説明

超音波式流量計測方法および流量計測装置

【課題】簡略な設備で大規模な水路全体の流量を測定することが可能な、超音波式流量計測方法および流量計測装置を提供することを目的とする。
【解決手段】水路を、中央部120と、中央部120より壁面または底面よりの周辺部130と、壁面または底面に近い外縁部140に分けたとき、水路の周辺部130の流速分布を超音波で測定し、水路の中央部120の流速分布は測定した流速分布を用いて補間することにより水路全体の流量を求める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水路の流速分布を超音波で測定し、水路全体の流量を測定する超音波式流量計測方法および流量計測装置に関するものである。
【背景技術】
【0002】
水力発電は、水の流量によって発電機出力が変化する。水の流量はダムや取水堰を設けて制御する場合もあるが、小型の水力発電においては自然河川から分岐させて取水する場合もある。この場合において分岐された水路は開水路または開渠と称されており、数mのものから数十mのものまで様々な幅のものがある。このような水路の流量は、水力発電における河川計画や管理上最も重要な観測データの一つである。
【0003】
大規模な水路の流量を計測する上では、水位や水路の断面形状、流速分布を取得する必要があるが、このうち時空間変化が顕著な流速の計測が重要となる。流速分布を横断面全体で計測するには、多くの一級河川の川幅が数十から数百メートル以上であることを考慮すると、効率よく流速計測を行うことが必須である。
【0004】
これまでの流速計測は基本的に点計測であり、大規模な水路をカバーするように計測を行うには、水路のサイズに比例した多大な労力が必要となる。
【0005】
点計測の計測装置としては、1方向の流速が計測できるプロペラ式流速計や電磁流速計等があるが、鉛直流速分布を得るためには、流速計の位置を逐一移動(トラバース)させるか、または多数の流速計を設置する必要が生じる。このため、取得できるデータ量に限界があり、移動させる場合には計測に手間と時間がかかり、多数設置する場合には設備コストが高くなると共に運搬の労が大きくなる。さらに、プロペラ式流速計や電磁流速計では、河川の分岐・合流直後など、非定常性が強い場合には適切な計測が行えないという問題がある。
【0006】
他の流量計測装置として、超音波センサを用いた計測装置およびその手法が知られている。この超音波式流量測定装置は、水中に発振した超音波が水中の浮遊物や気泡に反射して戻ってきた反射波を受信して流速を計測するものであり、主にドップラー法と相互相関法が利用されている。また市場では、ドップラー法を利用した流量測定装置(ADCP:Acoustic Doppler Current Profiler)が広く提供され、利用されている。
【0007】
また水路における超音波式流量計測の例として、例えば特許文献1には、開水路の両岸に配置された超音波センサの対を少なくとも一対備え、これらの超音波センサ間で発信及び受信される超音波の伝播時間に基づいて超音波伝播経路における流速を測定し、この測定値に基づいて開水路の流量を算出する超音波式流量測定装置が開示されている(ドップラー方式ではない)。なお特許文献1では、超音波センサを水深方向に昇降可能としたことにより、最適水深に応じた最適な測定水深位置での流速測定が可能であるとしている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2002−162268号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかし、特許文献1に記載の超音波式流量測定装置の場合、超音波が発信側の流量測定装置から受信側の流量測定装置に安定して到達することが前提となる。しかし、水路が大規模になった場合に、超音波が対岸に到達できないおそれがある。また、水路の両壁面に昇降ユニットを有し、その昇降ユニットによって、両壁面に設置された超音波センサを常時同じ高さとなるよう、制御するためには、大規模な設備が必要となる。
【0010】
