説明

超音波診断装置

【課題】 超音波プローブの周辺に配置された機器の周期動作に起因するノイズの影響を低減して、運動速度に関する情報を精度良く取得することを可能とする。
【解決手段】 信号処理回路15は、反射超音波信号を直交検波し、これにより得られた直交解析信号をフーリエ変換し、このフーリエ変換の結果のうちの0Hzを含んだ所定周波数帯以外についての成分に基づいてドプラシフトを判定する。システム制御回路19は、超音波プローブ2の周辺に存在し周期的動作を行う電気機器(例えば、絶縁型スイッチング電源42)の動作周波数を判定し、上記のフーリエ変換におけるサンプリング周波数を上記の動作周波数の約数となるように設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波プローブにより受信される反射超音波信号に生じているドプラシフトに基づいて運動速度に関する情報を取得する超音波診断装置に関する。
【背景技術】
【0002】
生体などの被検体内に超音波ビームを送出して、生体内組識の断層像(Bモード像)を画像表示するとともに、運動する反射体の運動の状態を表す画像(ドプラモード表示像)を表示する超音波診断装置が周知である。なお上記の運動の状態は例えば、血流の状態である。
【0003】
Bモード像は、反射エコー信号の強度分布から求められる。ドプラモード表示像は、反射体の運動に起因するドプラ効果によって反射エコー信号に生じている周波数偏移から求められる。
【特許文献1】特開平10−137243号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
近年の超音波診断装置では、受信感度の向上に伴い、超音波診断装置の内部あるいは周辺に配置された電気回路が発する微弱な放射ノイズや伝搬性ノイズをも反射エコー信号とともに受信するようになってきた。このようなノイズは、ドプラモード表示像に有意なアーチファクトを生じさせ、診断に支障を来たすおそれがあった。
【0005】
患者接続を行う医療装置の場合、電気安全を確保することが必要である。このためにこの種の装置の電源回路には、漏れ電流を極めて低く抑えるよう絶縁型のスイッチング電源が採用されることが多い。通常、スイッチング電源は数10kHzから数100kHz程度のスイッチング周波数で動作させるが、絶縁型であるために少なからず受信エコー信号への混入干渉が生じることがある。このため電源回路のスイッチング回路で生じる電源スイッチングノイズは、コモンモードノイズとして受信エコーに混入干渉し、診断情報画像にアーチファクトとなって妨害を与えることになる。
【0006】
図9は超音波連続波ドプラ法を実行した場合において外乱の不安定なクロック信号に起因する血流表示上にアーチファクトを生じた例を示す図である。
【0007】
本発明はこのような事情を考慮してなされたものであり、その目的とするところは、超音波プローブの周辺に配置された機器の周期動作に起因するノイズの影響を低減して、運動速度に関する情報を精度良く取得することができる超音波診断装置を提供することにある。
【課題を解決するための手段】
【0008】
以上の目的を達成するために第1の本発明は、超音波プローブにより受信される反射超音波信号に生じているドプラシフトに基づいて運動速度に関する情報を取得する超音波診断装置において、前記反射超音波信号を直交検波する手段と、前記直交検波により得られた直交解析信号をフーリエ変換する手段と、前記フーリエ変換の結果のうちの0Hzを含んだ所定周波数帯以外についての成分に基づいて前記ドプラシフトを判定する手段と、前記超音波プローブの周辺に存在し周期的動作を行う電気機器の動作周波数を判定する判定手段と、前記フーリエ変換におけるサンプリング周波数を前記動作周波数の約数となるように設定する手段とを備えた。
【0009】
前記の目的を達成するために第2の本発明は、超音波プローブにより受信される反射超音波信号に生じているドプラシフトに基づいて運動速度に関する情報を取得するもので、ドプラキャリア周波数に応じて定まる受信帯域内の周波数スペクトルに基づいて前記ドプラシフトの量を測定する超音波診断装置において、前記超音波プローブの周辺に存在し周期的動作を行う電気機器の動作周波数を判定する判定手段と、前記受信帯域が前記動作周波数の倍数を含まないように前記ドプラキャリア周波数を設定する手段とを備えた。
【発明の効果】
【0010】
前記の各発明によれば、超音波プローブの周辺に配置された機器の周期動作に起因するノイズの影響を低減して、運動速度に関する情報を精度良く取得することが可能となる。
【発明を実施するための最良の形態】
