説明

超音波診断装置

【課題】高調波成分の検出感度自体を向上させた超音波診断装置を提供する。
【解決手段】超音波信号を送信する場合と、第3高調波を受信する場合とで、分極の向き51,52に対して、電圧の向きを相反する向きに設定し、加えて相同じくする向きにも設定できる電圧制御手段18を設けることで、大きい信号強度を有する基本波長を送信でき、かつ、超音波信号を電圧に変換する感度を高めて第3高調波を受信することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検体内に超音波信号を送信し、反射波に基づいて被検体内部の超音波画像を生成する超音波診断装置に関する。
【背景技術】
【0002】
超音波は、通常、16000Hz以上の音波をいい、非破壊、無害および略リアルタイムでその内部を調べることが可能なことから、欠陥の検査や疾患の診断等の様々な分野に応用されている。その一つに、被検体内を超音波探触子からの超音波で走査し、被検体内からの超音波の反射波から生成した受信信号に基づいて該被検体内の内部状態を画像化する超音波診断装置がある。この超音波診断装置は、医療用では、他の医療用画像装置に較べて小型で安価であり、そしてX線等の放射線被爆が無く安全性が高いこと、また、超音波の反射波に対して包絡線検波処理を施すことによりBモード画像等の医用画像を得ることが可能であることなどの様々な特長を有している。このため、超音波診断装置は、循環器系(例えば心臓の冠動脈等)、消化器系(例えば胃腸等)、内科系(例えば肝臓、膵臓および脾臓等)、泌尿器系(例えば腎臓および膀胱等)および産婦人科系等で広く利用されている。
【0003】
また、近年では、超音波探触子から被検体内へ送信された超音波の周波数(基本周波数)成分ではなく、その高調波成分によって被検体内の内部状態の画像を形成するハーモニックイメージング(Harmonic Imaging)技術が研究、開発されている。
【0004】
ハーモニックイメージング技術は、基本周波数成分の強度に比較してサイドローブの強度が小さく、S/N比(Signal to Noise ratio)が良くなってコントラストが向上すること、周波数が高くなることによってビーム幅が細くなって横方向分解能が向上すること、近距離では音圧が小さくて音圧の変動が少ないために多重反射が抑制されること、および、焦点以遠の減衰が基本波並みであり高周波を基本波とする場合に較べて深速度を大きく取れること等の様々な利点を有している。
【0005】
しかし、高調波成分の強度は基本波成分の強度より小さいことから、高調波成分を精度良く検出する方法が課題となってきた。
【0006】
かかる課題に対して、例えば、超音波探触子が検出する超音波の周波数を広帯域化する技術(例えば特許文献1参照)や、高調波成分受信時に高調波成分を受信する開口を広げる技術等が開示されている(例えば特許文献2参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2009−82385号公報
【特許文献2】特開平11−290318号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1に記載の技術は、高調波成分を検出できる帯域を拡げることはできるが、検出感度自体は高くならない。また、特許文献1に記載の技術は、開口を広げることで受信する高調波成分を増加させており、高調波成分の検出感度自体を向上させる訳ではない。
【0009】
本発明は、高調波成分の検出感度自体を向上させ、高調波成分を精度良く検出できる超音波診断装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
前述の目的は、下記に記載する発明により達成される。
【0011】
1.同一方向に分極処理が施され並列配置された複数の第1圧電素子を備え、両面に電極が形成された第1圧電部と、該第1圧電素子の分極方向に対して反対方向に分極処理が施され並列配置された複数の第2圧電素子を備え、前記第1圧電部に積層配置され両面に電極が形成された第2圧電部と、を備える超音波探触子と、