また、上記ADCP流量測定装置の場合は、水面設置型、水底設置型、曳航体への搭載型等があるが、いずれも水深方向に超音波を発振するため、水深が浅い場合に計測が困難であることが知られている。特に曳航体への搭載型は、水路の流量規模が大きくなり、流速が速くなると、曳航体の安定性や安全性が問題となり計測が困難となる。したがって、上記ADCP流量測定装置を利用できる河川は限られてくる。
【0011】
また超音波を利用する場合には、流速が速い場合には超音波の周波数を高くしないと所定の分解能が得られない。しかし、超音波は高周波になるほど到達距離が短くなるため、大規模で大流量の水路の計測は難しいという問題がある。またナイキストの定理によりAD変換のサンプリング周波数は超音波の周波数の2倍以上にする必要があるため、高周波にするほど高速で高感度な受信回路が必要となり、また信号処理の負担が大きい。このため、測定精度を犠牲にするか、または計測可能な最大流速に制限が生じるという問題がある。
【0012】
本発明は、このような課題に鑑み、簡略な設備で大規模な水路全体の流量を測定することが可能な超音波式流量計測方法および流量計測装置を提供することを目的としている。
【課題を解決するための手段】
【0013】
上記課題を解決するために、本発明にかかる超音波式流量計測方法の代表的な構成は、水路を、中央部と、中央部より壁面または底面よりの周辺部と、周辺部より壁面または底面に近い外縁部に分けたとき、水路の周辺部の流速分布を超音波で測定し、水路の中央部の流速分布を、測定した流速分布を用いて補間することにより水路全体の流量を求めることを特徴とする。
【0014】
上記構成によれば、実測する測定範囲は周辺部のみとなり、流速を測定する範囲が水路全体から比較して狭くなるため、流速の測定点を減らすことが可能となる。したがって大規模な水路でも超音波を到達させるべき距離が短くてよく、従来の超音波センサを用いても測定することが可能となる。また超音波を到達させるべき距離が短くてよいことから超音波の周波数を上げることができ、早い流速でも測定することができる。
【0015】
上述の超音波式流量計測方法は、壁面から中央部へ向かって流速の変化量を求め、その変化量の増分が所定量以下となる範囲までを周辺部と設定するとよい。すなわち、流量計測を開始する際に最初に広範囲の測定を行って周辺部を設定し(キャリブレーション)、それから周辺部について本計測を行う。これにより、データ取得範囲である周辺部を適切かつ客観的に設定できる。
【0016】
上述の超音波式流量計測方法は、壁面から中央部へ向かって流速の変化量を求め、流れの安定した範囲を中央部と設定するとよい。すなわち、流量計測を開始する際に、周辺部を設定する代わりに中央部を設定してもよい。これにより、流れの安定した範囲を測定せずに、補間によって流速を決定することができ、流速を実測する範囲を狭めることが可能となる。
【0017】
上述の超音波式流量計測方法は、水面方向へ向けて配置した超音波センサを備え、水路の水位を計測するとよい。これにより、超音波センサから水面までの高さがわかり、超音波センサの設置高さと合わせて、水位が得られる。この水位と、既知である水路形状および寸法から、流水断面積を求めることが可能であり、上述の計測された流速とで流量を算出することができる。
【0018】
上述の超音波式流量計測方法は、超音波センサから一定距離に超音波を反射する反射冶具を備え、超音波の反射波の到達時間を計測し、反射波の到達時間から水中の音速を算出し、流速分布を補正するとよい。
【0019】
これにより、水温や水質のような環境影響を含んだ音速を測定することが可能であり、上述の流速を計測するための校正値の変化を逐次反映させることができる。したがって、水路の流速および流量を精度良く計測することができる。
【0020】
上記課題を解決するために、本発明の他の代表的な構成は、水路の流量を超音波センサを用いて測定する超音波式流量計測方法であって、水路の断面内において流速分布の大きな乱流領域の流速分布と、超音波センサに対して乱流領域と反対側の層流領域の流速分布とを測定し、超音波センサ近傍の流速分布を測定した流速分布を用いて補間することにより水路全体の流量を求めることを特徴とする。
【0021】