【0011】
以下、図面を参照して本発明の実施形態について説明する。
(第1の実施形態)
図1は第1の実施形態に係る超音波診断装置1の構成を示すブロック図である。
【0012】
この超音波診断装置1は、コネクタポート10-1,10-2…,10-n、プローブコネクタ選択回路11-1,11-2…,11-n、送信駆動回路12、受信遅延回路13、整相加算回路14、信号処理回路15、ディジタルスキャンコンバータ(DSC)16、送受信回路制御回路17、無線インタフェース(無線I/F)18およびシステム制御回路19を含む。
【0013】
コネクタポート10-1〜10-nには、超音波プローブ2をそれぞれ接続可能である。つまり超音波診断装置1は、n個の超音波プローブ2を並列接続できる。プローブコネクタ選択回路11-1〜11-nは、コネクタポート10-1〜10-nにそれぞれ接続される。プローブコネクタ選択回路11-1〜11-nは、送受信回路制御回路17の制御の下にコネクタポート10-1〜10-nを選択的に送信駆動回路12および受信遅延回路13に接続する。超音波プローブ2は、コネクタポート10-1〜10-nのうちの接続先がプローブコネクタ選択回路11-1〜11-nにより選択された場合に、送信駆動回路12および受信遅延回路13に接続される。
【0014】
送信駆動回路12は、一定の繰返し周波数(PRF:pulse rate frequency)のパルス信号を超音波送信信号として超音波プローブ2へ出力する。超音波プローブ2は、複数の振動子を備える。送信駆動回路12は、これら複数の振動子のそれぞれに対する超音波送信信号を個別のタイミングで並列出力できる。複数の超音波信号のそれぞれの送信タイミングは、送受信回路制御回路17から指示される。超音波送信信号を受けた超音波プローブ2は、複数の振動子が個別に励振されることによって超音波ビームを送出する。この超音波ビームが被検体内で反射して生じた超音波エコーは、超音波プローブ2によって受けられる。超音波プローブ2は超音波エコーを受けると、これに応じた超音波エコー信号を複数の振動子が個別に出力する。
【0015】
例えばセクタ型の超音波プローブ2を用いた2分割ステアリング連続波ドプラ法による血流速計測モードでは、超音波プローブ2に備えられる振動子のうち約半数が単一周波数にて連続波駆動することで、単一キャリア周波数の超音波を振動子から連続送出させる。被検体内の血流等の移動被検査体で生じる超音波エコーを残りの約半数の振動子により受ける。
【0016】
受信遅延回路13は、超音波プローブ2が出力する複数の超音波エコー信号をそれぞれ増幅するとともに、個別の遅延量で遅延させる。複数の超音波エコー信号のそれぞれの遅延量は、送受信回路制御回路17から指示される。
【0017】
整相加算回路14は、複数の超音波エコー信号を整相加算する。信号処理回路15は、整相加算回路14の出力信号を処理してBモード像やドップラモード表示像を取得する。例えばBモード像の取得のために信号処理回路15は、包絡線検波などを行う。またドップラモード表示像の取得のために信号処理回路15は、直交検波、FFTおよびフィルタリングなどを行う。信号処理回路15は、取得した画像を表す画像信号を出力する。
【0018】
ディジタルスキャンコンバータ16は、フレームメモリ、D/A変換器、書き込み/読み出し制御器などを含む。ディジタルスキャンコンバータ16は、フレームメモリへの書き込みおよび読み出しを独立して行なうことで、信号処理回路15から出力される各種の走査方式の画像信号を標準テレビ走査方式の画像信号に変換する。このディジタルスキャンコンバータ16が出力する画像信号は、表示システム3に送られる。表示システム3はTVモニタを含み、入力される画像信号が表す画像を表示する。
【0019】
送受信回路制御回路17は、診断モードや操作方向などの種々の条件に応じてプローブコネクタ選択回路11-1〜11-n、送信駆動回路12および受信遅延回路13の動作を制御する。
【0020】
無線インタフェース18は、超音波診断装置1および超音波プローブ2の周辺に配置される機器(以下、周辺機器と称する)と無線通信を行う。周辺機器は、例えば心電計モニタ4である。心電計モニタ4は、無線インタフェース18と互換性の有る無線インタフェース41を含む。上記の互換性を実現するために、IEEE802.11b規格のような汎用の通信規格を採用することが望ましい。これにより、超音波診断装置1と多種の周辺機器との間での無線通信を実現することが可能である。
【0021】