被検体に超音波信号を送信するために、前記第1圧電部と前記第2圧電部とを駆動する送信信号を生成する送信部と、
前記第1圧電部と前記第2圧電部とに印加する電圧を制御する電圧制御手段と、
前記第1圧電部と前記第2圧電部とが被検体から反射した超音波信号を受信して変換した電気信号を受信する受信部と、
前記電気信号から被検体内の超音波画像を生成する画像処理部と、
を有することを特徴とする超音波診断装置。
【0012】
2.前記電圧制御手段は、
被検体に超音波信号を送信する時には、前記第1圧電部と前記第2圧電部との間の電極を同電位とし、他の電極に同一の電圧を印加するよう制御し、
被検体から反射した超音波信号を受信する時には、前記第1圧電部と前記第2圧電部との間の電極には電圧を印加せず、他の電極間に電圧を印加するよう制御することを特徴とする前記1に記載の超音波診断装置。
【0013】
3.前記第1圧電部と、前記第2圧電部とは略同一の厚さを有し、前記第1圧電部と前記第2圧電部とを挟む二つの面は各々固定端と自由端とであり、以下の式を満たすことを特徴とする前記2に記載の超音波診断装置。
【0014】
d=n×λ/4
d:第1圧電部と第2圧電部の厚みの和
n:自然数
λ:第1超音波信号の波長
4.前記第1圧電部と前記第2圧電部の少なくとも一方を形成する圧電材料は有機圧電材料であることを特徴とする前記1から3の何れか一項に記載の超音波診断装置。
【0015】
5.前記有機圧電材料は、フッ化ビニリデンの重合体、または、フッ化ビニリデンとトリフルオロエチレンの共重合体であることを特徴とする前記4に記載の超音波診断装置。
【0016】
6.被検体から反射した超音波信号の周波数は、前記第1超音波信号の高調波成分であることを特徴とする前記1から5の何れか一項に記載の超音波診断装置。
【発明の効果】
【0017】
高調波成分の検出感度自体を向上させ、高調波成分を精度良く検出できる超音波診断装置を提供できる。
【図面の簡単な説明】
【0018】
【図1】実施形態にかかる超音波診断装置の外観構成を示す概要図である。
【図2】実施形態にかかる超音波診断装置の電気的な構成を示すブロック図である。
【図3】実施形態にかかる超音波診断装置の超音波探触子の構成を示す概要図である。
【図4】共振状態の超音波信号の波形を説明する模式図である。
【図5】圧電部32の分極の向きと電界の向きを説明する模式図である。
【図6】実施形態にかかる電圧制御手段18の動作を表す模式図である。
【発明を実施するための形態】
【0019】
以下に本発明の実施形態を図面により説明するが、本発明は以下に説明する実施形態に限られるものではない。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
【0020】
図1は、実施形態にかかる超音波診断装置の外観構成を示す概要図である。図2は、実施形態にかかる超音波診断装置の電気的な構成を示すブロック図である。図3は、実施形態にかかる超音波診断装置の超音波探触子の構成を示す概要図である。
【0021】
超音波診断装置Sは、図1および図2に示すように、図略の生体等の被検体Hに対して超音波信号(以後、第1超音波信号とも称す)を送信すると共に、被検体Hで反射した超音波信号の反射波(以後、第2超音波信号とも称す)を受信する超音波探触子2と、超音波探触子2とケーブル3を介して接続され、超音波探触子2へケーブル3を介して電気信号の送信信号を送信することによって超音波探触子2に被検体Hに対して第1超音波信号を送信させると共に、超音波探触子2で受信された被検体H内からの第2超音波信号に応じて超音波探触子2で生成された電気信号の受信信号に基づいて被検体H内の内部状態を超音波画像として医用画像に画像化する超音波診断装置本体1とを備えて構成される。超音波診断装置本体1には、超音波探触子2を使用しない時に、超音波探触子2を保持させておく超音波探触子フォルダ4が備えられている。
【0022】
