説明

車両用空調装置

【課題】圧縮機トルクの推定に使用される冷媒流量を、該冷媒流量と相関の高いオリフィス前後の差圧を精度良く検知することで、高精度で推定できるようにし、ひいては圧縮機トルクを高精度で推定できるようにするとともに、この推定を、省スペース、コストダウンをはかりつつ達成できるようにした、車両用空調装置を提供する。
【解決手段】冷媒の圧縮機、凝縮器、減圧・膨張機構、蒸発器を有する冷凍サイクルを備えた車両用空調装置において、凝縮器と減圧・膨張機構との間の冷媒通路に、冷媒の流れを絞るオリフィスを配置するとともに、該オリフィスの前後差圧を検知可能な差圧検知手段を設け、かつ、検知された差圧を参照して冷媒流量を推定する冷媒流量推定手段と、推定された冷媒流量を参照して圧縮機のトルクを推定する圧縮機トルク推定手段を設けたことを特徴とする車両用空調装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両用空調装置に関し、とくに、その冷凍サイクルにおける冷媒流量を高精度に推定し、それを介して圧縮機トルクの高精度に推定できるようにした、コンパクトな構成で容易に達成可能な車両用空調装置の改良に関する。
【背景技術】
【0002】
圧縮機、凝縮器、減圧・膨張機構、蒸発器をこの順に備えた車両用空調装置の冷凍サイクルにおいては、大半の動力を消費する圧縮機の駆動用トルクを推定することが求められることが多い。圧縮機トルクを高精度でかつリアルタイムに推定できれば、圧縮機の駆動源としての車両エンジンの制御等(例えば、エンジン燃料噴射制御)に反映させることが可能になり、車両の省燃費等に貢献できるようになる。
【0003】
圧縮機トルクの推定には、そのときの冷媒流量を使用することが有効であることが知られており、冷媒流量を精度良く推定できれば、圧縮機トルクも精度良く推定できることになる。また、冷媒流量を推定するには、冷媒流量と相関の高い、冷媒通路(とくに、液相を含む冷媒通路)の適当な区間における上流側圧力と下流側圧力との差圧を用いるのが有効であることが知られており、回路内の短区間で明確な差圧を持たせるためには、通常、絞り(オリフィス)を設けることが有効である。家電の空調装置においては、冷媒通路中にオリフィスを設け、その前後に生じる圧力差を求める方法が知られている(例えば、特許文献1〔0004〕段落)。ただし、この特許文献1には、冷媒流量と圧縮機トルクとの関係については触れられていない。
【0004】
一方、車両用空調装置においては、エンジンルーム等への限られたスペースへの設置が求められることから、車両用空調装置の小型化(省スペース化)が要求されるとともに、コストダウンが強く求められる。さらに、冷凍サイクルの圧縮機の駆動に、車両原動機の動力が使用されることが多いが、車両原動機の車両走行用制御のために、圧縮機の駆動に使用できる動力が制限されることもある。したがって、冷凍サイクルにおける圧縮機トルクをより正確に推定することは、車両側の制御や省燃費等にとっても重要である。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平6−281300号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記のように、車両用空調装置の分野においては、冷凍サイクルにおける圧縮機トルクの高精度な推定の要求が強いにもかかわらず、冷媒通路に敢えて特別な差圧検出手段を設け、検出差圧から冷媒流量を推定し、推定された冷媒流量から圧縮機トルクを推定するという手法は、一般的な手法とは言えない。したがって、最終的に高精度な圧縮機トルクの推定を目指す上で、車両用空調装置特有の要求、つまり、省スペースやコストダウン、さらには、車両の省燃費への貢献等を考慮した設計を行わなければ、最適な形態を得ることは困難である。
