため、SEMほど帯電の影響は大きくない。しかしながら、空間分解能が極めて高いことから絶縁性の試料を観察する場合には、帯電の影響は無視できない。これを以下に説明する。
【0006】
TEMでも電子線を収束した場合としない場合では、試料を観察する際の電子線を照射する条件が異なるために、観察結果に違いを生じる場合がある。これは波として用いる電子線が電荷を有していることに起因している。すなわち、観察試料が絶縁性の高い試料の場合、試料の広い領域に同時に電子ビームを照射することによる影響が生じ、観察を困難にする場合がある。このような場合、電子線を小さく絞って走査することによって電子ビームの影響を小さくできる場合がある。したがって、このような試料の場合、TEMよりもSTEMの方が観察に適していると言える。
【0007】
さて、STEMを用いて試料内部の電磁場を計測する手法は例えば上述した特許文献1に開示されている。これは主に磁場の計測に用いられ、磁場による電子線のローレンツ偏向を電子線位置検出器によって検出する微分位相コントラスト法(Differential Phase Contrast;DPC)と呼ばれている。また、特許文献2にはこのDPC法における電磁場分布の測定において電場と磁場の分布を分離して個別に計測し、表示する方法が開示されているが、特許文献2では、DPC法はより精密に磁場分布を計測するため、磁場以外の影響として試料帯電による電場の影響を極力除くための手法として開示されたものであり、積極的に電場分布を計測することを目的としたものではない。このため、試料の磁区構造を破壊しないように対物レンズが使われておらず、照射レンズのみで電子線を収束する必要があり、収束電子線の直径で決まる空間分解能も5ナノメートル程度が限界である。このような磁区構造の観察においては空間分解能が高くなく、また磁性材料が金属で構成されることが多いことから、試料帯電の影響は少ないため、試料帯電に対する対策は施されていないことが一般的である。
【0008】
そのため、試料の電場分布を観察倍率を上げて高い分解能で観察しようとする場合には、STEMを用いる場合であっても、収束電子線による帯電の影響が問題となってくる。特に観察試料が強誘電性を有する場合、試料に局所的な帯電が生じ、その帯電量がある閾値を超えると、試料の強誘電的性質が変化し、試料本来の強誘電的構造を観察できなくなるという問題があった。この問題に対して、当然、照射する電子線の電流を小さくして観察するという解決法が考えられるが、電流を小さくすると検出される電子線の量が減少し、信号対ノイズ比(S/N比)が劣化し、鮮明な画像は得られないという問題がある。
【0009】
本発明の目的は、このような問題を解決し、絶縁性の高い試料の電場分布を高い倍率で観察を繰り返しても、安定して再現性の良い鮮明な像が得られる走査透過型電子顕微鏡を提供することにある。
【課題を解決するための手段】
【0010】
上記の目的を達成するために、本発明においては、試料に試料表面と平行な成分を有する任意の方向の電場を印加する機構を設けた走査透過型電子顕微鏡を構成する。更に好適には、該電場による電子線スポット中心が検出器中心から移動する効果を補正する電子線振り戻し機構を有する走査透過型電子顕微鏡を構成する。
【0011】
すなわち、電子線の走査により、試料を透過した透過電子線を検出する走査透過型電子顕微鏡を、電子線を発生させる電子線源と、電子線を収束させる収束部と、試料を保持する試料ステージと、収束した電子線を試料上で走査する走査部と、試料を透過した透過電子線の強度を検出する透過電子線検出器と、試料の表面に沿った成分を有する任意の方向の電場を試料に印加する電場印加機構部とから構成する。更に好適には、この構成に、電場による電子線の移動を補正する振り戻し機構部を有する構成とする。
【0012】
本発明の構成による電子線照射の影響の軽減に関する機構は、定性的には以下によるものと考えられる。電子線の照射により局所的に生じた試料表面の電荷は試料膜面に平行な電場によるローレンツ力を受ける。このローレンツ力により、電荷は観察領域から速やかに移動し、同じ場所に蓄積することはないため、1回の走査に伴う帯電がある閾値以下の場合には観察に影響しないことになる。
【0013】