超音波診断装置本体1は、例えば、図2に示すように、操作入力部11と、送信部12と、受信部13と、信号処理部14と、画像処理部15と、表示部16と、制御部17と、記憶部19と、本発明の電圧制御手段18と、を備えて構成されている。
【0023】
操作入力部11は、例えば、診断開始を指示するコマンドや被検体Hの個人情報等のデータを入力するものであり、例えば、複数の入力スイッチを備えた操作パネルやキーボード等である。
【0024】
送信部12は、制御部17の制御に従って、後述する第1圧電部と前記第2圧電部とを駆動する電気信号の送信信号を生成する機能を有する回路である。送信部12は、超音波探触子2内の第1圧電部と第2圧電部とへ、電圧制御手段18とケーブル3を介して送信信号を供給し、超音波探触子2に第1超音波信号を発生させる。送信部12は、例えば、高電圧のパルスを生成する高圧パルス発生器等を備えて構成される。
【0025】
受信部13は、制御部17の制御に従って、超音波探触子2からケーブル3を介して電気信号の受信信号を受信する回路であり、この受信信号を信号処理部14へ出力する。受信部13は、例えば、受信信号を予め設定された所定の増幅率で増幅する増幅器、および、この増幅器で増幅された受信信号をアナログ信号からデジタル信号へ変換するアナログ−デジタル変換器等を備えて構成される。
【0026】
信号処理部14は、制御部17の制御に従って、受信部13からの電気信号に、所定の信号処理を施す回路であり、その信号処理した反射受信信号を画像処理部15へ出力する。
【0027】
画像処理部15は、制御部17の制御に従って、信号処理部14で信号処理された反射受信信号に基づいて、例えばハーモニックイメージング技術等を用いて被検体H内の内部状態の超音波画像を生成する回路である。例えば、反射受信信号に対して包絡線検波処理を施すことにより、第2超音波信号の振幅強度に対応したBモード信号を生成する。
【0028】
記憶部19はRAMやROMで構成され、制御部17に用いられるプログラムが記録され、また、表示部16で表示する各種画像のテンプレートが記録されている。
【0029】
本発明の電圧制御手段18は、制御部17の制御に従って、送信部12からの電気信号の送信信号を、第1圧電部と第2圧電部とに対して、どのように印加するか制御する機能を有する。詳しくは後述する。
【0030】
表示部16は、制御部17の制御に従って、画像処理部15で生成された超音波画像を表示する装置である。表示部16は、例えば、CRTディスプレイ、LCD、ELディスプレイおよびプラズマディスプレイ等の表示装置やプリンタ等の印刷装置等である。
【0031】
制御部17は、例えば、マイクロプロセッサ、記憶素子およびその周辺回路等を備えて構成され、これら操作入力部11、送信部12、受信部13、信号処理部14、画像処理部15、電圧制御手段18、及び記憶部19を当該機能に応じてそれぞれ制御することによって超音波診断装置Sの全体制御を行う回路である。
【0032】
一方、超音波探触子2は、振動部30を備える。振動部30は、図略の生体等の被検体Hに対して第1超音波信号を送信すると共に、被検体Hからの第2超音波信号を受信する。振動部30は、例えば、図3に示すように、音響制動部材31と、圧電部32と、音響整合層33と、音響レンズ34とを備えて構成される。
【0033】
音響制動部材31は、超音波を吸収する材料から構成された平板状の部材であり、圧電部32から音響制動部材31方向へ放射される超音波を吸収するものである。
【0034】
圧電部32は、第1圧電部321と第2圧電部322とを備える。第1圧電部321、及び第2圧電部322は、圧電材料を備えて成り、圧電現象を利用することによって電気信号と超音波信号との間で相互に信号を変換するものである。
【0035】
第1圧電部321においては、超音波信号を送受信する方向に沿って互いに同一方向に分極処理が施された複数の圧電素子(第1圧電素子)が、並列配置されている。第1圧電部321の両面には電極が形成されている。
【0036】