上記構成によれば、流速の変化量が大きい部分については詳細に流速を測定し、変化量が小さい部分については補間して、水路の部分的な流速から全体の流量を知ることができる。したがって流速を測定する範囲が水路全体から比較して狭くなるため、流速の測定点を減らすことができ、超音波センサの数を削減し、またデータ処理の負荷を軽減することができる。
【0022】
上記課題を解決するために、本発明にかかる流量計測装置の代表的な構成は、水路を、中央部と、中央部より壁面または底面よりの周辺部と、周辺部より壁面または底面に近い外縁部に分けたとき、中央部側から壁面または底面に向かって流速分布を測定する複数の超音波センサと、超音波センサで計測した流速分布に基づいて中央部の流速分布を補間する補間部と、を備えることを特徴とする。
【0023】
かかる構成によれば、水路の周辺部のみの流速を計測すればよく、流速を計測する範囲が水路全体から比較して狭くなるため、少ない超音波センサ数で流量を計測可能となる。大規模水路の場合、計測される水路の中の装置の設置位置は中央部ではなく、より壁面に近い位置であることが好ましい。大規模な水路であるほど中央部の流速は安定することはよく知られており、流速の変化量が大きい部分、すなわち周辺部を詳細に計測できるためである。
【発明の効果】
【0024】
本発明によれば、簡略な構成で大規模な水路全体の流量を測定することが可能となる。
【図面の簡単な説明】
【0025】
【図1】流量測定装置の概略構成を説明する図である。
【図2】水路の流れに直交する方向の断面図である。
【図3】水路での流量計測の模式図である。
【図4】流速の測定例を示すグラフである。
【図5】水路の流れの横断面図である。
【図6】超音波式流量計測装置の模式図である。
【図7】流量測定装置の他の構成を示す図である。
【図8】流量測定方法の他の例を説明する図である。
【図9】図8に示した流量測定方法に用いる流量測定装置の構成を説明する図である。
【図10】本発明に係る流量測定方法の他の用例を説明する図である。
【発明を実施するための形態】
【0026】
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
【0027】
図1は流量測定装置の概略構成を説明する図、図2は水路の流れに直交する方向の断面図、図3は本実施形態における水路での流量計測の模式図である。本実施形態にかかる超音波式流量計測方法および流量計測装置は、水路の流量を計測するものであり、代表例として水力発電の取水用の水路においてその流量を計測するものである。
【0028】
図1に示す流量測定装置200は、棹状のセンサ治具202に、複数の超音波センサを取り付けている。超音波センサとしては、壁面方向(水平方向)へ向けて配置した流速検知センサ204と、水面方向へ向けて配置した水面検知センサ206と、補正用センサ208とを備えている。また補正用センサ208の超音波出力方向には、補正用センサ208から特定の距離を隔てた位置に、板状の反射治具210を備えている。
【0029】
また流量測定装置200は制御部250に電気的に接続されている。制御部250は、計測の開始や終了を操作するための操作部252、超音波センサのデータを記録するための記録部254、後述する補間部256、処理したデータを出力するための表示部258を備えている。なお処理したデータは表示部258に表示するのみではなく、データとして記録部254に保存したり、ネットワークを通じて転送したりしてもよい。なお具体例として、制御部250はコンピュータと制御プログラムを用いて構成することができる。
【0030】
図2に示すように、本実施形態においては、水路100の水中を概念的に3つに区分する。すなわち水路100の断面内において、幅方向中心かつ水面に位置する水路中央を含む領域を中央部120、中央部120より壁面または底面よりの領域を周辺部130、壁面または底面に極めて近い領域を外縁部140とする。
【0031】
図3に示すように、上記構成の流量測定装置200は、橋などの上から水路100の中央に向かって差し込み、センサ治具202の下端が水路100の底に当接するまで下ろされる。そして流速検知センサ204を壁面102に向けた状態で流量測定が行われる。
【0032】