以下ではより定量的に検討する。一般にローレンツ力は次式で定義される。
【0014】
【数1】

ここで eは素電荷、Eは電場、v は電子の速度、Bは磁場を表す。第一項は静電(クーロン)力、第二項は狭義のローレンツ力である。
さて、印加電場による電子の運動は相対論的に記述されるが、電子の電位Vと速度vの関係式は次式で与えられる。
【0015】
【数2】

ここで、Ex、x、m0、cはそれぞれ電場、電場の方向、電子の静止質量、および光速度である。これを速度について解くと、
【0016】
【数3】

を得る。例えば、電場の強度が106 V/mの場合、視野半径を10μmとすると電位差は1Vとなり、視野中心から視野端に移動した電子の得る速度を計算すると約6×105 m/sとなる。
さて、対物レンズの磁場がこの運動に与える影響について検討する。対物レンズの磁場を1Tとすると、速度6×105 m/sを有する電子の曲率半径Rは
【0017】
【数4】

で与えられ、約3.4μmとなる。したがって、電子は視野の周辺に移動するにつれ速度が大きくなり、それにつれて磁場の影響を受けて方向を変えながら複雑な起動を描いて移動するが、全体的には電場の方向に加速され、速やかに視野の外へ移動することがわかる。
一方、静止した電子が視野の外へ出るまでに要する時間は以下のようにして見積もることができる。今、磁場の影響を無視した場合、相対論を考慮した運動方程式は次式で与えられる。
【0018】
【数5】

ここでv =c sinθと置いてこれを解くと
【0019】
【数6】

ただし、
【0020】
【数7】

ここでv1は加速された電子の速度である。式(6)を式(7)を用いて電子の速度で表すと結局
【0021】
【数8】

式(3)で求めたv1の値を代入すると、t1として3.4×10-12秒が得られる。したがって、電子線照射によって試料上に生じた電荷は、ほぼ瞬時に加速され、視野外へと移動することがわかる。磁場が存在することで、実際の運動は回転運動を伴う複雑なものとなるが、重心は電場の方向へ移動する。以上の議論は真空中にある電子の運動であるが、帯電によって生じた電子は試料表面にあるため、式(5)と(6)における電子の質量としては静止質量ではなく、試料表面における様々な相互作用を考慮した有効質量を用いるべきであると思われるが、本発明における観察結果では1つの観察点における収束電子線の滞在時間が5×10-5秒〜4×10-4秒であることから、t1の値としては、これよりも十分小さい値になっていると推定される。ここで、磁場によるローレンツ力は電子が速度を持ち、運動する際に働く力であって、帯電して止まっている電子に対しては有効ではない。したがって、本発明を電場ではなく磁場によって実現することは原理的に不可能である。また、磁場を作用させると入射電子線の動きが複雑であるが、電場だと平行移動するだけであり、制御も簡単である。
【0022】
以上、本発明の電場印加機構部により、試料に電場印加することで電子線照射によって試料表面に生じる帯電を除去する方法に関して記述したが、本電場の強さと方向は任意に制御できることが好ましい。これは観察する試料の性状に応じて、必要な電場の強さと方向が変わる可能性があるためである。このように電場の強さと方向を変化させると、透過した電子線を検出する側で不都合を生じる。それは透過した電子線と検出器の相対的な位置が変化してしまうことで、正確な測定には両者の中心を合わせる必要がある。
【0023】
このため、本発明では、好適には試料に印加した電場による電子線の移動を補正する振り戻し機構部を併せて設ける構成とする。この振り戻し機構部として、2組の対向電極を用いた電場による振り戻し機構を設ける。この電子線振り戻し機構部を配置する場所は、収束部に含まれる対物レンズの後焦点面が好ましいが必ずしも厳密に一致している必要はない。
【0024】
また、一般に走査透過型顕微鏡ではその照射系に収束した電子線を偏向して走査するための偏向機構として電磁コイルを設けてあり、さらにこの偏向により透過電子線の中心が検出器中心から移動してしまうことを補正するための振り戻しコイルを設けることがある。このような振り戻し機構としては例えば特開2006-196236号公報、「電子顕微鏡及び観察方法」に記載されたようなものが存在する。したがって、試料への電場印加に伴う電子線の移動を補正する振り戻し機構部として、この電磁コイルを用いることもできる。このような振り戻し機構部への信号は、電場印加機構部による電場の強度と方向に応じた一定のオフセット信号により実現可能である。