第2圧電部322においては、第1圧電部321の分極方向に対して反対方向に分極処理が施された複数の圧電素子(第2圧電素子)が並列配置されている。第2圧電部322の両面には電極が形成されている。
【0037】
本実施形態においては、第1圧電部321と第2圧電部322とは積層配置されており、接触している部分の電極は共有化されている。
【0038】
圧電部32は、超音波診断装置本体1の送信部12からケーブル3を介して入力された送信の電気信号を第1超音波信号へ変換して第1超音波信号を送信すると共に、受信した第2超音波信号を電気信号へ変換してこの電気信号(受信信号)を、ケーブル3を介して超音波診断装置本体1の受信部13へ出力する。超音波探触子2が被検体Hに当接されることによって圧電部32で生成された第1超音波信号が被検体H内へ送信され、被検体H内からの第2超音波信号が圧電部32で受信される。
【0039】
第1圧電部321と第2圧電部322とは同一の材料で形成されていてもよい、異なる材料で形成されていてもよい。異なる材料で形成されている場合には、各々の音響インピーダンスが異なる場合が多いので、第1圧電部321と第2圧電部322の間に図示しない中間層を設けても良い。
【0040】
次に、かかる圧電部32が送受信する超音波信号について説明する。図4は、共振状態の超音波信号の波形を説明する模式図である。図4(a)は、基本波の超音波信号を送受信する場合、図4(b)は、第3高調波を送受信する場合、図4(c)は、第n高調波(nは自然数)を送受信する場合の各々変位図、歪み図、周波数図を表す。λは基本波の波長、λは第3高調波の波長、λは第n高調波の波長を表す。
【0041】
各図の変位図においては、超音波信号の波形は固定端41を節とし、固定端41と自由端との間で定在波を形成する。圧電部32の厚みは、第1超音波信号の基本波長の4分の1に設定される。圧電部32の厚みを、第1超音波信号の基本波長の4分の1に設定するので、基本波は基本共振の共振モードとなり、第3高調波は3時共振の共振モードとなり、第n高調波はn次共振の共振モードとなる。
【0042】
図4(a)においては、圧電部32の厚みがλ/4に相当することを表し、図4(b)においては、圧電部32の厚みがλ/4に相当することを表し、図4(c)においては、圧電部32の厚みがλ/4に相当することを表す。λは、基本波の波長、λは、第2高調波の波長、λは、第n高調波の波長を表す。
【0043】
第n高調波の波長を用いる場合には、第1圧電部と第2圧電部の厚みの和dと第1超音波信号の波長λは、d=n×λ/4なる関係がある。
【0044】
基本波、第3高調波、及び第n高調波の強度は周波数図のように、基本波、第3高調波、及び第n高調波の順で小さくなる。
【0045】
基本波、第3高調波、及び第n高調波の定在波が圧電部32に立つと、各々の第1超音波信号と圧電部32に発生する歪みとの関係は歪み図のようになる。第1圧電部と第2圧電部における各部分が、縮む場合を正符号、伸びる場合を負符号で表した。
【0046】
次いで、基本共振と3次共振の場合の、第1超音波信号と圧電部32の電圧の関係である感度について表1と図5を用いて説明する。
【0047】
表1は、圧電部32の感度を説明する表である。図5は、圧電部32の分極の向きと電界の向きを説明する模式図である。
【0048】
従来の超音波探触子に用いられていた積層型の圧電部32においては、図5(b)に示すように、電圧の向きに対して、分極の向き51,52は相同じ向き(平行)に設定されていた。これに対し、圧電部32においては、図5(a)に示すように、電圧の向きに対して、分極の向き51,52を相反する向き(反平行)に設定される。
【0049】
このような分極の向きの相違の元、基本共振と3次共振の共振モード毎に、第1圧電部321、第2圧電部322の各々単体の感度と、第1圧電部321と第2圧電部322とを合わせた圧電部32全体のトータル感度とを表1に示した。
【0050】
まず、内部分極が平行で基本モードの場合、第1圧電部321の感度は、sin45°−sin0°=0.71に比例することとなり、第2圧電部322の感度は、sin90°−sin45°=0.71に比例することとなる。従って、トータル感度は1.00に比例することとなる。
【0051】
内部分極が平行で3次共振モードの場合、第1圧電部321の感度は、sin135°−sin0°=0.71に比例することとなり、第2圧電部322の感度は、sin270°−sin135°=−1.71に比例することとなる。従って、トータル感度は−1.00に比例することとなる。
【0052】
内部分極が反平行で基本共振モードの場合、第1圧電部321の感度は、sin45°−sin0°=0.71に比例することとなり、第2圧電部322の感度は、sin90°−sin45°=−0.29に比例することとなる。従って、トータル感度は0.42に比例することとなる。
【0053】
内部分極が反平行で3次共振モードの場合、第1圧電部321の感度は、sin135°−sin0°=0.71に比例することとなり、第2圧電部322の感度は、−sin270°+sin135°=1.71に比例することとなる。従って、トータル感度は2.42に比例することとなる。表1の歪みの項目は、第1圧電部321と第2圧電部322の感度の符号が同じ場合に互いに相和しあい、符号が異なる場合に打消しあうことを示す。
【0054】
このように、内部分極が平行か反平行かで異なり、また、基本波か第3高調波かで異なるのは、分極方向と第1超音波信号強度の符号とが強め合う方向に働く関係にあるどうかの相違があるからである。
【0055】
この結果、トータル感度で最も優れているのは、内部分極が反平行で3次共振モードの場合であることが理解される。従って、従来の超音波探触子に採用されている平行な分極方向に対して、分極方向を反平行にして第3高調波を受信することで、圧電部32の両面には2.42倍の電圧を得ることができる。
【0056】
【表1】

【0057】
一方、第1超音波信号を送信する場合には、従来のように、電圧の向きに対して、分極の向き51,52を相同じ向きにして大きい信号強度を有する基本波長を送信することとなる。従って、第1超音波信号を送信する場合と、第3高調波を受信する場合とで、電圧の向きに対して、分極の向き51,52を相反する向きに設定し、加えて相反する向きにも設定できる電圧制御手段を設けることが望ましい。以下、本発明にかかる電圧制御手段18について説明する。
【0058】
図6は、電圧制御手段18の動作を表す模式図である。圧電部32は、第1圧電部321と第2圧電部322を挟む形で、電極71,72,73が形成されている。電圧制御手段は、制御部17に制御されるスイッチ61,62,63を有している。スイッチ61は、電極73と接地との間の導通、非導通を制御するスイッチである。スイッチ62は、電源Vからの出力を電極72と73との一方に振り分けるスイッチである。スイッチ63は、電極72と接地との間の導通、非導通を制御するスイッチである。スイッチ61,62,63は、具体的には電界効果トランジスタやバイポーラトランジスタで構成される。
【0059】
図6(a)では、スイッチ61を導通,63を解放させ、スイッチ62を電極72へスイッチさせている。このようにスイッチすることで、電極73,71からの電界64,65を各々第2圧電部322の分極の向き51、第1圧電部321の分極の向き52と相同じ向き、すなわち平行とすることができる。このようにスイッチ61,62,63を制御することで、基本波を送信できる状態を実現することができる。
【0060】
図6(c)では、スイッチ61,63を開放することで非導通とし、スイッチ62を電極73へスイッチさせている。電界は電極71と電極73との間で形成されることとなる。このようにスイッチすることで、第1圧電部321と第2圧電部322内に電界66が形成され、電界66の電界の向きは、第1圧電部321の分極の向き52と相同じ向きに設定され、第2圧電部322の分極の向き51と相反する向きに設定される。すなわち反平行とすることができる。このようにスイッチ61,62,63を制御することで、第3高調波を高いトータル感度で受信できる状態を実現することができる。
【0061】
なお、図6(c)の超音波受信時のスイッチの状態に電圧制御手段18が切り替える際には、図6(b)に示すように、一旦、スイッチ62を電極73側へ振り分け、かつ、スイッチ63を用いて電極72を接地と導通させることが望ましい。このように、電極72を接地と導通させることで、電極72に溜められた電荷を開放することができ、超音波受信時の場合に電気的に浮く電極72が電界に与える影響を防ぐことができる。
【0062】
以上のように、第1超音波信号を送信する場合と、第3高調波を受信する場合とで、分極の向き51,52に対して、電圧の向きを相反する向きに設定し、加えて相同じくする向きにも設定できる電圧制御手段18を設けることで、大きい信号強度を有する基本波長を送信でき、かつ、第1超音波信号を電圧に変換する感度を高めて第3高調波を受信することができる。
【0063】
次いで、圧電部32において採用される圧電材料について説明する。本実施形態では、例えば、圧電部32における第1圧電部321と第2圧電部322は、例えば、無機圧電材料を材料とする無機圧電素子から構成されている。無機圧電材料は、例えば、いわゆるPZT、水晶、ニオブ酸リチウム(LiNbO)、ニオブ酸タンタル酸カリウム(K(Ta,Nb)O)、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)およびチタン酸ストロンチウム(SrTiO)等である。本実施形態では、このように送信パワーを大きくすることが可能な無機圧電素子が、第1圧電部321と第2圧電部322に用いられている。
【0064】
また、例えば、第1圧電部321と第2圧電部322は、有機圧電材料を材料とする有機圧電素子から構成されていてもよい。有機圧電素子の厚さは、例えば、受信すべき超音波の周波数や有機圧電材料の種類等によって適宜に設定されるが、例えば、中心周波数8MHzの超音波を受信する場合では、この有機圧電素子の厚さは、約50μmである。
【0065】
有機圧電材料には、例えば、フッ化ビニリデンの重合体や、フッ化ビニリデンとトリフルオロエチレンの共重合体を用いることができる。フッ化ビニリデンとトリフルオロエチレンの共重合体の場合、共重合比によって厚み方向の電気機械結合定数(圧電効果)が変化するので、例えば、前者の共重合比が60〜99モル%が好ましいが、無機圧電素子と有機圧電素子を重ねる時に使用する有機結合剤の使用方法にもよるので、その最適値は変化する。最も好ましい前者の共重合比の範囲は70〜90モル%である。フッ化ビニリデンを85〜99モル%にして、パーフルオロアルキルビニルエーテル、パーフルオロアルコキシエチレン、パーフルオロヘキサエチレン等を1〜15モル%にしたポリマーは、送信用無機圧電素子と受信用有機圧電素子との組み合わせにおいて、送信における基本周波波を抑制して、高調波受信の感度を高めることができる。
【0066】
フッ化ビニリデンとトリフルオロエチレンの共重合体は、薄膜化、大面積化等の加工性に比較的優れ、任意の形状、形態の物が作ることができ、弾性率が低い、誘電率が低い等の特徴を持つため、高周波特性、広帯域特性を必要とするハーモニックイメージング技術における圧電材料として適している。
【0067】
なお、第1圧電部321と第2圧電部322には、一方に無機圧電材料、他方に有機圧電材料を用いても良い。
【0068】
本実施形態では、上述したように高い感度で第2超音波信号を受信できることから、比較的信号強度が低い高調波の第2超音波信号を受信することが必要なハーモニックイメージング技術に好適であり、より高精度な超音波画像の提供が可能となる。
【0069】
なお、本実施形態においては、超音波探触子2は超音波診断装置本体1と有線接続されていても、無線接続されていてもよい。
【0070】