センサ治具202は複数の超音波センサを保持するための治具であり、例えば圧力配管用鋼管を好適に利用することができる。また超音波センサを横に並べる場合などには、鉛直に設置される主材に対し、水平に設置される横材を設けて、これに超音波センサを取り付けてもよい。
【0033】
本実施形態において流速検知センサ204は、水路100の両側の壁面102に向かって1つずつ設置されている。流速検知センサ204はドップラー法または相互相関法を利用して、水路100を流れる水の流速を計測する。流速を測定するためには流れに対して超音波の出力方向を傾ける必要があり、例えば流れに直交する方向から15°とすることができる。流速検知センサ204としては、例えば200kHzの振動子を備えたものを好適に用いることができる。
【0034】
そして本実施形態においては、流速検知センサ204によって、水路100の周辺部130の流速分布を超音波で測定し、水路100の中央部120の流速分布は測定した流速分布を用いて補間することにより水路100全体の流量を求める。
【0035】
図4は流速の測定例を示すグラフであって、横軸は距離(グラフの中心が水路の中心)、縦軸は流速である。図4に示されるように、流速は周辺部130の部分しか処理しない。外縁部140の流速は実際には測定するが、壁面102からの反射が強すぎるため、カットしている。中央部120は、流速を測定していない。
【0036】
測定したデータは制御部250において所定の演算を行って、各位置における流速を取得する。そして補間部256は、周辺部130における各位置に対する流速の変化から、中央部120の流速を補間する。補間は直線近似でも良いが、2次または偶数次の関数で近似してもよい。
【0037】
なお外縁部140の流速について、一般に壁面近傍は流速が低下することが知られている。したがって、外縁部140の流速(流量)は無視してもよい。さらには、周辺部130の流速の変化のうち外縁部140近傍の流速の変化から、外縁部140の流速を外挿近似してもよい。
【0038】
上記構成によれば、実測する測定範囲は周辺部130のみとなり、流速を測定する範囲が水路100全体から比較して狭くなるため、流速の測定点を減らすことが可能となる。したがって大規模な水路100でも超音波を到達させるべき距離が短くてよく、従来の超音波センサを用いても測定することが可能となる。また超音波を到達させるべき距離が短くてよいことから超音波の周波数を上げることができ、早い流速でも測定することができる。
【0039】
ここで、周辺部130は、例えば水路100の幅に対する割合として固定的に設定することができる。また、流量検知センサ204を用いて壁面102から中央部120へ向かって流速の変化量を求め、その変化量の増分が所定量以下となる範囲までを周辺部130とすることができる。すなわち、流量計測を開始する際に最初に広範囲の測定を行って周辺部130を設定し(キャリブレーション)、それから周辺部130について本計測を行ってもよい。これにより、データ取得範囲である周辺部130を適切かつ客観的に設定できる。
【0040】
また周辺部130を設定する代わりに、中央部120を設定してもよい。中央部120は、例えば水路100の幅に対する割合として固定的に設定することができる。また、流量検知センサ204を用いて壁面102から中央部120へ向かって流速の変化量を求め、流れの安定した範囲(変動量や変化率が所定量以下の範囲)を中央部120であると設定することができる。これにより、流れの安定した範囲を測定せずに、補間によって流速を決定することができ、流速を実測する範囲を狭めることが可能となる。
【0041】
水面検知センサ206は、センサ治具202の水中位置から水面に向かって超音波を出力するように、仰角に取り付けられている。図5は水路の流れの横断面である。図5に示すように、水面検知センサ206の取り付け角度は、例えば鉛直から30°と設定することができる。水面検知センサ206としては、例えば300kHzの振動子を備えたものを好適に用いることができる。水面検知センサ206は距離計として用いるものであるから、反射波のレベルのみによって水面を識別することができる。
【0042】