【0025】
なお、本発明において試料へ印加する電場の大きさは試料の特性に大きく依存するが、例えば強誘電体試料の場合には、抗電界と呼ばれる特性がある。この値以上の電界を印加すると、試料内部の分極の方向が強制的に変化してしまうため、この値以下の電界の大きさとする必要がある。さらに、本発明で使用する試料ステージとしては以下の2つの理由によって、試料温度を可変とする機構を有するものが望ましい。まず一番目の理由としては、本発明による観察対象として考えられる強誘電体の場合には、その電気的性質が温度によって大きく変化するため、試料温度を可変とすることが必須であるためである。二番目の理由としては、本発明による別の観察対象と考えられる絶縁体を含む試料では、試料温度を上げることによって、電子線照射による帯電が軽減される現象が一般に認められているためである。
【発明の効果】
【0026】
本発明の走査透過型電子顕微鏡によれば、絶縁性の試料を高い倍率で観察しても安定した再現性の良い鮮明な像を得ることができる。
【発明を実施するための最良の形態】
【0027】
以下、本発明を実施するための最良の形態を図面を用いて説明する。
【実施例1】
【0028】
図2は本発明の第1の実施例による電場印加機構部と振り戻し機構部とを備えた走査透過型電子顕微鏡(STEM)の模式図である。まず電子源1から出た電子線2はコンデンサレンズ3及び対物レンズ12によって収束され、試料5に照射される。この収束された電子線は偏向コイル4によって試料上を2次元的に走査される。試料を透過した電子線8は結像レンズ7によって拡大され、検出器10に結像する。このとき、試料5に電磁場が存在しない場合には透過した電子線8が検出器10の中心に対称に入射するように光学系を調整しておく。ここで試料5に電場6が存在する場合には、電子線2の偏向が生じ、透過した電子線9は図2のように検出器10上で試料5の電場の方向と大きさに依存して位置がずれる。このずれ量を制御装置11で計測することによって試料の2次元的な電場をベクトル図として制御装置11に接続した表示部11−1に表示することができる。
【0029】
本実施例では特に模式的に示した電場を印加するための電場印加機構部である電極13〜電極16を試料近傍に配置し、試料5に電場を印加することを第一の特徴とする。さらに、収束した電子線2を試料5に照射することで発生する2次電子、あるいは反射電子を検出するための検出器21を試料近傍に配置しておけば、試料5の電場構造に関する情報と、2次電子あるいは反射電子により得られる試料組成などに関する情報とを比較して同時に表示部11−1に表示させることも可能である。
【0030】
ここで、上述したとおり、試料5に電極13〜電極16により電場を印加することに伴って生じる透過電子線8のずれがある。
【0031】
試料5の電場を正確に測定するためには、このずれを補正するための振り戻し機構部が必要となる。このために本実施例では電場を用いて透過した電子線2を任意の方向に偏向するための機構を設けることを第二の特徴とする。この機構は互いに略直交する方向の1組の電極対(電極17〜電極20)から構成され、各電極対間に印加する電位差を調整することによって、試料5に印加した電場による透過電子線8のずれを補正することができる。なお、本実施例では、互いに略直交する1組の電場による偏向機構を用いたが、もちろん、特開2006-196236号公報、「電子顕微鏡及び観察方法」に開示されているような偏向コイルを用いた手法、あるいは両者を組み合わせた手法のどちらでもよいことはいうまでもない。この振り戻し機構部の設置場所は、対物レンズ12の後焦点面が好適であるが、必ずしも後焦点面に厳密に一致している必要はない。
【0032】
次に第1の実施例における試料5に電場を印加する機構の詳細について説明する。図3A、Bは、この試料に任意の方向の電場を印加する機構部、すなわち電極群の一実施例の詳細図である。互いに略直交する2組の電極対を組み合わせることによって、試料に任意の方向の電場を印加することができる。試料ホルダー22上に配置された試料23の近傍に互いに略直交する2組の電極対(電極25と電極27の1組、及び電極26と電極28の1組)を使用して、電極25と電極26にはそれぞれ結線29及び結線30を施しておき、電子顕微鏡内部あるいは外部に用意した、図示されていない電源と接続する。これらの電極と試料ホルダー22が電気的に接触するのを防止するため、それぞれの電極は固定ネジ31によって絶縁性のスペーサ32を介して試料ホルダー22に固定するとよい。このようにして2組の電極対に印加する電場の強さを調整すると、試料23の近傍に任意の方向と大きさを有する電場を印加することが可能となる。本実施例では構造を簡単にするために、これらの電極25及び電極26にそれぞれ対向する電極27及び電極28は試料ホルダー22に接続され、試料ホルダー22及び電子顕微鏡本体と同じ電位にするものとした。もちろん、それぞれ独立の電位とするために、別の結線を用意してもかまわない。
【0033】
さらに本実施例では試料23の温度を変化させるために試料ホルダー22の内部に試料の加熱部としてのヒータ24を組み込んであるが、図面が複雑になるのを防ぐためにその結線は省略してある。本ヒータ24に電流を外部から供給し、調節することによって試料23の温度を自由に設定することが可能となる。
【実施例2】
【0034】
上述した実施例1では試料に任意の方向の電場を印加する構成のSTEMを使った測定装置を説明したが、特定の方向を印加する構成もある。図4A、Bは、試料に特定の方向の電場を印加する電場印加機構部を有する第2の実施例の詳細図である。本実施例において、特定の方向の電場を印加する機構を有する試料ホルダー周りの構成以外は、図2の装置構成を有するので、説明は省略する。
【0035】
本実施例においては、試料ホルダー33に図4A、Bで示したような1対の電極35及び電極36を配置し、試料34の近傍でお互いに対向するようにしておく。この際、試料34に略一様な電場が生じるように互いに平行な電極が対向するようにしておく。電極35及び電極36にはそれぞれ結線37及び結線38を施しておき、電子顕微鏡内部あるいは外部に用意した図示を省略した電源と接続する。これらの電極35、36と試料ホルダー33が電気的に接触するのを防止するため、第1の実施例同様、それぞれの電極は固定ネジ39によって絶縁性のスペーサ40を介して試料ホルダー33に固定するとよい。本実施例では対向させた平板状の電極35、36を用いているが、別の形状の電極でもよく、たとえば先端が針状の電極を用いることも可能である。ただし、その場合には針状の電極を試料の観察部位に精度良く接近させる機構が必要となる。
【0036】
さらに本実施例では実施例1と同様に試料34の温度を変化させるために試料ホルダー33の内部にヒータ41を組み込んである。図面が複雑になるのを防ぐためにその結線は省略してある。本ヒータ41に電流を外部から供給し、調節することによって試料34の温度を自由に設定することが可能となる。
【実施例3】
【0037】
図5A、Bは、この試料に任意の方向の電場を印加する機構の第3の実施例を説明する図である。本実施例においては、試料43を電子線に対して任意の傾きとするために片梁の試料ホルダー42を用いている。ここでは電場の方向は固定されているが、図示されていない回転機構を用い、片梁の試料ホルダー42を軸方向に回転して試料43を回転させることによって、試料43に任意の方向の電場を印加することができることを示している。試料43に電場を印加するために電極44を配置し、図示されていない外部の電源と結線45で接続し、試料ホルダー42と電気的に絶縁するために固定ネジ46により絶縁性のスペーサ47を介して固定する。
【0038】
実施例1及び実施例2と同様に試料43の温度を変化させるために試料ホルダ42の内部にヒータ48を組み込んである。図面が複雑になるのを防ぐためにその結線は省略してある。本ヒータ48に電流を外部から供給し、調節することによって試料43の温度を自由に設定することが可能となる。
【0039】
図6A、Bに、上述した実施例による電場印加機構で計測した強誘電体試料49の分極構造像(図6B)と、電場を印加せず観察した分極構造像(図6A)とを模式的に比較した図を示す。図6Aは観察倍率を上げて観察を繰り返した場所50で、観察後その分極構造が変化している。図6Bは、図6Aと同じ場所を同様に走査した分極構造像で、観察倍率を上げて局所的に観察を繰り返した場所においても観察後の分極構造は変化していない。
【0040】
次に図7A、B、Cを用いて、測定装置における電子線照射によって強誘電体試料の表面に生じる帯電と分極構造の変化の様子を説明する。図7Aに示すように始めに強誘電体試料52の内部では自発分極53が図のような向きを有していたとする。ここに電子線51を試料52の上部から照射する。電子線の照射量が増大すると図7Bに示すように電子線と試料との相互作用によって試料表面に帯電55が生じる。これに伴って試料内部に誘導電荷54が生じる。さらに電子線照射量が増大すると図7Cに示すように試料内部の誘導電荷が増大し、図の上下方向に強い電界が生じることになり、この電界の強度がある閾値(抗電界)を超えると分極の方向が変化し、分極56の方向になることを示している(図6Aの場所50)。このように試料表面に強い帯電が誘起された状態では、試料に入射する電子線の軌道が大きく影響を受け、観察を困難、さらには不可能になる。また、強誘電体試料の場合には誘起された帯電によって、元来の試料の性質が変化してしまうため、試料本来の特性を評価することが不可能になってしまう。
【0041】
一方、上述した各実施例の電場印加部を有するSTEMを用いた測定装置によれば、図7B、Cに示した帯電電荷を速やかに移動させ、図7Aに示すと同様、試料表面に帯電荷電がほぼ無い状態にすることができ、上述のような問題が軽減、更には解決され、試料本来の特性を十分評価することが可能となる。
【実施例4】
【0042】
続いて、第4の実施例として、図8A、Bを用いて、STEMを用いた測定装置の表示部に、試料内部の電場ベクトルを表示するための実施例を説明する。この表示処理は、図8Aに示す、図2の実施例における制御装置11に相当、或いはその一部を構成する信号処理装置67により実行される。図8Bは、そのフローチャートを示している。計測に当たり、図2に示した測定装置の電子線検出器10に相当する4分割検出器57の中心に透過電子線58が位置するように調節しておく。更に、試料面で互いに直交する方向としてX及びY方向を定め、該試料のX方向と検出器のX方向及び該試料のY方向と検出器のY方向がそれぞれ一致するように調節しておくものとする。
【0043】
さて、計測が開始されると、試料内部に電場が存在する場合、透過電子線58は図中59で示された位置に偏向され、移動する。この場合、偏向ベクトル60はX成分Dx61及びY成分Dy62の合成ベクトルとして表される。したがって、X成分Dx61は4分割検出器の4つの出力(A63,B64,C65,D66)を用いて(C65+D66)−(A63+B64)で測定できる。一方、Y成分Dy62は同じく4分割検出器の4つの出力(A63、B64、C65、D66)を用いて(A63+D66)−(B64+C65)で測定できる(図8Bのステップ70、以下同じ)。このX成分Dx及びY成分Dyは試料内部の電場のX成分ExとY成分Eyに比例しており、予め標準試料等によりその比例係数を決めておくことができる。
【0044】
このようにして、電子線の各走査点毎に電場ベクトルのX成分ExとY成分Eyが測定できるので、両者から電場ベクトルの強度と方向とを信号処理部67により計算することができる(ステップ71)。表示部68上での電場ベクトルの表示方法には矢印を用いる方法とカラーを用いる方法がある。前者では信号処理部67で計算した電場ベクトルの強度に比例した長さを有し、電場ベクトルの方向を向いた矢印の画像データに変換し(ステップ72)、表示装置69に電子線の走査に伴ってこの表示データを逐次表示すればよい(ステップ73)。そして、ステップ74において、全て走査点の表示が終了した場合、計測を終了する。またカラーを用いた表示では、電場ベクトルの強度に比例した明るさと方向に応じて決まる色合いデータを、予めテーブル等に記憶しておき、この色合いデータを用いることにより、同様に電子線の走査に伴って逐次表示すればよい。さらに、図8Aに示したように、両者を重ね合わせた表示69も可能である。以上説明した画像処理は、信号処理部67中の図示されない中央処理部(CPU)や、画像処理部で実行されるプログラム処理や、適宜構成された画像処理回路によって実行できることは言うまでもない。
【図面の簡単な説明】
【0045】
【図1】磁場による電子線のローレンツ偏向を電子線位置検出器によって検出する微分位相コントラスト法(DPC)の装置を模式的に示す図である。
【図2】本発明の第1の実施例に係わるSTEMを用いた測定装置を模式的に示す図である。
【図3A】第1の実施例における試料に任意の方向の電場を印加する機構の一例の平面図である。
【図3B】図3Aの電場を印加する機構の断面図である。
【図4A】試料に特定の方向の電場を印加する機構の第2の実施例を示す平面図である。
【図4B】図4Aの電場を印加する機構の断面図である。
【図5A】試料に特定の方向の電場を印加する機構の第3の実施例を示す平面図である。
【図5B】図5Aの電場を印加する機構の断面図である。
【図6A】強誘電体試料に電子線を照射した場合に、試料表面に生じた帯電によって分極が変換する様子を模式的に説明するための図である。
【図6B】強誘電体試料に電子線を照射した場合に、試料表面に生じた帯電によって分極が変換する様子を模式的に説明するための図である。
【図7A】電場印加機構部による電場印加の有り無しの状態で、計測した強誘電体試料の分極構造像を比較説明するための図である。
【図7B】電場印加機構部による電場印加の有り無しの状態で、計測した強誘電体試料の分極構造像を比較説明するための図である。
【図7C】電場印加機構部による電場印加の有り無しの状態で、計測した強誘電体試料の分極構造像を比較説明するための図である。
【図8A】各実施例における、試料内部の電場ベクトルを表示する処理を説明する図である。
【図8B】各実施例における、試料内部の電場ベクトルを表示する処理のフローチャートを示す図である。
【符号の説明】
【0046】
1…電界放射チップ、2…照射電子線、3…コンデンサレンズ、4…偏向コイル、5試…料、6試…料内部の磁場、7…結像レンズ、8試…料内部の磁場が無い場合の透過電子線、9試…料磁場によって偏向した透過電子線、10…電子線検出器、11…制御装置、11−1…表示部、12…対物レンズ、13…電極、14…電極13に対向する別の電極、15別…の電極、16電…極15に対向する電極、17電…子線の振り戻しに使用する電極、18…電極17に対向する別の電極、19…電子線の振り戻しに使用する別の電極、20…電極19に対向する電極、21…2次/反射電子検出器、22…試料ステージ、23…試料、24…ヒータ、25…片方の電極、26…別の片方の電極、27…電極25に対向する電極、28…電極26に対向する電極、29…片方の電極と外部電源との結線、30…別の片方の電極と外部電源との結線、31…電極を固定するネジ、32…絶縁性スペーサ、33…試料ステージ、34…試料、35…片方の電極、36…電極35に対向する電極、37…電極35と外部電源との結線、38…電極36と外部電源との結線、39…電極を固定するネジ、40…絶縁性スペーサ、41…ヒータ、42…片梁試料ステージ、43…試料メッシュ、44…電極、45…電極と外部電源との結線、46…電極固定用ネジ、47…絶縁性スペーサ、48…ヒータ、49…強誘電体試料、50…電子線照射によって分極が変化した領域、51…照射電子線、52…強誘電体薄膜試料断面、53…分極ベクトル、54…試料表面の帯電によって強誘電体内部に誘導された電荷、55…電子線照射によって試料表面に生じた帯電、56…強誘電体内部に誘導された電荷によって誘起された内部電場によって変化した分極ベクトル、57…4分割検出器、58…試料内部電場が無い場合の透過電子線の位置、59…試料内部電場によって偏向された透過電子線の位置、60…試料内部電場による透過電子線の偏向ベクトル、61…試料内部電場による透過電子線の偏向ベクトルのX成分、62…試料内部電場による透過電子線の偏向ベクトルのY成分、63…4分割検出器のうちA部からの信号、64…4分割検出器のうちB部からの信号、65…4分割検出器のうちC部からの信号、66…4分割検出器のうちD部からの信号、67…信号処理部、68…表示部、69…重ね合わせ表示画面。

【特許請求の範囲】
【請求項1】
電子線の走査により、試料を透過した透過電子線を検出する走査透過型電子顕微鏡であって、
前記電子線を発生させる電子線源と、
前記電子線を収束させる収束部と、
前記試料を保持する試料ステージと、
収束した前記電子線を前記試料上で走査する走査部と、
前記試料を透過した前記透過電子線の強度を検出する透過電子線検出器と、
前記試料の表面に沿った成分を有する任意の方向の電場を前記試料に印加する電場印加機構部と、
を有する走査透過型電子顕微鏡。
【請求項2】
請求項1記載の走査透過型電子顕微鏡であって、
前記電場による前記電子線の移動を補正する振り戻し機構部を更に有する
走査透過型電子顕微鏡。
【請求項3】
請求項2記載の走査透過型電子顕微鏡であって、
前記収束部は、前記試料ステージ近傍に設置された対物レンズを含み、
前記振り戻し機構部として、前記対物レンズの後焦点面近傍に、2組以上の互いに略直交する電場によって電子線を偏向する機構を設置する
走査透過型電子顕微鏡。
【請求項4】
請求項2記載の走査透過型電子顕微鏡であって、
前記収束部は、前記試料ステージ近傍に設置された対物レンズを含み、
前記振り戻し機構部として、前記対物レンズの後焦点面近傍に、2組以上の互いに略直交する磁場によって電子線を偏向する機構を有する
走査透過型電子顕微鏡。
【請求項5】
請求項1記載の走査透過型電子顕微鏡であって、
前記試料ステージは、前記試料の温度を変化させる加熱部を有する
走査透過型電子顕微鏡。
【請求項6】
請求項1記載の走査透過型電子顕微鏡であって、
前記透過電子線検出器の出力から、前記試料内部の電場による前記透過電子線の偏向の互いに直交する成分を抽出する信号処理部と、
前記信号処理部により抽出された前記成分に基づき、前記試料内部の電場ベクトルとして、各走査点における矢印あるいはカラー表示する表示部とを有する
走査透過型電子顕微鏡。
【請求項7】
収束した電子線を試料上で走査し、透過電子線を検出する走査透過型電子顕微鏡であって、
前記電子線を発生させる電子線源と、
前記電子線を収束させる収束部と、
前記試料を保持し、その温度を可変とする機構を有する試料ステージと、
収束した前記電子線を前記試料上で走査する走査部と、
前記試料から発生する2次電子または反射電子を検出する第1の検出器と、
前記試料を透過した前記透過電子線を検出する第2の検出器と、
前記第1、或いは前記第2の検出器の出力を処理する信号処理部と、
前記信号処理部の処理結果に基づき画像を表示する表示部と、
前記試料表面に沿った成分を有する任意の方向の電場を印加する電場印加部と、該電場による前記電子線の移動を補正する振り戻し部と、を有する
走査透過型電子顕微鏡。
【請求項8】
請求項7記載の走査透過型電子顕微鏡であって、
前記振り戻し部として、前記収束部を構成する対物レンズの後焦点面近傍に2組以上の互いに略直交する電場によって前記電子線を偏向する振り戻し機構を有する走査透過型電子顕微鏡。
【請求項9】
請求項7記載の走査透過型電子顕微鏡であって、
前記振り戻し部として、前記収束部を構成する対物レンズの後焦点面近傍に2組以上の互いに略直交する磁場によって前記電子線を偏向する振り戻し機構を有する走査透過型電子顕微鏡。
【請求項10】
請求項7に記述された走査透過型電子顕微鏡であって、
前記信号処理部は、前記第2の検出器の出力から、前記試料内部の電場による前記透過電子線の偏向の互いに直交する成分を抽出し、
前記表示部は、前記信号処理部が抽出した前記成分に基づき、前記試料内部の電場ベクトルを、各走査点における矢印あるいはカラーとして表示する
走査透過型電子顕微鏡。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図8A】
image rotate

【図8B】
image rotate


【公開番号】特開2009−129799(P2009−129799A)
【公開日】平成21年6月11日(2009.6.11)
【国際特許分類】
【出願番号】特願2007−305380(P2007−305380)
【出願日】平成19年11月27日(2007.11.27)
【出願人】(000005108)株式会社日立製作所 (27,607)
【出願人】(000006231)株式会社村田製作所 (3,635)
【Fターム(参考)】