システム制御回路19は、マイクロプロセッサ(MPU)19aおよびメモリ19bを含む。マイクロプロセッサ19aは、判断処理を行なう。メモリ19bは、各種の情報を記憶する。そしてシステム制御回路19は、図示しないシステムコントロール卓を介して入力される動作条件と、メモリ19bに記憶された詳細制御パラメータとに基づいて、マイクロプロセッサ19aが超音波診断装置1の動作制御を行う。
【0022】
次に以上のように構成された超音波診断装置1の動作について説明する。
この超音波診断装置1は、周知の同種の装置と同様な動作によってBモード像やドプラモード表示像を表示システム3に表示させることができる。
【0023】
さて、例えば循環器疾患患者の心電波形を心電計モニタを用いて観察しながら超音波ドプラ法による血流速計測を行う場合には、図1に示すように超音波診断装置1の周辺に心電計モニタ4が設置される。心電計モニタ4は、患者接続を行う際の電気安全を確保するために、漏れ電流を極めて低く抑えるよう絶縁型スイッチング電源40が搭載されている。そして心電計モニタ4は、絶縁型スイッチング電源40のスイッチング周波数に関するスイッチング周波数情報を無線インタフェース41から無線送信する機能を備える。スイッチング周波数情報は、スイッチング周波数の値を示す情報であっても良いし、スイッチングタイミングを表すトリガ信号であっても良い。
【0024】
さてドプラ法を利用する診断動作が起動されたときに超音波診断装置1では、システム制御回路19が図2に示すような設定処理を実行する。
【0025】
ステップSa1においてシステム制御回路19は、図示しないシステムコントロール卓を介して動作条件を入力する。ステップSa2においてシステム制御回路19は、入力した動作条件と、メモリ19bに記憶された詳細制御パラメータとに基づいて、所望動作を実現するための諸パラメータを設定する。このパラメータには、FFT(高速フーリエ変換)におけるサンプリング周波数と、ドプラキャリア周波数とを含む。
【0026】
ステップSa3においてシステム制御回路19は、周辺機器が有るか否かを確認する。これは、例えば無線インタフェース18により通信可能な機器をサーチすることにより行う。周辺機器が有ったならば、システム制御回路19はステップSa3からステップSa4へ進む。ステップSa4においてシステム制御回路19は、上記の周辺機器のスイッチング周波数fswを判定する。システム制御回路19は、無線インタフェース18を介して外部機器からスイッチング周波数情報を取得し、この情報に基づいてスイッチング周波数fswを判定する。図1の例では、システム制御回路19は、心電計モニタ4から送信されるスイッチング周波数情報に基づいてスイッチング周波数fswを判定する。
【0027】
ステップSa5においてシステム制御回路19は、FFTにおけるサンプリング周波数がスイッチング周波数fswの約数に一致するか否かを確認する。サンプリング周波数がスイッチング周波数fswの約数に一致しないならば、システム制御回路19はステップSa5からステップSa6へ進む。ステップSa6においてシステム制御回路19は、サンプリング周波数をスイッチング周波数fswの約数に変更する。
【0028】
具体的には、サンプリング周波数が20kHzで、スイッチング周波数fswが22kHzであったならば、システム制御回路19はサンプリング周波数を22kHzに変更する。
【0029】
サンプリング周波数を変更し終えたならば、システム制御回路19はこの図2に示す処理を終了する。周辺機器が無かった場合には、システム制御回路19はステップSa3から図2に示す処理を終了する。
【0030】
さて、ドプラ法を利用する場合に信号処理回路15は、整相加算回路14の出力信号に対し直交検波を行う。続いて信号処理回路15は、直交検波された直交解析信号g(t)_I,g(t)_QをFFT処理する。FFTにおいては、サンプリング周波数を2fsとすると、図3に示す−fs〜+fsの周波数範囲(ナイキスト周波数範囲)の成分を劣化なく再現でき、解析することができる。
【0031】
一方、FFTの結果には、体内組織の拍動に起因する周波数変動に基づく成分が±100Hz程度の周波数帯域に大きく現れる。この成分は、ドプラ法を利用する主目的である血流信号解析に関しては不要である。このため信号処理回路15では、FFTの結果のうちの±100Hz程度の周波数帯域内の成分にフィルタをかける。そして信号処理回路15は、残留している成分に基づいてドプラシフト量を求め、このドプラシフト量に基づいて速度情報を得る。
【0032】