【0007】
そこで本発明の課題は、冷凍サイクル中の最適な位置にオリフィスを配置し、圧縮機トルクの推定に使用される冷媒流量を、該冷媒流量と相関の高いオリフィス前後の差圧を精度良く検知することで、高精度で推定できるようにし、ひいては圧縮機トルクを高精度で推定できるようにするとともに、この推定を、特定の場所に最適な形態で効率よく組み込んだ差圧検知手段による検知に基づいて行うことで、省スペース、コストダウンをはかり、ひいては車両の省燃費にも貢献できるようにした、車両用空調装置を提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明に係る車両用空調装置は、冷媒の圧縮機と、圧縮された冷媒の凝縮器と、凝縮器からの冷媒を減圧・膨張させる減圧・膨張機構と、減圧・膨張機構からの冷媒を蒸発させる蒸発器とを有する冷凍サイクルを備えた車両用空調装置において、
前記凝縮器と減圧・膨張機構との間の冷媒通路に、冷媒の流れを絞るオリフィスを配置するとともに、該オリフィスの冷媒流れ方向上下流の位置における圧力間の差圧を検知可能な差圧検知手段を設け、かつ、該差圧検知手段により検知された差圧を参照して冷媒流量を推定する冷媒流量推定手段と、該冷媒流量推定手段により推定された冷媒流量を参照して前記圧縮機のトルクを推定する圧縮機トルク推定手段を設けたことを特徴とするものからなる。
【0009】
すなわち、本発明に係る車両用空調装置においては、高精度の冷媒流量の推定、ひいては高精度の圧縮機トルクの推定の基となる、オリフィスの冷媒流れ方向上下流の位置における圧力間の差圧の検知を、冷凍サイクル内の最適な位置、つまり、冷媒状態が液相を主体とし安定した状態にある凝縮器と減圧・膨張機構との間の冷媒通路にオリフィスを配置することで、安定して効率よくかつ高精度に行うことができるようになっている。オリフィスを含む差圧検知手段の設置には、後述の如く特別な工夫を加えることで、省スペース化をはかりつつ容易に所定の場所に配置することが可能になり、差圧検知手段自体およびその組み込みに対してコストダウンをはかることも可能になる。そして、凝縮器通過後の冷媒をオリフィスを通過させることにより、冷媒が液相主体の安定した領域にてオリフィスの前後差圧が検知されることになり、高精度の差圧検知が効率よく行われる。高精度の差圧検知は、高精度の冷媒流量推定を可能とし、ひいては高精度の圧縮機トルクの推定を可能とする。
【0010】
この本発明に係る車両用空調装置においては、いかに省スペース化、コストダウンをはかることができるかが重要なこととなるが、これを効率よく達成するためには、上記凝縮器と減圧・膨張機構との間の冷媒通路の一部を形成する配管と上記差圧検知手段が一体のユニット構成とされ、該ユニット内に上記オリフィスが配置されている形態とすることが好ましい。このように構成すれば、この一体化ユニットを、単に冷凍サイクル内の所定の位置、つまり、凝縮器と減圧・膨張機構との間の冷媒通路位置に組み込むだけで、所望の差圧検知が可能となり、容易に省スペース化、コストダウンをはかることができる。
【0011】
また、上記一体化ユニットに、さらに冷媒通路内を観察可能なサイトグラスが設けられていることが好ましい。このように構成すれば、冷媒通路内の状態を容易に観察できるようになり、例えば冷媒通路内に泡が観察されるような場合には、冷凍サイクル内の冷媒量が不足気味であることを確実に判断できるようになって、冷媒補充等の措置につなげることが可能になる。
【0012】