水面検知センサ206から水面までの高さがわかることにより、水面検知センサ206の設置高さと合わせて、水位が得られる。この水位と、既知である水路形状および寸法から、流水断面積を求めることが可能であり、上述の計測された流速とで流量を算出することができる。従来は目盛りのついた測定棒を川に差し込んで水位を測定していたが、このように超音波センサを用いてデータとして水位を取得することにより、一括して演算することができるため、データ処理が簡便となる。また長時間に亘って測定する場合に、水位の推移を把握することができ、より正確な流量を測定することができる。
【0043】
補正用センサ208は、同様にセンサ治具202に取り付けた反射治具210に対して超音波を送受信するものである。そして補正用センサ208によって反射治具210に向かって超音波のパルス波を出力し、反射波の到達時間を計測する。補正用センサ208から反射治具210までの距離はわかっているから、反射波の到達時間から水中の音速を算出し、流速分布を補正することができる。これにより、水温や水質のような環境影響を含んだ音速を測定することが可能であり、上述の流速を計測するための校正値の変化を逐次反映させることができる。したがって、水路の流速および流量を精度良く計測することができる。
【0044】
補正用センサ208は反射治具210の反射面に対向していればよく、センサ治具202に対する取り付け角度は任意でよい。例えば補正用センサ208と反射治具210の両方をセンサ治具202に取り付けるとすれば、補正用センサ208の出力方向はセンサ治具202の主材の軸方向と平行に設定することができる。補正用センサ208は、例えば300kHzの振動子を備えたものを好適に用いることができる。
【0045】
図6は流量測定装置200の他の構成であって、流速検知センサ204を水深方向(上下方向)に複数組備えた例である。この場合においても、各水深ごとに周辺部130の流速を測定し、中央部120または外縁部140の流速分布を補間する。これにより少ない超音波センサ数で流量を計測可能となる。
【0046】
図7は流量測定装置200の他の構成を示す図である。図7においては、補正用センサ208と反射治具210を、水深方向(上下方向)に複数組備えている。これにより、水路100を流れる水の温度分布が大きいときであっても、適切に流量を測定することができる。
【0047】
図8は、流量測定方法の他の例を説明する図である。水路100が大規模水路である場合、流量測定装置200の設置位置は中央部120ではなく、より壁面102に近い位置であることが好ましい。大規模な水路であるほど中央部120の流速は安定することはよく知られており、より壁面102に近い位置への設置であれば、流速の変化量が大きい部分、すなわち周辺部130を詳細に計測できるためである。
【0048】
そこで図8では、水路100の壁面102の近傍に流量測定装置200を設置し、1つの壁面102に近い周辺部130のみを測定する。測定は水路100の両側について行うのであるが、2つの流量測定装置200を用いて同時に行ってもよく、1つの流量測定装置200を用いて順次測定してもよい。いずれの場合においても、幅の広い水路100のうち周辺部130しか測定しないために、飛躍的に測定点を減らすことができる。
【0049】
図9は、図8に示した流量測定方法に用いる流量測定装置の構成を説明する図である。図8の方法においては流量測定装置200に対して一方向しか流量を測定しない。そこで図9に示す流量測定装置200においては、流量検知センサ204は左右に振り分けられておらず、1つの水深において1つの流量検知センサ204しか設けられていない。これにより、超音波センサの数は必要にして十分となり、少ないセンサ数で高精度の流量測定を行うことができる。
【0050】
図10は本発明に係る流量測定方法の他の用例を説明する図である。上記実施形態においては概ね層流の通常流れを想定して説明したが、水路100の状態によってはさらに水流に乱れが生じる場合がある。
【0051】
図10(a)は、水路100が曲がっており、渦が発生している例である。この場合においては、渦発生地点150が含まれるように周辺部130を設定する(渦発生地点150から流量測定装置200を離すことになる)。すると図10(a)からわかるように、必ずしも周辺部130は水路100の左右において対称ではないことがわかる。
【0052】