以上のように、本実施形態によれば、第1超音波信号を送信する場合と、第3高調波を受信する場合とで、分極の向き51,52に対して、電圧の向きを相反する向きに設定し、加えて相同じくする向きにも設定できる電圧制御手段を設けることで、大きい信号強度を有する基本波長を送信でき、かつ、第2超音波信号を電圧に変換する感度を高めて第3高調波を受信することができる。
【0071】
また、本実施の形態によれば、受信用素子の材料に有機圧電材料を採用することで、第2超音波信号のような高周波の超音波信号を広帯域に受信することができるので、鮮明な超音波画像を得ることができる。
【0072】
また、本実施の形態によれば、有機圧電材料には、フッ化ビニリデンの重合体や、フッ化ビニリデンとトリフルオロエチレンの共重合体を用いることで、第2超音波信号の高感度な検出が可能となり、より鮮明な超音波画像を得ることができる。
【0073】
また、本実施の形態によれば、第2超音波信号の周波数は、第1超音波信号の高調波成分を採用することで、より鮮明な超音波画像を得ることができる。
【符号の説明】
【0074】
1 超音波診断装置本体
2 超音波探触子
3 ケーブル
4 超音波探触子フォルダ
11 操作入力部
12 送信部
13 受信部
14 信号処理部
15 画像処理部
16 表示部
17 制御部
18 電圧制御手段
19 記憶部
30 振動部
31 音響制動部材
32 圧電部
33 音響整合層
34 音響レンズ
61,62,63 スイッチ
321 第1圧電部
322 第2圧電部
H 被検体

【特許請求の範囲】
【請求項1】
同一方向に分極処理が施され並列配置された複数の第1圧電素子を備え、両面に電極が形成された第1圧電部と、該第1圧電素子の分極方向に対して反対方向に分極処理が施され並列配置された複数の第2圧電素子を備え、前記第1圧電部に積層配置され両面に電極が形成された第2圧電部と、を備える超音波探触子と、
被検体に超音波信号を送信するために、前記第1圧電部と前記第2圧電部とを駆動する送信信号を生成する送信部と、
前記第1圧電部と前記第2圧電部とに印加する電圧を制御する電圧制御手段と、
前記第1圧電部と前記第2圧電部とが被検体から反射した超音波信号を受信して変換した電気信号を受信する受信部と、
前記電気信号から被検体内の超音波画像を生成する画像処理部と、
を有することを特徴とする超音波診断装置。
【請求項2】
前記電圧制御手段は、
被検体に超音波信号を送信する時には、前記第1圧電部と前記第2圧電部との間の電極を同電位とし、他の電極に同一の電圧を印加するよう制御し、
被検体から反射した超音波信号を受信する時には、前記第1圧電部と前記第2圧電部との間の電極には電圧を印加せず、他の電極間に電圧を印加するよう制御することを特徴とする請求項1に記載の超音波診断装置。
【請求項3】
前記第1圧電部と、前記第2圧電部とは略同一の厚さを有し、前記第1圧電部と前記第2圧電部とを挟む二つの面は各々固定端と自由端とであり、以下の式を満たすことを特徴とする請求項2に記載の超音波診断装置。
d=n×λ/4
d:第1圧電部と第2圧電部の厚みの和
n:自然数
λ:第1超音波信号の波長
【請求項4】
前記第1圧電部と前記第2圧電部の少なくとも一方を形成する圧電材料は有機圧電材料であることを特徴とする請求項1から3の何れか一項に記載の超音波診断装置。
【請求項5】
前記有機圧電材料は、フッ化ビニリデンの重合体、または、フッ化ビニリデンとトリフルオロエチレンの共重合体であることを特徴とする請求項4に記載の超音波診断装置。
【請求項6】
被検体から反射した超音波信号の周波数は、前記第1超音波信号の高調波成分であることを特徴とする請求項1から5の何れか一項に記載の超音波診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−143047(P2011−143047A)
【公開日】平成23年7月28日(2011.7.28)
【国際特許分類】
【出願番号】特願2010−5690(P2010−5690)
【出願日】平成22年1月14日(2010.1.14)
【出願人】(303000420)コニカミノルタエムジー株式会社 (2,950)
【Fターム(参考)】