また、本発明に係る車両用空調装置において、上記差圧検知手段は、上記オリフィスの冷媒流れ方向上流の位置における圧力を検知する第1の圧力センサと、該第1の圧力センサとは別の、上記オリフィスの冷媒流れ方向下流の位置における圧力を検知する第2の圧力センサとによる検知圧力の差を算出することにより、上記差圧を検知する手段に構成できる。つまり、第1の圧力センサと第2の圧力センサは互いに独立して圧力検知可能であるとともに、両検知量の差を求めれば、所望の差圧が算出、検知できることになる。
【0013】
したがって、上記冷媒流量推定手段は、上記差圧検知手段により検知された差圧を参照するとともに、上記第1の圧力センサおよび/または上記第2の圧力センサの検知量を参照して冷媒流量を推定することもできる。このようにすれば、差圧に、検知位置における圧力の絶対値、その絶対値に伴う冷媒の状態を加味した条件で冷媒流量を推定することが可能となり、より高精度に冷媒流量を推定することが可能となる。
【0014】
また、上記圧縮機トルク推定手段は、上記冷媒流量推定手段により推定された冷媒流量、上記圧縮機の吸入圧力に相関のある物理量、上記圧縮機の回転数に相関のある物理量、上記第1の圧力センサの検知量を参照して圧縮機トルクを推定することが可能である。
【0015】
上記のように互いに独立した第1の圧力センサと第2の圧力センサを設ける形態以外にも、上記差圧検知手段を、オリフィスの冷媒流れ方向上下流の位置における圧力間の差圧を直接検知する差圧センサにより、上記差圧を検知する手段に構成することも可能である。この場合には、オリフィス前後の各位置における圧力の絶対値はとれないが、冷媒流量推定に必要な差圧を直接検知できるので、より迅速な冷媒流量の推定が可能となる。
【0016】
このような本発明における冷凍サイクルの構成は、とくに、省スペース化、コストダウンの要求が強い車両用空調装置に好適なものと言える。また、上記圧縮機トルク推定手段により推定された圧縮機トルクの信号が、圧縮機の駆動源の制御装置(例えば、車両エンジンの制御装置)へと送られるようにしておけば、該駆動源において圧縮機の駆動に使用できる動力量を適切に判断でき、車両全体としてより適切な制御が可能となって、車両の省燃費等にもより適切に貢献できるようになる。
【発明の効果】
【0017】
このように、本発明に係る車両用空調装置によれば、冷凍サイクル内の最適な位置に効率よくオリフィスを含む差圧検知手段を組み込み、該オリフィス前後の差圧を精度良く検知できるとともに、該差圧と相関の高い冷媒流量、ひいては圧縮機トルクを高精度で推定できるようになる。そして、オリフィスを含む差圧検知手段の構成、組み込み形態を工夫することで、とくにこれらを一体化ユニットに構成することで、圧縮機トルクの高精度推定までの機能を満足させつつ、冷凍サイクル全体としての省スペース化、コストダウンをより確実にはかることができ、車両用空調装置にとって最適な形態を実現できる。
【図面の簡単な説明】
【0018】
【図1】本発明の一実施態様に係る車両用空調装置における冷凍サイクルの概略構成図である。
【図2】図1の冷凍サイクルに配置された差圧検知手段の概略構成図である。
【図3】図2の差圧検知手段の外観斜視図である。
【図4】図1の冷凍サイクルのP−h線図の例を示す特性図である。
【発明を実施するための形態】
【0019】
以下に、本発明の望ましい実施の形態を、図面を参照して説明する。
図1は、本発明の一実施態様に係る車両用空調装置における冷凍サイクルの概略構成を示している。図において、1は冷凍サイクル全体を示しており、該冷凍サイクル1は、冷媒を圧縮する圧縮機2と、圧縮された冷媒を凝縮する凝縮器3と、凝縮器3からの冷媒を減圧・膨張させる減圧・膨張機構としての膨張弁4と、膨張弁4からの冷媒を蒸発させる蒸発器5とを有している。この冷凍サイクル1の凝縮器3と膨張弁4との間の冷媒通路6に、冷媒の流れを絞るオリフィスを配置するとともに、該オリフィスの冷媒流れ方向上下流の位置における圧力間の差圧を検知可能な差圧検知手段7が設けられている。
【0020】
本実施態様では、差圧検知手段7は図2に示すように構成され、内部に矢印方向の冷媒の流れを絞るオリフィス8が組み込まれ、オリフィス8の冷媒流れ方向上下流のそれぞれ位置における圧力を検知する第1の圧力センサ9および第2の圧力センサ10が一体的に形成された一体化ユニット11として構成されている。この一体化ユニット11が前記冷媒通路6の所定の位置に組み込まれることにより、オリフィス8、第1の圧力センサ9および第2の圧力センサ10が所望の位置に同時に配置されるようになっている。
【0021】
本実施態様では、オリフィス8の上流側に位置する第1の圧力センサ9とオリフィス8の下流側に位置する第2の圧力センサ10の、両センサ9、10の検知量の差が、本発明で検知すべき差圧として、差圧演算手段11によって算出されるようになっている。なお、差圧の検知は、前述の如く、上記のように互いに独立した第1の圧力センサ9と第2の圧力センサ10を設ける形態以外にも、オリフィス8の冷媒流れ方向上下流の位置における圧力間の差圧を直接検知する差圧センサ(図示略)により、行うこともできる。
【0022】
12は、冷媒流量推定手段を示しており、差圧演算手段11(差圧検知手段)により算出(検知)された差圧を参照して、冷媒流量を推定する。このとき、第1の圧力センサ9および/または第2の圧力センサ10による検知量(つまり、検知圧力の絶対値に相関のある物理量)も併せて参照すると、より高精度の冷媒流量の推定が可能となる。
【0023】
上記冷媒流量推定手段12により推定された冷媒流量を参照して、圧縮機トルク推定手段13により圧縮機2のトルクを推定する。この圧縮機2のトルクの推定は、例えば、冷媒流量推定手段12により推定された冷媒流量、圧縮機2の吸入圧力に相関のある物理量(例えば、吸入圧力センサによって検知された物理量)、圧縮機2の回転数に相関のある物理量、上記第1の圧力センサ9の検知量を参照して圧縮機トルクを推定することが可能である。
【0024】
このように、冷凍サイクル1内の特定の領域に、凝縮器3を通過した冷媒の流れを絞るオリフィス8を配置し、該オリフィス8前後の差圧を精度良く検知することで、該差圧と相関の高い冷媒流量、ひいては圧縮機トルクを高精度で推定できるようになる。さらに、オリフィス8と第1の圧力センサ9および第2の圧力センサ10を一体化ユニット11として構成することにより、所望の差圧検知を達成しつつ、これらの所定位置への組み込みの容易化、冷凍サイクル全体としての省スペース化、コストダウンを確実にはかることができる。
【0025】
さらに、本発明においては、例えば図3に示すように、上記一体化ユニット11にサイトグラス14を付設し、サイトグラス14を通して、冷媒通路6内を適宜観察できるようにした構成を採用することもできる。このように構成すれば、冷媒通路6内の状態を容易に観察できるようになり、前述したように、例えば冷媒通路6内に泡が観察されるような場合には、冷凍サイクル1内の冷媒量が不足気味であると判断でき、冷媒補充等の適切な措置をとることが可能になる。
【0026】
本発明に係る車両用空調装置における冷凍サイクル1の作動は、例えば図4(A)、(B)に示すようなP−h線図で表すことが可能である。すなわち、所定の冷媒通路6に設けたオリフィス8により、強制的にオリフィス前後差圧を持たせ、その差圧と相関の高い冷媒流量、ひいては圧縮機トルクを推定可能となる。このとき、オリフィス前後差圧の安定した高精度の検知は、高精度の冷媒流量推定、高精度の圧縮機トルク推定につながる。オリフィス前後差圧を安定した状態で高精度に検知するためには、冷媒の相変化がない、あるいは極めて少ない状態で検知が行われることが望ましい。例えば、図4(A)に示すように、同じ液相状態中でオリフィスによる差圧ΔPが発生するように設定することが好ましい。ただし、例えば、図4(B)に示すように、相変化状態にまたがって差圧ΔPが発生しても、多少精度は低下するかもしれないが、十分に高精度の冷媒流量推定、圧縮機トルク推定は可能である。