図10(b)は、水路100の分岐点近傍であって、流れが乱れている例である。この場合においては、分岐点160が含まれるように周辺部130を設定する(分岐点から流量測定装置200を離すことになる)。
【0053】
すなわち、水路100の断面内において流速分布の大きな乱流領域の流速分布と、流量検知センサ204に対して乱流領域と反対側の層流領域の流速分布とを測定し、流量検知センサ204近傍の流速分布を測定した流速分布を用いて補間することにより、水路100全体の流量を求める。
【0054】
このように、流速の変化量が大きい部分については確実に測定が行われるように周辺部130を設定することにより、様々な箇所において流速を測定することができ、適用範囲を拡大することができる。この場合においても、流速を測定する範囲が水路全体から比較して狭くなるため、流速の測定点を減らすことができ、超音波センサの数を削減し、またデータ処理の負荷を軽減することができる。
【0055】
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【産業上の利用可能性】
【0056】
本発明は、水路の流速分布を超音波で測定し、水路全体の流量を測定する超音波式流量計測方法および流量計測装置として利用することができる。
【符号の説明】
【0057】
100 …水路
102 …壁面
120 …中央部
130 …周辺部
140 …外縁部
150 …渦発生地点
160 …分岐点
200 …流量測定装置
202 …センサ治具
204 …流速検知センサ
206 …水面検知センサ
208 …補正用センサ
210 …反射治具
250 …制御部
252 …操作部
254 …記録部
256 …補間部
258 …表示部

【特許請求の範囲】
【請求項1】
水路を、中央部と、該中央部より壁面または底面よりの周辺部と、該周辺部より前記壁面または底面に近い外縁部に分けたとき、
前記水路の前記周辺部の流速分布を超音波で測定し、
前記中央部の流速分布を、前記測定した周辺部の流速分布を用いて補間することにより水路全体の流量を求めることを特徴とする超音波式流量計測方法。
【請求項2】
前記壁面から前記中央部へ向かって流速の変化量を求め、
前記変化量の増分が所定量以下となる範囲までを前記周辺部と設定することを特徴とする請求項1に記載の超音波式流量計測方法。
【請求項3】
前記壁面から前記中央部へ向かって流速の変化量を求め、
流れの安定した範囲を前記中央部と設定することを特徴とする請求項1に記載の超音波式流量計測方法。
【請求項4】
水面方向へ向けて配置した超音波センサをさらに備え、
前記水路の水位を計測することを特徴とする請求項1に記載の超音波式流量計測方法。
【請求項5】
前記超音波センサから一定距離に超音波を反射する反射冶具を用いて、
前記超音波の反射波の到達時間を計測し、
前記反射波の到達時間から水中の音速を算出し、
前記流速分布を補正することを特徴とする請求項1に記載の超音波式流量計測方法。
【請求項6】
水路の流量を超音波センサを用いて測定する超音波式流量計測方法であって、
前記水路の断面内において流速分布の大きな乱流領域の流速分布と、前記超音波センサに対して前記乱流領域と反対側の層流領域の流速分布とを測定し、
前記超音波センサ近傍の流速分布を前記測定した流速分布を用いて補間することにより水路全体の流量を求めることを特徴とする超音波式流量計測方法。
【請求項7】
水路を、中央部と、該中央部より壁面または底面よりの周辺部と、壁面または底面に近い外縁部に分けたとき、
前記中央部側から壁面または底面に向かって流速分布を測定する複数の超音波センサと、
前記超音波センサで計測した流速分布に基づいて前記中央部の流速分布を補間する補間部と、を備えることを特徴とする流量計測装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2010−190775(P2010−190775A)
【公開日】平成22年9月2日(2010.9.2)
【国際特許分類】
【出願番号】特願2009−36412(P2009−36412)
【出願日】平成21年2月19日(2009.2.19)
【出願人】(000003687)東京電力株式会社 (2,580)
【Fターム(参考)】