FFT処理においては、ナイキスト周波数範囲外の周波数成分については、アンダーサンプリング効果分の強度低下を伴うものの、被解析信号周波数g(t)の周波数はサンプリング周波数2fsで折りかえって解析される。例えば図4に示すように、サンプリング周波数が20kHzであるとき、ナイキスト周波数範囲は±10kHzであるから、被解析信号が+3kHzや−5kHzの成分を持つ場合には、これらは+3kHzや−5kHzの成分として信号強度の劣化なく再現解析される。しかしながら被解析信号が+22kHzの成分を持つ場合は、ナイキスト範囲外であるために強度劣化が生じるが、+22kHzの成分は20kHzで折りかえって+2kHzの成分として解析される。
【0033】
+22kHzの成分が絶縁型スイッチング電源40のスイッチング動作に起因してスイッチング周波数を持ったノイズ成分であるとするならば、このノイズ成分がFFTの結果に含まれてしまうことになる。しかし上述のように、サンプリング周波数をスイッチング周波数の約数に合わせている。つまりスイッチング周波数が+22kHzであるならば、例えば図5に示すようにサンプリング周波数を+22kHzとしている。この結果として図5に示すように、スイッチング周波数を持ったノイズ成分はFFTの結果においては直流(ゼロHz)に落とすことができる。そしてFFTの結果における直流近辺の成分は前述のようにフィルタがかけられるから、これによって上記のノイズ成分は低減され、速度情報の取得に利用されない。
【0034】
かくして第1の実施形態によれば、絶縁型スイッチング電源40のスイッチング動作に起因するノイズに影響されることなく、精度良く速度情報を取得することができる。
【0035】
(第2の実施形態)
第2の実施形態は第1の実施形態と同様な構成の超音波診断装置1により実現される。第2の実施形態が第1の実施形態と異なるのは、ドプラ法を利用する診断動作が起動されたときにおける設定処理でのシステム制御回路19の処理内容である。
【0036】
ドプラ法を利用する診断動作が起動されたときに超音波診断装置1では、システム制御回路19が図6に示すような設定処理を実行する。なお、図6において図2と同一の処理を行うステップには同一の符号を付し、その詳細な説明は省略する。
【0037】
システム制御回路19は、ステップSa1乃至ステップSa4については、第1の実施形態と同様な処理を行う。そしてステップSa4からステップSb1へ進む。
【0038】
ステップSb1においてシステム制御回路19は、スイッチング周波数fswの倍数が受信帯域内であるか否かを確認する。受信帯域は、ドプラキャリア周波数に基づいて定まる。典型的には受信帯域は、ドプラキャリア周波数を中心周波数とした一定範囲である。例えば、ドプラキャリア周波数が2.5MHzで、受信帯域は2.5MHz±25kHzの範囲とされる。スイッチング周波数fswの倍数がこのような受信帯域内であるならば、システム制御回路19はステップSb1からステップSb2へ進む。ステップSb2においてシステム制御回路19は、スイッチング周波数fswの倍数が受信帯域外になるようにドプラキャリア周波数を変更する。
【0039】
具体的には、受信帯域が2.5MHz±25kHzの範囲であり、かつスイッチング周波数が830kHzであると、スイッチング周波数fswの3倍数が2.49MHzとなって受信帯域内になる。そこでシステム制御回路19は、2.49MHzが受信帯域に含まれなくなるように、例えばドプラキャリア周波数を少し上昇する。
【0040】
ドプラキャリア周波数を変更し終えたならば、システム制御回路19はこの図6に示す処理を終了する。周辺機器が無かった場合には、システム制御回路19はステップSa3から図6に示す処理を終了する。
【0041】
さて、ドプラ法を利用する場合に受信遅延回路13は、超音波エコー信号のうちの受信帯域内の成分を抽出する。従って、受信帯域外の周波数成分が超音波エコー信号に含まれていても、この成分はドプラ処理における解析対象外とされる。
【0042】
スイッチング周波数fswが830kHzである場合、その3次高調波は2490kHzになる。このとき、ドプラキャリア周波数が2.5MHzに設定されているならば、図7に示すように上記の3次高調波は受信帯域内に入る。しかしこのような場合には図8に示すように、ドプラキャリア周波数が変更されて3次高調波が受信帯域外とされる。この結果、3次高調波はドプラ処理における解析対象外とされ、速度情報の取得に利用されない。
【0043】
かくして第2の実施形態によれば、絶縁型スイッチング電源40のスイッチング動作に起因するノイズに影響されることなく、精度良く速度情報を取得することができる。
【0044】