【産業上の利用可能性】
【0027】
本発明に係る車両用空調装置の構成は、高精度で圧縮機トルクを推定することが要求されるあらゆる車両用空調装置に適用可能であり、とくに、省スペース、コストダウンが要求される場合に好適なものである。
【符号の説明】
【0028】
1 冷凍サイクル
2 圧縮機
3 凝縮器
4 減圧・膨張機構としての膨張弁
5 蒸発器
6 冷媒通路
7 差圧検知手段
8 オリフィス
9 第1の圧力センサ
10 第2の圧力センサ
11 差圧演算手段
12 冷媒流量推定手段
13 圧縮機トルク推定手段
14 サイトグラス

【特許請求の範囲】
【請求項1】
冷媒の圧縮機と、圧縮された冷媒の凝縮器と、凝縮器からの冷媒を減圧・膨張させる減圧・膨張機構と、減圧・膨張機構からの冷媒を蒸発させる蒸発器とを有する冷凍サイクルを備えた車両用空調装置において、
前記凝縮器と減圧・膨張機構との間の冷媒通路に、冷媒の流れを絞るオリフィスを配置するとともに、該オリフィスの冷媒流れ方向上下流の位置における圧力間の差圧を検知可能な差圧検知手段を設け、かつ、該差圧検知手段により検知された差圧を参照して冷媒流量を推定する冷媒流量推定手段と、該冷媒流量推定手段により推定された冷媒流量を参照して前記圧縮機のトルクを推定する圧縮機トルク推定手段を設けたことを特徴とする車両用空調装置。
【請求項2】
前記凝縮器と減圧・膨張機構との間の冷媒通路の一部を形成する配管と前記差圧検知手段が一体のユニット構成とされ、該ユニット内に前記オリフィスが配置されている、請求項1に記載の車両用空調装置。
【請求項3】
前記ユニットに、冷媒通路内を観察可能なサイトグラスが設けられている、請求項2に記載の車両用空調装置。
【請求項4】
前記差圧検知手段は、前記オリフィスの冷媒流れ方向上流の位置における圧力を検知する第1の圧力センサと、該第1の圧力センサとは別の、前記オリフィスの冷媒流れ方向下流の位置における圧力を検知する第2の圧力センサとによる検知圧力の差を算出することにより、前記差圧を検知する、請求項1〜3のいずれかに記載の車両用空調装置。
【請求項5】
前記冷媒流量推定手段は、前記差圧検知手段により検知された差圧を参照するとともに、前記第1の圧力センサおよび/または前記第2の圧力センサの検知量を参照して冷媒流量を推定する、請求項4に記載の車両用空調装置。
【請求項6】
前記圧縮機トルク推定手段は、前記冷媒流量推定手段により推定された冷媒流量、前記圧縮機の吸入圧力に相関のある物理量、前記圧縮機の回転数に相関のある物理量、前記第1の圧力センサの検知量を参照して圧縮機トルクを推定する、請求項4または5に記載の車両用空調装置。
【請求項7】
前記差圧検知手段は、前記オリフィスの冷媒流れ方向上下流の位置における圧力間の差圧を直接検知する差圧センサにより、前記差圧を検知する、請求項1〜3のいずれかに記載の車両用空調装置。
【請求項8】
前記圧縮機トルク推定手段により推定された圧縮機トルクの信号が、圧縮機の駆動源の制御装置へと送られる、請求項1〜7のいずれかに記載の車両用空調装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−31679(P2011−31679A)
【公開日】平成23年2月17日(2011.2.17)
【国際特許分類】
【出願番号】特願2009−177993(P2009−177993)
【出願日】平成21年7月30日(2009.7.30)
【出願人】(000001845)サンデン株式会社 (1,791)
【Fターム(参考)】