なお、アイソレーション回路を用いてノイズの混入を抑止したり、フィルタ回路を用いてノイズを除去したりすることは可能であるが、そのためには大幅に回路が複雑化するため、その回路の収容スペースやコスト上昇の問題が生じる。第1または第2の実施形態によれば、上記のような手法に比べて大幅に簡易な構成により十分な効果を達成することができる。
【0045】
この実施形態は、次のような種々の変形実施が可能である。
【0046】
周辺機器は、体外循環装置や無線通信装置などの心電計モニタ4以外の機器である場合もある。そして周期的動作を行う機器は、上記の体外循環装置に備えられるモータや上記の無線通信装置にてホッピング動作を行う無線回路などのスイッチング電源以外の機器である場合もある。
【0047】
超音波診断装置1および超音波プローブ2も患者接続を行う装置であり、超音波診断装置1の電源系は心電計モニタ4と同様に絶縁型となっている。このため、超音波診断装置1の電源系におけるスイッチング動作によりノイズが生じる場合もあるので、そのスイッチング周波数を考慮して上記の各実施形態のような動作を行うことも可能である。
【0048】
周辺機器との間での通信を有線にて行うようにしても良い。ただしこの場合には、電気安全の確保のためにアイソレートすることが必要になる。
【0049】
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
【図面の簡単な説明】
【0050】
【図1】本発明の第1の実施形態に係る超音波診断装置1の構成を示すブロック図。
【図2】ドプラ法を利用する診断動作が起動されたときにおける設定処理での図1中のシステム制御回路19による第1の実施形態での処理手順を示すフローチャート。
【図3】FFTにおけるサンプリング周波数とナイキスト周波数範囲とを示す図。
【図4】ナイキスト周波数範囲外の周波数成分の折りかえりの例を示す図。
【図5】サンプリング周波数の変更後におけるスイッチング周波数成分の折りかえりの例を示す図。
【図6】ドプラ法を利用する診断動作が起動されたときにおける設定処理での図1中のシステム制御回路19による第2の実施形態での処理手順を示すフローチャート。
【図7】スイッチング周波数fswの3次高調波が受信帯域内に入る例を示す図。
【図8】3次高調波が受信帯域外となるようにドプラキャリア周波数を変更した様子を示す図。
【図9】超音波連続波ドプラ法を実行した場合において外乱の不安定なクロック信号に起因する血流表示上にアーチファクトを生じた例を示す図。
【符号の説明】
【0051】
1…超音波診断装置、2…超音波プローブ、3…表示システム、4…心電計モニタ、10-1〜10-n…コネクタポート、11-1〜11-n…プローブコネクタ選択回路、12…送信駆動回路、13…受信遅延回路、14…整相加算回路、15…信号処理回路、16…ディジタルスキャンコンバータ、17…送受信回路制御回路、18…無線インタフェース、19…システム制御回路、40…絶縁型スイッチング電源、41…無線インタフェース。

【特許請求の範囲】
【請求項1】
超音波プローブにより受信される反射超音波信号に生じているドプラシフトに基づいて運動速度に関する情報を取得する超音波診断装置において、
前記反射超音波信号を直交検波する手段と、
前記直交検波により得られた直交解析信号をフーリエ変換する手段と、
前記フーリエ変換の結果のうちの0Hzを含んだ所定周波数帯以外についての成分に基づいて前記ドプラシフトを判定する手段と、
前記超音波プローブの周辺に存在し周期的動作を行う電気機器の動作周波数を判定する判定手段と、
前記フーリエ変換におけるサンプリング周波数を前記動作周波数の約数となるように設定する手段とを具備したことを特徴とする超音波診断装置。
【請求項2】
超音波プローブにより受信される反射超音波信号に生じているドプラシフトに基づいて運動速度に関する情報を取得するもので、ドプラキャリア周波数に応じて定まる受信帯域内の周波数スペクトルに基づいて前記ドプラシフトの量を測定する超音波診断装置において、
前記超音波プローブの周辺に存在し周期的動作を行う電気機器の動作周波数を判定する判定手段と、
前記受信帯域が前記動作周波数の倍数を含まないように前記ドプラキャリア周波数を設定する手段とを具備したことを特徴とする超音波診断装置。
【請求項3】
前記電気機器と無線通信する通信手段を備え、
前記判定手段は、前記通信手段を介して前記電気機器から取得した情報に基づいて前記動作周波数を判定することを特徴とする請求項1または請求項2に記載の超音波診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate