説明

送信装置、送信方法、送信プログラム、受信装置、受信方法、受信プログラム及び通信システム

【課題】送信容量を低下させない送信装置、送信方法、送信プログラム、受信装置、受信方法、受信プログラム及び通信システムを提供する。
【解決手段】同時に複数の受信装置に各々データ信号を送信する送信装置において、プレコーディング部はデータ信号をプレコーディングし、送信単位数情報生成部はデータ信号を送信する単位の数に係る送信単位数情報を生成し、係数保存部は送信電力を補正するための電力補正係数を送信単位数情報に対応して記憶し、係数乗算部は前記送信単位数情報生成部が生成した送信単位数情報に対応する電力補正係数を前記プレコーディング部がプレコーディングしたデータ信号に乗算し、前記係数を乗算したデータ信号を送信する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、送信装置、送信方法、送信プログラム、受信装置、受信方法、受信プログラム及び通信システムに関する。
【背景技術】
【0002】
無線通信では、1つの通信装置から他の通信装置の間で電波を用いてデータ信号を送受信する。通信目的に利用できる電波の周波数帯域は有限である。携帯電話をはじめとする無線通信の普及及び高速化に対応するため周波数帯域の利用効率を向上するための技術が提案されている。例えば、MIMO(Multiple Input Multiple Output;多入力多出力)技術は、データの送信及び受信において、それぞれ複数のアンテナを同時に利用して伝送容量を増加させる(空間多重)技術である。
【0003】
MIMO技術には、基地局装置(Base Station;BS)から複数の端末装置(Mobile Station;MS、移動局装置ともいう)に同一時刻、同一周波数で信号を送信するMU−MIMO(Multiple User MIMO;マルチユーザMIMO)がある。MU−MIMOでは、基地局装置は各端末装置に宛てたデータ信号にプレコーディング(Precoding)即ちビームフォーミング処理を施して、それぞれの端末装置に送信する。これは、1つの端末装置において、その端末装置に宛てたデータ信号が、他の端末装置に宛てた他のデータ信号により干渉されることを抑制するためである。
【0004】
プレコーディングの前後では、信号の振幅及び位相が変化する。そのため、基地局装置はデータ信号にパイロット信号を付加し、パイロット信号を付加したデータ信号を各端末装置に送信する。これにより、各端末装置は、基地局装置からのプレコーディングによる振幅や位相の変化を表す変化特性を乗じた等価伝搬路を推定し、受信信号を推定した等価伝搬路受信信号に基づきデータ信号を復調する。
【0005】
例えば、特許文献1に記載の無線送信方法は、入力されるデータ信号からゲインを乗じてフィードバックされたデータ信号を差し引くフィードバック処理を行うステップと、フィードバック処理後のデータ信号及びチャネル推定のためのパイロット信号に対してビームフォーミング処理を行うステップと、ビームフォーミング処理後のデータ信号及びパイロット信号を複数のアンテナを含む送信部によって送信するステップを具備する。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2009−182894号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1に記載の無線送信方法では、一方のパイロット信号としてDMRS(De−Modulation Reference Singal;復調用参照信号)を同一周波数、同一時刻で他の信号と空間多重することができない。そのため、送信先としての端末装置が増加するほど、各端末装置に送信するDMRSの情報量が増加するため、実質的に送信データを送信するための送信効率が低下するという課題がある。
【0008】
本発明は上記の点に鑑みてなされたものであり、送信効率を低下させない送信装置、送信方法、送信プログラム、受信装置、受信方法、受信プログラム及び通信システムを提供する。
【課題を解決するための手段】
【0009】
(1)本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、同時に複数の受信装置に各々データ信号を送信する送信装置において、データ信号をプレコーディングするプレコーディング部と、データ信号を送信する単位の数に係る送信単位数情報を生成する送信単位数情報生成部と、送信電力を補正するための電力補正係数を送信単位数情報に対応して記憶する係数保存部と、前記送信単位数情報生成部が生成した送信単位数情報に対応する電力補正係数を前記プレコーディング部がプレコーディングしたデータ信号に乗算する係数乗算部とを備え、前記係数を乗算したデータ信号を送信すること
を特徴とする送信装置である。
【0010】
(2)本発明のその他の態様は、前記送信単位数情報は、前記データ信号の送信先である受信装置のアンテナ数に基づくことを特徴とする(1)の送信装置である。
【0011】
(3)本発明のその他の態様は、前記送信単位数情報は、前記受信装置へデータ信号を送信するストリーム数に基づくことを特徴とする(1)の送信装置である。
【0012】
(4)本発明のその他の態様は、前記送信単位数情報は、前記受信装置へのデータ信号の送信に係るダイバーシチオーダに基づくことを特徴とする(1)の送信装置である。
【0013】
(5)本発明のその他の態様は、前記プレコーディング部は、非線形プレコーディングを行うことを特徴とする(1)−(4)のうちいずれかの送信装置である。
【0014】
(6)本発明のその他の態様は、前記プレコーディング部は、線形プレコーディングを行うことを特徴とする(1)−(4)のうちいずれかの送信装置である。
【0015】
(7)本発明のその他の態様は、前記送信単位数情報を各受信装置に送信することを特徴とする(1)−(6)のうちいずれかの送信装置である。
【0016】
(8)本発明のその他の態様は、送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部を備え、複数の受信装置に各々データ信号を送信する送信装置における送信方法において、前記送信装置が、データ信号をプレコーディングする過程と、前記送信装置が、送信単位数情報を生成する過程と、前記送信装置が、生成した送信単位数情報に対応する電力補正係数をプレコーディングしたデータ信号に乗算する過程を有し、前記係数を乗算したデータ信号を送信することを特徴とする送信方法である。
【0017】
(9)本発明のその他の態様は、送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部を備え、複数の受信装置に各々データ信号を送信する送信装置におけるコンピュータに、データ信号をプレコーディングする手順と、送信単位数情報を生成する手順と、生成した送信単位数情報に対応する電力補正係数をプレコーディングしたデータ信号に乗算する手順を実行させることを特徴とする送信プログラムである。
【0018】
(10)本発明のその他の態様は、送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部を備え、複数の受信装置に各々データ信号を送信する送信装置における集積回路であって、データ信号をプレコーディングするプレコーディング部と、送信単位数情報を生成する送信単位数情報生成部と、送信電力を補正するための電力補正係数を送信単位数情報に対応して記憶する係数保存部と、前記送信単位数情報生成部が生成した送信単位数情報に対応する電力補正係数を前記プレコーディング部がプレコーディングしたデータ信号に乗算する係数乗算部を備えることを特徴とする送信装置における集積回路である。
【0019】
(11)本発明のその他の態様は、送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部と、送信装置から送信単位数情報とデータ信号を受信する受信部と、前記送信装置からの伝搬路の特性を示す伝達関数を推定する伝搬路推定部と、前記受信したデータ信号を前記係数保存部から受信した送信単位数情報に対応する係数で除算する係数除算部と、前記推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する伝搬路補償部を備えることを特徴とする受信装置である。
【0020】
(12)本発明のその他の態様は、前記送信単位数情報は、前記送信装置からデータ信号の送信先である受信装置のアンテナ数であることを特徴とする(11)の受信装置である。
【0021】
(13)本発明のその他の態様は、前記送信単位数情報は、前記送信装置からデータ信号を送信するストリーム数であることを特徴とする(11)の受信装置である。
【0022】
(14)本発明のその他の態様は、前記送信単位数情報は、前記送信装置から受信装置へのデータ信号の送信に係るダイバーシチオーダであることを特徴とする(11)の受信装置である。
【0023】
(15)本発明のその他の態様は、送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部と、送信装置から送信単位数情報とデータ信号を受信する受信部を備える受信装置における受信方法において、前記受信装置が、前記送信装置からの伝搬路の特性を示す伝達関数を推定する過程と、前記受信装置が、前記受信したデータ信号を、前記係数保存部に記憶された前記受信した送信単位数情報に対応する係数で除算する過程と、前記受信装置が、前記推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する過程を有することを特徴とする受信方法である。
【0024】
(16)本発明のその他の態様は、送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部と、送信装置から送信単位数情報とデータ信号を受信する受信部を備える受信装置におけるコンピュータに、前記送信装置からの伝搬路の特性を示す伝達関数を推定する手順、前記受信したデータ信号を、前記係数保存部に記憶された前記受信した送信単位数情報に対応する係数で除算する手順、前記推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する手順を実行させることを特徴とする受信プログラムである。
【0025】
(17)本発明のその他の態様は、送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部と送信装置から送信単位数情報とデータ信号を受信する受信部を備える受信装置において、前記送信装置からの伝搬路の特性を示す伝達関数を推定する伝搬路推定部と、前記受信したデータ信号を、前記係数保存部に記憶された前記受信した送信単位数情報に対応する係数で除算する係数除算部と、前記推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する伝搬路補償部を備えることを特徴とする集積回路である。
【0026】
(18)本発明のその他の態様は、送信装置が同時に複数の受信装置に各々データ信号を送信する通信システムにおいて、前記送信装置は、データ信号をプレコーディングするプレコーディング部と、データ信号を送信する単位の数に係る送信単位数情報を生成する送信単位数情報生成部と、送信電力を補正するための電力補正係数を送信単位数情報に対応して記憶する係数保存部と、前記送信単位数情報生成部が生成した送信単位数情報に対応する電力補正係数を前記プレコーディング部がプレコーディングしたデータ信号に乗算する係数乗算部を備え、前記係数を乗算したデータ信号を送信することを特徴とし、前記複数の受信装置は、それぞれ送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部と、送信装置から送信単位数情報とデータ信号を受信する受信部と、前記送信装置からの伝搬路の特性を示す伝達関数を推定する伝搬路推定部と、前記受信したデータ信号を、前記係数保存部に記憶された前記受信した送信単位数情報に対応する係数で除算する係数除算部と、前記推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する伝搬路補償部を備えることを特徴とする通信システムである。
【発明の効果】
【0027】
本発明によれば、送信効率が低下しない。
【図面の簡単な説明】
【0028】
【図1】本発明の第1の実施形態に係る通信システムの概念図である。
【図2】本実施形態に係る基地局装置の構成を示す概略図である。
【図3】本実施形態に係る送信信号フレームの一構成例を示す概念図である。
【図4】本実施形態に係る送信信号フレームのその他の構成例を示す概念図である。
【図5】本実施形態に係る送信信号フレームのその他の構成例を示す概念図である。
【図6】本実施形態に係る端末装置の構成を示す概略図である。
【図7】本実施形態に係る送信電力の一例を示す図である。
【図8】本実施形態に係る電力補正係数の一例を示す表である。
【図9】本実施形態に係る電力補正係数のその他の例を示す表である。
【図10】本実施形態に係る基地局装置の別構成例を示す概略図である。
【図11】本実施形態に係る通信システムの動作を表すシーケンス図である。
【図12】本発明の第2の実施形態に係る基地局装置の構成を示す概略図である。
【図13】本実施形態に係る端末装置の構成を示す概略図である。
【図14】本実施形態に係る通信システムの動作を表すシーケンス図である。
【図15】本発明の第3の実施形態に係る基地局装置の構成を示す概略図である。
【図16】本実施形態に係る送信電力の一例を示す図である。
【図17】本実施形態に係る電力補正係数の一例を示す表である。
【図18】本実施形態に係る電力補正係数のその他の例を示す表である。
【図19】本実施形態に係る端末装置の構成を示す概略図である。
【図20】本発明の第4の実施形態に係る非線形プレコーディング部の構成を示す概略図である。
【図21】本実施形態に係る非線形プレコーディング部が行う非線形プレコーディング処理を示すフローチャートである。
【発明を実施するための形態】
【0029】
(第1の実施形態)
以下、図面を参照しながら本発明の第1の実施形態について説明する。
図1は、本実施形態に係る通信システムの構成を示す概念図である。
通信システム1は、基地局装置A1及びN(Nは2又はそれよりも大きな整数)個の端末装置B11〜B1Nを含んで構成される。図1では、端末装置がB11〜B14の4台ある場合を示す。
基地局装置A1は、複数(例えばN本)のアンテナを備え、各アンテナから端末装置B11〜B1Nの各々へ共通参照信号CRS(Common Reference Signal、共通参照信号)とデータ信号を送信する。以下では、共通参照信号CRSのことを単に「CRS」と称することがある。CRSは、端末装置B11〜B1N全てに共通な信号である。データ信号は、通信において伝達される情報を表す信号であって、一般的には端末装置B11〜B1Nの各々によって異なる。
基地局装置A1は、もとのデータ信号に、後述するプレコーディングフィルタを乗算して、送信するデータ信号を生成する。基地局装置A1は、端末装置B11〜B1Nの各々から受信した伝搬路状態情報に基づきプレコーディングフィルタを生成して使用する。
【0030】
端末装置B11〜B1Nの各々は、アンテナ(例えば、各1本)を備え、基地局装置A1からCRSとデータ信号を受信する装置であって、利用者が所持する装置、例えば携帯電話機である。端末装置B11〜B1Nの各々は、受信したCRSに基づいて、基地局装置A1からその端末装置までの伝達関数を算出し、この伝達関数の情報である伝搬路状態情報を基地局装置A1に送信する。
【0031】
図2は、本実施形態に係る基地局装置A1の構成を示す概略図である。
基地局装置A1は、アンテナ部101−1〜101−N、受信部102−1〜102−N、GI除去部103−1〜103−N、FFT部104−1〜104−N、伝搬路状態情報取得部105、フィルタ算出部106、符号化部121−1〜121−N、変調部122−1〜122−N、非線形プレコーディング部123、係数保存部124、係数乗算部125、CRS生成部126、フレーム構成部127、IFFT部128−1〜128−N、GI挿入部129−1〜129−N、送信部130−1〜130−N、アンテナ数情報生成部141及び制御部150を含んで構成される。
【0032】
即ち、基地局装置A1は、N個の端末装置B11〜B1Nへのデータ信号を表す無線周波数信号をN個のアンテナ部101−1〜101−Nを用いて送信し、これらの端末装置からのデータ信号を表す無線周波数信号を受信する。以下の説明では、上りリンク、下りリンクともに通信方式は、例えばOFDM(Orthogonal Frequency Division Multiplexing;直交周波数分割多重)方式を用いる例を挙げるが、本実施形態ではそれに限定されない。また、本実施形態では、上りリンクと下りリンクで異なる方式を用いてもよい。なお、下りリンクとは基地局装置A1から端末装置B11〜B1Nの各々への通信回線であり、上りリンクは端末装置B11〜B1Nから基地局装置A1への通信回線である。
【0033】
アンテナ部101−1〜101−Nは、端末装置B11〜B1Nから電波として受信した無線周波数受信信号を受信部102−1〜102−Nに出力する。
アンテナ部101−1〜101−Nは、送信部130−1〜130−Nから入力された無線周波数送信信号を端末装置B11〜B1Nに電波として送信する。
【0034】
受信部102−1〜102−Nは、アンテナ部101−1〜101−Nの各々から入力された無線周波数受信信号をダウンコンバートしてベースバンド・アナログ受信信号を生成する。受信部102−1〜102−Nの各々は、生成したベースバンド・アナログ受信信号をA/D(Analog−to−Digital;アナログディジタル)変換してベースバンド・ディジタル受信信号を生成する。受信部102−1〜102−Nは、生成したベースバンド・ディジタル受信信号をGI除去部103−1〜103−Nに出力する。
【0035】
GI除去部103−1〜103−Nは、受信部102−1〜102−Nから入力されたベースバンド・ディジタル受信信号からGI(Guard Interval;ガードインターバル、ガード区間ともいう)を除去する。GI除去部103−1〜103−Nは、GIを除去したディジタル信号(「GI除去済ディジタル信号」ということがある。)をFFT部104−1〜104−Nに出力する。
【0036】
FFT部104−1〜104−Nは、GI除去部103−1〜103−Nから入力されたGI除去済ディジタル信号に対してFFT(Fast Fourier Transform;高速フーリエ変換)を行い、周波数領域信号を生成する。FFT部104−1〜104−Nは、生成した周波数領域信号を伝搬路状態情報取得部105に出力する。
【0037】
伝搬路状態情報取得部105は、FFT部104−1〜104−Nから入力された周波数領域信号のうち予め設定された部分を周波数領域伝搬路信号として抽出し、抽出した周波数領域伝搬路信号を復調して伝搬路状態情報を抽出する。伝搬路状態情報取得部105は、抽出した伝搬路状態情報をフィルタ算出部106に出力する。
なお、伝搬路状態情報取得部105は、抽出した伝搬路状態情報と、生成した周波数領域信号のうち抽出された部分以外の残りの部分における信号(残部信号)を制御部150(図示せず)に出力する。制御部は、基地局装置A1が備える一つの構成部である。
制御部150は、伝搬路状態情報取得部105から入力された伝搬路状態情報に基づき対応する変調方式情報を定める。制御部150は、定めた変調方式情報を変調部122−1〜122−Nに出力する。また、制御部150は、定めた変調方式情報を制御信号の一部としてフレーム構成部127に出力する。フレーム構成部127は、制御部150から入力された制御信号を生成しようとする送信信号フレームに含める。これにより変調方式情報が端末装置B11〜B1Nに送信されるようにする。
制御部150は、生成した制御情報の一部に基づいて基地局装置A1の動作を制御し、生成した制御情報の残りの部分を他の基地局装置やサーバ装置等へ送信する。この残りの部分は、送信先である装置における動作の制御に用いられる。
また、制御情報は、基地局装置A1から端末装置B11〜B1Nの各々にデータ信号を送信するためのストリーム数を表すストリーム数情報を含む。制御部150は、端末装置B11〜B1N各々に対するストリーム数情報をアンテナ数情報生成部141に出力する。
ここで、「ストリーム数」とは同一周波数・同一時刻にMU−MIMOで空間多重して送信する信号の数のことを言う。「アンテナ数」とは、空間多重された信号を送信するために基地局装置A1が用いるアンテナの数のことを言う。
【0038】
フィルタ算出部106は、伝搬路状態情報取得部105から入力された伝搬路状態情報に基づきフィルタ係数を算出する。フィルタ算出部106が行うフィルタ係数を算出する処理については後述する。フィルタ算出部106は、算出したフィルタ係数を非線形プレコーディング部123に出力する。
【0039】
符号化部121−1〜121−Nは、端末装置B11〜B1N宛のユーザデータを入力され、入力されたユーザデータを構成する情報ビットについて誤り訂正符号化を行い、符号化ビットを生成する。符号化部121−1〜121−Nは、生成した符号化ビットを変調部122−1〜122−Nに出力する。
【0040】
変調部122−1〜122−Nは、制御部から入力された変調方式情報が表す変調方式を設定する。変調部122−1〜122−Nは、符号化部121−1〜121−Nから入力された符号化ビットを、設定した変調方式を用いて変調して、端末装置B11〜B1N宛の変調データ信号を生成する。変調部122−1〜122−Nは、生成した変調データ信号を非線形プレコーディング部123に出力する。
【0041】
非線形プレコーディング部123は、変調部122−1〜122−Nから入力された変調データ信号を、フィルタ算出部106から入力されたフィルタ係数に基づいてプレコーディングを行い、プレコーディング済信号を生成する。非線形プレコーディング部123が行うプレコーディングについては後述する。非線形プレコーディング部123は、生成したプレコーディング済信号を係数乗算部125に出力する。
【0042】
係数保存部124は、データ信号の電力を補正するためのアンテナ数(又はストリーム数)に対応付けて電力補正係数を予め記憶している。電力補正係数は、基地局装置A1の他、端末装置B11〜B1Nにおいても記憶されている。電力補正係数の詳細については、後述する。
【0043】
係数乗算部125は、アンテナ数情報生成部141から入力されたアンテナ数情報が示すアンテナ数に対応する電力補正係数を係数保存部124から読み出す。係数乗算部125は、読み出した電力補正係数を非線形プレコーディング部123から入力されたプレコーディング済信号に乗算して、係数乗算信号(データ信号)を生成する。この電力補正係数は、全アンテナに対して共通に乗算される値である。係数乗算部125は、生成した係数乗算信号(データ信号)をフレーム構成部127に出力する。
なお、係数保存部124は、電力補正係数をアンテナ数及びストリーム数の組毎に記憶しておいてもよい。その場合、係数乗算部125は、アンテナ数情報生成部141から入力されたアンテナ数情報が示すアンテナ数及びストリーム数の組に対応する電力補正係数を係数保存部124から読み出す。
【0044】
CRS生成部126は、アンテナ数情報生成部141から入力されたアンテナ数情報に基づきCRSを生成し、生成したCRSをフレーム構成部127に出力する。生成したCRSは、基地局装置A1及び端末装置B11〜B1Nが各々記憶している基準信号を含んで構成される。
【0045】
フレーム構成部127は、予め複数のCRS配置情報とCRS配置符号を対応付けて記憶している記憶部を備える。CRS配置情報とは、送信信号フレームにおけるCRS及び制御信号をアンテナ毎にどのサブキャリア(周波数)のどのシンボル(時刻)に配置するかを示す情報であり、アンテナ数によって異なる情報である。フレーム構成部127は、アンテナ数情報生成部141から入力されたアンテナ数情報に対応するCRS配置情報とCRS配置符号を記憶部から読み出す。
【0046】
フレーム構成部127は、係数乗算部125から入力された係数乗算信号(データ信号)、CRS生成部126から入力されたCRS及び制御部150から入力された制御信号を予め定められた時間毎のフレームに割り当て、読み出したCRS配置符号を含めて送信しようとするアンテナ毎の送信信号フレームを生成する。フレーム構成部127は、係数乗算信号(データ信号)、CRS及び制御信号の割り当てを、読み出したCRS配置情報に基づいて行う。
フレーム構成部127は、生成した送信信号フレームをIFFT部126−1〜126−Nのうち、送信しようとするアンテナ101−n(nは1以上N以下の整数)に対応するIFFT部128−nに出力する。
【0047】
IFFT部128−1〜128−Nは、フレーム構成部127から入力された送信信号フレームに対してIFFT(Inverse Fast Fourier Transform;逆高速フーリエ変換)を行い、ベースバンド・時間領域信号を生成する。IFFT部128−1〜128−Nは、生成したベースバンド・時間領域信号をGI挿入部129−1〜129−Nに出力する。
【0048】
GI挿入部129−1〜129−Nは、IFFT部128−1〜128−Nから入力したベースバンド・時間領域信号にGIを付加し、GI付加ベースバンド・ディジタル送信信号を生成する。ガードインターバルGIとは、例えばOFDMシンボル(の時間領域信号)の後半の一部分の信号を、OFDMシンボルの先頭に付加したものである。GI挿入部129−1〜129−Nは、生成したGI付加ベースバンド・ディジタル送信信号を送信部130−1〜130−Nに出力する。
【0049】
送信部130−1〜130−Nは、GI挿入部129−1〜129−Nから入力されたGI付加ベースバンド・ディジタル送信信号をD/A(Digital−to−Analog)変換し、ベースバンド・アナログ送信信号を生成する。送信部130−1〜130−Nは、生成したベースバンド・アナログ送信信号をアップコンバートして無線周波数送信信号を生成し、生成した無線周波数送信信号をアンテナ部101−1〜101−Nに出力する。
【0050】
アンテナ数情報生成部141は、無線周波数信号の送信に用いるアンテナ数Nの情報(アンテナ数情報)を生成し、生成したアンテナ数情報を係数乗算部125、CRS生成部126及びフレーム構成部127に出力する。
アンテナ数情報生成部141は、アンテナ数情報を生成するために、基地局装置A1からの無線周波数信号(電波)が到達する範囲(セル)に在圏し、通信を行っている端末装置B1nへの送信に用いる基地局装置A1のアンテナ数をカウントする(「決定する」又は「算出する」という意味である)。アンテナ数情報生成部141は、例えば、公知の接続方法やハンドオーバ方法(3GPP TS 36.300に規定された方法、等)を用いて、新たに基地局装置A1との通信を開始したとき、新たに基地局装置A1との通信を終了したとき、送信に用いる基地局装置A1のアンテナ数をカウントする。
アンテナ数情報生成部141は、新たにMU−MIMOにより下りリンク信号を受信する端末装置が加わったとき、またはカウントしたアンテナ数が変化したとき、変化後のアンテナ数を表すアンテナ数情報を出力する。
【0051】
アンテナ数Nは、必ずしも物理的に備えられるアンテナ部101−1〜101−Nの数に限らず、例えば、仮想的なアンテナ数の総数(送信ストリーム数M)であってもよい。アンテナ数情報生成部141は、制御部150から入力された端末装置毎のストリーム数情報に基づいて送信ストリーム数Mをカウントする。
また、アンテナ数情報生成部141は、カウントしたアンテナ数とストリーム数の組を示すアンテナ数情報を出力するようにしてもよい。
【0052】
次に、フィルタ算出部106が行うフィルタ係数を算出する処理について説明する。
フィルタ算出部106は、伝搬路状態情報取得部105から入力された伝搬路状態情報に基づき伝搬路行列Hを生成する。伝搬路状態情報は、後述するように端末装置毎の伝搬路状態ベクトルの量子化ベクトル(N列)を示す。フィルタ算出部106は、入力された伝搬路状態情報を端末装置B11〜B1Nにわたって統合して伝搬路行列Hを生成する。従って、伝搬路行列Hは、式(1)に表されるN行N列の行列であり、その要素値hpq(1≦p,q≦N)は、アンテナ101−qから端末装置B1pまでの伝達関数を正規化及び量子化した値である。
【0053】
【数1】

【0054】
式(1)において、Cnは端末装置B1n(1≦n≦N)に対応する伝搬路状態ベクトルの正規化後のノルムである。hnは端末装置B1nに対応する伝搬路状態ベクトルを示す。添字のHは、行列の共役転置を示す。例えば、|h1|は、ベクトルh1のノルムを示す。
フィルタ算出部106は、生成した伝搬路行列Hの逆行列H−1を算出し、算出した逆行列H−1をフィルタ係数Wとして非線形プレコーディング部123に出力する。
【0055】
なお、上述の説明では、フィルタ算出部106は、アンテナ数Nとストリーム数Mが等しい場合にN行N列の伝搬路行列Hを生成する例を挙げたが、本実施形態ではこれには限られない。アンテナ数Nとアンテナ数情報生成部141で算出されるストリーム数Mが異なる場合には、フィルタ算出部106は、M行N列の伝搬路行列Hを生成する。その場合、フィルタ算出部106は、フィルタ係数Wとして、伝搬路行列Hの擬似逆行列(pseudo−inverse matrix)(HHH)−1Hを算出する。変数Hの右上における記号Hは、随伴行列を示す。従って、フィルタ係数Wは、N行M列の行列で表される。
【0056】
なお、上述の説明では、フィルタ算出部106が各端末装置において正規化された伝搬路状態情報を統合して伝搬路行列Hを生成する例を挙げたが、本実施形態ではこれには限られない。例えば、フィルタ算出部106は、正規化されていない伝搬路状態情報を統合して伝搬路行列Hを生成してもよい。
【0057】
上述の説明では、ZF(Zero Forcing;ゼロフォーシング)の手法により、フィルタ算出部106が生成した伝搬路行列Hの逆行列H−1をフィルタ係数として生成する例を挙げたが、MMSE(Minimum Mean Square Error;最小平均二乗誤差)法によってフィルタ係数を生成してもよい。
MMSE法を用いる場合、フィルタ算出部106は、伝搬路行列Hに基づきN行2N列の行列Hexを生成する。行列Hexは、[H αI]と表される。αは、端末装置あたりの平均雑音電力を、1つのOFDMシンボルの1つのサブキャリアにおける端末装置あたりの送信電力で除算して得られた値α2の平方根である。Iは、N行N列の単位行列である。
フィルタ算出部106は、フィルタ係数Wとして行列Hexの擬似逆行列(HexHHex)−1Hexと算出する。
【0058】
次に、非線形プレコーディング部123が行うプレコーディング処理について説明する。
非線形プレコーディング部123は、変調部122−1〜122−Nから入力された変調データ信号の各値s1〜sNを要素とするベクトルsを生成する。非線形プレコーディング部123は、このベクトルsを生成する処理をサブキャリア毎に行う。
非線形プレコーディング部123は、生成したベクトルsと2つの候補ベクトルz1とz2を加算して合成ベクトルs+z1τ+jz2τを算出する。候補ベクトルz1とz2は、各々整数値を要素とするN次元ベクトルである。τは、変調部122−1〜122−Nにおける変調方式に対応する係数である。この係数τについては後に詳述する。なお、ストリーム数MがNと異なる場合には、ベクトルs及び候補ベクトルz1、z2はM次元ベクトルである。
【0059】
非線形プレコーディング部123は、算出した合成ベクトルに対して、入力されたフィルタ係数Wを乗算して得られた乗算ベクトルであるW(s+z1τ+jz2τ)のノルムを算出する。ここで、非線形プレコーディング部123は、算出したノルムを最小とする2つの候補ベクトルz1とz2を、代表ベクトルz1’とz2’として求める。代表ベクトルz1’とz2’は、式(2)で表される。
【0060】
【数2】

【0061】
式(2)において、ベクトルsに加算される候補ベクトルz1、z2に基づく成分z1τ+jz2τを、摂動ベクトルと呼ぶ。また、フィルタ係数Wにベクトルsを乗算して得られるベクトルs0を信号点ベクトルと呼ぶ。ここで、s0=Wsである。
ここで、非線形プレコーディング部123は、代表ベクトル探索の処理演算量を削減するために、摂動ベクトルを予め定められた距離LBSよりも小さい範囲内に範囲を限定して、上述の代表ベクトルz1’とz2’を探索する処理を行うのが好ましい。
【0062】
非線形プレコーディング部123は、代表ベクトルz1’とz2’に対応する乗算ベクトルの各要素となる信号をプレコーディング済信号として係数乗算部125に出力する。
【0063】
次に、送信信号フレームの構成例について説明する。
図3は、本実施形態に係る送信信号フレームの一構成例を示す概念図である。
図3において、最上行から下へ順に、アンテナ101−1〜101−Nから送信される送信信号フレームを示す。横軸は、時刻を示す。各送信信号フレームの長さは、Tである。各送信信号フレームはOFDMシンボルから構成される。
図3の最上行は、アンテナ101−1から送信される送信信号フレームが、時刻t1においてCRS−Tx1を含み、時刻tN+1以降t1+Tまで係数乗算信号(データ信号)を含むことを示す。
図3の第2行は、アンテナ101−2から送信される送信信号フレームが、時刻t2においてCRS−Tx2を含み、時刻tN+1以降t1+Tまで係数乗算信号(データ信号)を含むことを示す。
図3の第N行は、アンテナ101−Nから送信される送信信号フレームが、時刻tNにおいてCRS−TxNを含み、時刻tN+1以降t1+Tまで係数乗算信号(データ信号)を含むことを示す。
【0064】
CRSは、基地局装置A1のアンテナ毎に送信される参照信号である。CRS−Tx1、CRS−Tx2…CRS−TxNは、基地局装置A1のそれぞれのアンテナと各端末装置のアンテナとの間の伝搬路推定に用いられる参照信号であり、「Tx1」、「Tx2」…「TxN」は、アンテナ101−1〜101−Nに対応する記号である。図3では、1つのアンテナがCRSを送信している時刻では他のアンテナは何も送信しないようにすることで、各アンテナのCRSが互いに直交するように時分割多重をした場合の例である。
【0065】
本実施形態では送信信号フレームの構成は、図3に示す構成に限られない。例えば、フレーム構成部127は、係数乗算信号(データ信号)とCRSを、図3に示すように、同一の送信信号フレームに含まれるように送信信号フレームを生成してもよいし、係数乗算信号(データ信号)とCRSを別個の送信信号フレームに割り当てられるように送信信号フレームを生成してもよい。
また、フレーム構成部127は、図3に示すように、101−1〜101−Nの順に、遅い時刻にCRSが配置されるように送信信号フレームを生成してもよい。また、フレーム構成部127は、係数乗算信号(データ信号)をCRSよりも早い時刻に配置して送信信号フレームを生成してもよいし、係数乗算信号(データ信号)の一部とCRSの一部を交互に配置して送信信号フレームを生成してもよい。
いずれの送信信号フレームでも、CRSが含まれる周波数(サブキャリア)と時刻(シンボル)を示すCRS配置情報を用いて、送信信号フレームからCRSを抽出することができる。
【0066】
図4は、本実施形態に係る送信信号フレームのその他の構成例を示す概念図である。
図4において、横軸は時刻、縦軸は周波数を示す。t1、t2、t3、t4、t5…は、OFDMシンボルの時刻を示す。f1、f2、f3、f4、f5…は、サブキャリア周波数を示す。
図4は、周波数f3、f6、f9、及びf12、のサブキャリアにおいて、時刻t1、t2、t5、…にCRSが割り当てられ、その他のサブキャリア又は時刻において係数乗算信号(データ信号)が割り当てられることを示す。なお、斜めハッチングを施した部分は、CRSが割り当てられることを示し、空白の部分は、データ信号(係数乗算信号)が割り当てられることを示す。
【0067】
図5は、本実施形態に係る送信信号フレームのその他の構成例を示す概念図である。
図5において、横軸は時刻、縦軸は周波数を示す。t1、t2、t3、t4、t5…は、信号のサンプル時刻を示す。f1、f2、f3、f4、f5…は、サブキャリア周波数を示す。
図5は、周波数f3、f6、f9、及びf12、のサブキャリアにおいて、時刻t1、t2、t5、…にCRSが割り当てられ、時刻t1、t2及びt3(周波数f3、f6、f9、及びf12、のサブキャリアにおいて、時刻t1及びt2を除く)において制御信号が割り当てられ、その他のサブキャリア又は時刻において係数乗算信号が割り当てられることを示す。なお、斜めハッチングを施した部分は、CRSが割り当てられることを示し、空白の部分は、係数乗算信号(データ信号)が割り当てられることを示し、クロスの斜線でハッチングを施した部分は、制御信号が割り当てられることを示す。
【0068】
図6は、本実施形態に係る端末装置B1nの構成を示す概略図である。
端末装置B1nは、アンテナ部201、受信部202、GI除去部203、FFT部204、信号分離部205、係数保存部206、係数除算部207、伝搬路推定部208、伝搬路補償部209、モジュロ(Modulo)補償部210、復調部211、復号部212、伝搬路状態情報生成部213、IFFT部231、GI挿入部232、送信部233及びアンテナ数情報取得部242を含んで構成される。以下では、「モジュロ」を「Modulo」ということがある。
【0069】
即ち、端末装置B1nは、基地局装置A1から電波として送信された無線周波数信号を1個のアンテナ部201を用いて受信し、また、アンテナ部201を用いて生成した無線周波数信号を基地局装置A1に送信する。
アンテナ部201は、無線周波数受信信号を受信部202に出力する。また、アンテナ部201は、送信部233から入力された無線周波数送信信号を基地局装置A1に電波として送信する。
【0070】
受信部202は、アンテナ部201から入力された無線周波数信号をダウンコンバートしてベースバンド・アナログ受信信号を生成する。受信部202は、生成したベースバンド・アナログ受信信号をA/D変換してベースバンド・ディジタル受信信号を生成する。受信部202は、生成したベースバンド・ディジタル受信信号をGI除去部203に出力する。
【0071】
GI除去部203は、受信部202から入力されたベースバンド・ディジタル受信信号からGIを除去し、GIを除去したディジタル信号(「GI除去済ディジタル信号」ということがある。)をFFT部204に出力する。
【0072】
FFT部204は、GI除去済ディジタル信号に対してFFT(高速フーリエ変換)を行い、周波数領域信号を生成する。FFT部204は、生成した周波数領域信号を信号分離部205に出力する。
【0073】
信号分離部205は、FFT部204から入力された周波数領域信号からCRS配置符号を抽出する。信号分離部205は、予め複数のCRS配置情報とCRS配置符号を対応付けて記憶している記憶部を備える。この記憶部が記憶するCRS配置情報とCRS配置符号は、フレーム構成部127の記憶部が記憶するCRS配置情報とCRS配置符号と同一である。信号分離部205は、抽出したCRS配置符号に対応するCRS配置情報を読み出し、読み出したCRS配置情報に基づいて、CRS、係数乗算信号(データ信号)及び制御信号を分離する。
【0074】
信号分離部205は、分離した係数乗算信号(データ信号)を係数除算部207に出力し、また、CRSを伝搬路推定部208に出力する。また、信号分離部205は、分離した制御信号をアンテナ数情報取得部242に出力する。信号分離部205は、分離した制御信号のうち変調方式情報を抽出し、抽出した変調方式情報をModulo補償部210及び復調部211に出力する。
【0075】
係数保存部206は、データ信号の電力を補正するための電力補正係数を予め記憶している。係数保存部206が記憶する電力補正係数は、係数保存部124が記憶する電力補正係数(後述)と同様でよい。
係数除算部207は、アンテナ数情報取得部242から入力されたアンテナ数情報に対応する電力補正係数を係数保存部206から読み出す。係数保存部206から読み出した電力補正係数を信号分離部205から入力された係数乗算信号(データ信号)に対して除算して、データ信号を生成する。係数除算部207は、生成したデータ信号を伝搬路補償部209に出力する。
【0076】
伝搬路推定部208は、信号分離部205から入力されたCRSに基づいて伝搬路状態情報、即ち基地局装置A1が備えるアンテナ部101−1〜101−Nの各々から端末装置B1nへの伝達関数を推定する。伝搬路推定部208は、推定した伝達関数を要素とし、その伝達関数の数(次元数)がアンテナ数情報取得部442から入力されたアンテナ数情報が示すアンテナ数である、伝搬路状態ベクトルhnを生成する。nは、端末装置B1nを示すインデックスである。
伝搬路推定部208は、生成した伝搬路状態ベクトルhnを、そのノルム|hn|が予め定めた値Cnになるように正規化する。値Cnは、例えば全通信帯域の平均受信電力の平方根である。
伝搬路推定部208は、この平均受信電力をフェージングによる影響分が補償されたパスロス(伝搬路損失)と基地局装置A1が送信した電波が端末装置B11〜B1nまでの伝達関数に基づいて算出してもよい。ここで、基地局装置A1が送信した電波が端末装置B11〜B1nに受信されるまでの間、反射、回折、又は遮蔽されることにより互いに干渉するため、端末装置B11〜B1nにおける広帯域平均受信電力が変動する現象であるシャドウィングを考慮してもよい。また、値Cnは、端末装置B1n間で共通であっても、各々異なっていてもよい。伝搬路状態ベクトルhnはN次元の行ベクトルである。
伝搬路推定部208は、正規化した伝搬路状態ベクトルCn・hn/|hn|を伝搬路状態情報生成部213に出力する。伝搬路推定部208は、値Cnをノルム|hn|で除算して正規化係数Cn/|hn|を算出し、算出した正規化係数を伝搬路補償部209に出力する。
【0077】
伝搬路補償部209は、係数除算部207から入力されたデータ信号に伝搬路推定部208から入力された正規化係数を乗算することにより伝搬路補償を行い、伝搬路補償信号を生成する。伝搬路補償部209は、生成した伝搬路補償信号をModulo補償部210に出力する。
【0078】
Modulo補償部210は、信号分離部205から入力された変調方式情報に基づいて、伝搬路補償部209から入力された伝搬路補償信号に対してModulo(剰余)演算を行って、Modulo補償信号を生成する。
Modulo補償部210は、自己が備える記憶部に変調方式情報とModulo補償係数τとを予め対応付けて記憶している。Modulo補償係数τは、符号化ビットを変調した変調データ信号の平均電力値の平方根であり、変調方式によって異なる値である。例えば、QPSK(Quadrature Phase Shift Keying;位相偏移変調)方式では、τは2√2である。16QAM(Quadrature Amplitude Modulation;16値直交振幅変調)方式では、τは8/√10である。64QAM(Quadrature Amplitude Modulation;64値直交振幅変調)方式では、τは16/√42である。また、Modulo補償係数τは、端末装置B11〜B1N間で共通の値である。
【0079】
Modulo補償部210は、入力された変調方式情報に対応するModulo補償係数τを記憶部から読み出し、読み出したModulo補償係数τに基づいて入力された伝搬路補償信号の各サンプル値ξについてModulo演算を行う。Modulo補償部210は、Modulo演算において、式(3)を用いてModulo補償信号の各サンプル値βを算出する。
【0080】
【数3】

【0081】
式(3)において、floor(…)は、実数…を越えない最大の整数値を表す。Re(…)は、複素数…の実部を表す。Im(…)は複素数…の虚部を表す。jは虚数単位を表す。即ち、Modulo補償信号の各サンプル値βにおいて、実部及び虚部の最大値がτ、最小値がτとなるように範囲が制約される。
Modulo補償部210は、生成したModulo補償信号を復調部211に出力する。
【0082】
復調部211は、信号分離部205から入力された変調方式情報に対応する復調方式を用いて、Modulo補償部210から入力されたModulo補償信号を復調して復調信号を生成する。生成した復調信号は、硬判定された符号化ビット又は符号化ビットに対応した軟判定値である。復調部211は、生成した復調信号を復号部212に出力する。
復号部212は、復調部211から入力された復調信号を復号してユーザデータを生成し、生成したユーザデータを出力する。
【0083】
伝搬路状態情報生成部213は、伝搬路推定部208から入力された正規化した伝搬路状態ベクトルを量子化し、伝搬路状態情報を生成する。
ここで、伝搬路状態情報生成部213は、量子化された伝搬路状態ベクトルの候補である候補ベクトルを複数個記憶したコードブック(codebook;符号帳)を備える。伝搬路状態情報生成部213は、入力された伝搬路状態ベクトルと各候補ベクトルとの残差を算出し、算出した残差の絶対値が最小となる候補ベクトルを量子化値と定め、その候補ベクトルを伝搬路状態情報と定める。
伝搬路状態情報生成部213は、生成した伝搬路状態情報を予め定めた変調方式で変調して変調送信信号を生成し、生成した変調送信信号をIFFT部231に出力する。
【0084】
IFFT部231は、伝搬路状態情報生成部213から入力された変調送信信号に対してIFFTを行って時間領域送信信号を生成する。IFFT部231は、生成した時間領域送信信号をGI挿入部232に出力する。
GI挿入部232は、IFFT部231から入力された時間領域送信信号にGIを付加して、GI付加時間領域送信信号を生成し、生成したGI付加時間領域送信信号を送信部233に出力する。
【0085】
送信部233は、GI挿入部232から入力されたGI付加時間領域送信信号(ディジタル信号)をD/A変換してベースバンド・アナログ送信信号を生成する。送信部233は、生成したベースバンド・アナログ送信信号をアップコンバートして無線周波数送信信号を生成して、生成した無線周波数送信信号をアンテナ部201に出力する。
【0086】
アンテナ数情報取得部242は、信号分離部205から入力された制御信号からアンテナ数情報を抽出し、抽出したアンテナ数情報を係数除算部207及び伝搬路推定部208に出力する。
【0087】
次に、係数保存部124が記憶している電力補正係数について説明する。電力補正係数は、例えば、送信電力の平均値の平方根(平均送信振幅)に対する逆数値、送信電力の平方根の99%値に対する逆数値(後述)である。
この送信電力とは、非線形プレコーディング部123が出力するプレコーディング済信号の電力である。送信電力は、常に変動している値である。そのため、従来技術では、基地局装置A1がプレコーディング済信号の送信電力が一定値になるように正規化していた。これにより、端末装置の受信信号の振幅が常に変動することとなる。そのため、従来技術では、基地局装置A1が各端末装置にDMRSを送信して、各端末装置が受信信号の振幅を推定していた。送信電力が変動する要因は、基地局装置から各端末装置までの伝搬路特性(伝達関数)の他、多重端末装置数、即ち実際の送信に係る送信アンテナ数やストリーム数が挙げられる。多重端末装置数とは、1個の基地局装置から同一の周波数帯域の搬送波を用いて同時に通信する端末装置の個数である。なお、ストリーム数とは、基地局装置A1が同一周波数及び同一時刻において空間多重して送信するデータ信号の数である。
【0088】
ここで、本実施形態に係る送信電力の一例について説明する。
図7は、本実施形態に係る送信電力の一例を示す図である。
図7において、横軸は送信電力の平均値の平方根を表す。縦軸はC.D.F.(Cumulative Distribution Function;累積分布関数)を表す。C.D.F.とは、送信電力の平方根毎の確率値を、送信電力の平方根がゼロである場合を原点として積分した値である。C.D.F.の最小値は0であり最大値は1である。図7に示す送信電力は、全アンテナからの総送信電力の時間平均値が一定という条件のもとで算出したアンテナ1個当たりの送信電力である。図7において、実線は、いずれも送信アンテナ数Nが4の場合を示す。ここで、○印、△印、□印は、各々ストリーム数が4、3、2の場合を示す。破線は、いずれも送信アンテナ数が8の場合を示す。ここで、○印、△印、□印は、各々ストリーム数が8、6、4の場合を示す。
【0089】
図7によれば、送信アンテナ数が増加するほど、送信電力は減少する傾向がある。また、ストリーム数が増加するほど、送信電力は増加する傾向がある。例えば、送信電力の平均値の平方根は、送信アンテナ数が4であって、ストリーム数が、2、3、4のとき、それぞれ0.63、0.69、0.84である。また、送信アンテナ数が8であって、ストリーム数が、4、6、8のときは、送信電力の平均値の平方根は、それぞれ0.42、0.45、0.55である。
また、図7は、いずれの送信アンテナ数及びストリーム数の場合でも、C.D.F.の送信電力の平方根に対する傾きは比較的急であり、送信電力が平均値を中心として狭い範囲で分布していることを示す。従って、図7は、送信アンテナ数とストリーム数が、送信電力が変動する主要因であることを示す。
【0090】
図8は、本実施形態に係る電力補正係数の一例を示す表である。
図8に示す電力補正係数は、送信アンテナ数とストリーム数の組毎の送信電力の平均値の平方根に対する逆数値である。送信アンテナ数が4であって、ストリーム数が、2、3、4のとき、電力補正係数は、それぞれ1.59、1.45、1.19である。送信アンテナ数が8であって、ストリーム数が、4、6、8のとき、電力補正係数は、それぞれ2.38、2.22、1.82である。
【0091】
図9は、本実施形態に係る電力補正係数のその他の例を示す表である。
図9に示す電力補正係数は、送信アンテナ数とストリーム数の組毎のC.D.F.が0.99の場合の送信電力の平方根(99%値)に対する逆数値である。送信アンテナ数が4であって、ストリーム数が、2、3、4のとき、電力補正係数は、それぞれ0.91、0.83、0.67である。送信アンテナ数が8であって、ストリーム数が、4、6、8のとき、電力補正係数は、それぞれ1.54、1.54、1.18である。
【0092】
そこで、係数乗算部125は、送信アンテナ数及びストリーム数の組に対応する電力補正係数を読み出し、読み出した電力補正係数を非線形プレコーディング部123から入力されたプレコーディング済信号に乗算して、係数乗算信号(データ信号)を生成する。これにより、基地局装置A1において、送信アンテナ数(ストリーム数)が変動しても、送信しようとするデータ信号及び各端末装置B11〜B1Nが受信するデータ信号の平均的な電力を一定に保つことができる。
【0093】
本実施形態では、係数保存部124が送信電力の平方根の99%値に対する逆数値を記憶し、係数乗算部125が電力補正係数として、この値を読み出し、乗算する場合には、許容される送信電力の最大値に対する逆数値をこの値に設定してもよい。
【0094】
図10は、本実施形態に係る基地局装置A1の別構成例A1’を示す概略図である。
基地局装置A1’は、係数乗算部125とフレーム構成部127の間に送信切替部143を備えている。
図10の基地局装置A1’は、アンテナ部101−1〜101−N、受信部102−1〜102−N、GI除去部103−1〜103−N、FFT部104−1〜104−N、伝搬路状態情報取得部105、フィルタ算出部106、符号化部121−1〜121−N、変調部122−1〜122−N、非線形プレコーディング部123、係数保存部124、係数乗算部125、CRS生成部126、フレーム構成部127、IFFT部128−1〜128−N、GI挿入部129−1〜129−N、送信部130−1〜130−N、アンテナ数情報生成部141、送信切替部143及び制御部150を含んで構成される。図10の基地局装置A1’と図2の基地局装置A1とを対比すると、前者は送信切替部143を付加された点を除いては、その他の構成は同一であるので、以下では、もっぱら相違点について説明を行う。
【0095】
送信切替部143は、係数乗算部125から入力された係数乗算信号(データ信号)に基づきサブキャリア毎に送信電力の平均値を算出する。送信切替部126は、算出した送信電力の平均値が許容される最大送信電力Pmaxよりも大きい場合、入力された係数乗算信号(データ信号)を全てゼロにする(信号を送信しない)ことによりクリッピング(clipping)を行う。これにより、基地局装置A1が、許容される最大送信電力を超えて信号を送信してしまうことを防ぐことが出来る。
【0096】
なお、上述の説明では、係数保存部124、係数乗算部125及び送信切替部526が送信電力の平方根の99%値を用いる例を挙げたが、その代わりに送信電力の平均値の平方根よりも十分に大きい値、例えば送信電力の平方根の99.9%値であってもよい。但し、大きい値を用いると、クリッピングによる信号の欠落が少なくなるがOFDMシンボルの量子化歪がより顕著となる。そのため、係数保存部124は、信号の欠落と量子化歪による品質の低下が最も小さくなるC.D.F.(例えば、98%)に対応する送信電力の平方根の値を記憶してもよい。
【0097】
そのような場合でも、ネットワーク全体として数%〜10%程度のフレーム誤り(framing error)が許容されている場合、上述のクリッピングによる品質やスループットの低下への影響は限定的である。むしろ、本発明によるDMRSを送受信しないことによるオーバーヘッド削減効果のほうが大きくシステム全体としてスループットが向上する。
上述の説明では送信切替部143は、クリッピングをサブキャリア毎に行う例を挙げたが、予め定めた複数毎又は全てのサブキャリアに対して行ってもよい。
【0098】
また、端末装置B11〜B1Nが備える係数保存部206も、基地局装置A1の係数保存部124が記憶する電力補正係数と同様の電力補正係数を記憶する。この場合、係数乗算部207は、係数保存部206から読み出した電力補正係数で信号分離部205から入力された係数乗算信号(データ信号)を除算して、データ信号を生成する。
【0099】
次に、本実施形態に係る通信システム1の動作について説明する。
図11は、本実施形態に係る通信システム1の動作を表すシーケンス図である。
(ステップS101)基地局装置A1が備えるアンテナ数情報生成部141は、アンテナ数情報を生成し、生成したアンテナ数情報を端末装置B11〜B1Nの各々に送信する。アンテナ数情報生成部141がアンテナ数情報を送信する契機は、例えば新たに通信を開始又は終了する端末装置を検知し、アンテナ数が変化する時である。また、アンテナ数情報生成部141は、制御部150から入力されたストリーム数情報に基づいてストリーム数を算出し、算出したストリーム数をアンテナ数情報に含めるようにしてもよい。
その後、ステップS103に進む。
【0100】
(ステップS102)端末装置B11〜B1Nが各々備えるアンテナ数情報取得部242は、受信した制御信号からアンテナ数情報を抽出し、抽出したアンテナ数情報を係数除算部407及び伝搬路推定部408に出力する。その後、ステップS104に進む。
(ステップS103)基地局装置A1が備えるCRS生成部126は、アンテナ数情報生成部141が生成したアンテナ数情報に基づきCRSを生成し、基地局装置A1は生成したCRSを端末装置端末装置B11〜B1Nに各々送信する。その後、ステップS107に進む。
【0101】
(ステップS104)端末装置B11〜B1Nが各々備える伝搬路推定部208は、基地局装置A1から受信したCRS及びアンテナ数情報に基づいて伝搬路状態ベクトルを算出し、算出した伝搬路状態ベクトルを正規化する。伝搬路推定部208は、正規化した伝搬路状態ベクトルを伝搬路状態情報生成部213に出力する。その後、ステップS105に進む。
(ステップS105)端末装置B11〜B1Nが各々備える伝搬路状態情報生成部213は、伝搬路推定部208から入力された正規化した伝搬路状態ベクトルを量子化して伝搬路状態情報を生成する。その後、ステップS106に進む。
(ステップS106)端末装置B11〜B1Nは、各々生成した伝搬路状態情報を基地局装置A1に送信する。その後、ステップS110に進む。
【0102】
(ステップS107)基地局装置A1が備えるフィルタ算出部106は、端末装置B11〜B1Nから各々受信された伝搬路状態情報に基づきフィルタ係数を算出し、算出したフィルタ係数を非線形プレコーディング部123に出力する。
非線形プレコーディング部123は、変調部122−1〜122−Nから入力された変調データ信号をフィルタ算出部106から入力されたフィルタ係数に基づいてプレコーディングを行い、プレコーディング済信号を生成する。非線形プレコーディング部123は、生成したプレコーディング済信号を係数乗算部125に出力する。その後、ステップS108に進む。
【0103】
(ステップS108)基地局装置A1が備える係数乗算部125は、係数保存部124から読み出した電力補正係数を非線形プレコーディング部123から入力されたプレコーディング済信号に乗算して、係数乗算信号(データ信号)を生成する。その後、ステップS109に進む。
(ステップS109)基地局装置A1は生成したデータ信号を端末装置B11〜B1Nに各々送信する。その後、処理を終了する。
【0104】
(ステップS110)端末装置B11〜B1Nが各々備える係数除算部207は、アンテナ数情報取得部242から入力されたアンテナ数情報に対応する電力補正係数を係数保存部206から読み出す。係数除算部207は、基地局装置A1から受信した係数乗算信号を読み出した電力補正係数で除算して、データ信号を生成する。係数除算部207は、生成したデータ信号を伝搬路補償部209に出力する。その後、ステップS111に進む。
(ステップS111)端末装置B11〜B1Nが各々備える伝搬路補償部209は、係数除算部207から入力されたデータ信号に対して伝搬路補償を行って伝搬路補償信号を生成し、生成した伝搬路補償信号をModulo補償部210に出力する。
Modulo補償部210は、伝搬路補償部209から入力された伝搬路補償信号に対してModulo演算を行って、Modulo補償信号を生成し、生成したModulo補償信号を復調部211に出力する。
復調部211は、Modulo補償部210から入力されたModulo補償信号を復調して復調信号を生成し、生成した復調信号を復号部212に出力する。
復号部212は、復調部211から入力された復調信号を復号してユーザデータを生成し、生成したユーザデータを出力する。その後、処理を終了する。
【0105】
これにより、本実施形態では送信装置である基地局装置A1において、各端末装置との間の伝搬路状態等により、送信アンテナ数やストリーム数が変化する場合においても、基地局装置A1から各端末装置B1nにDMRSを送信することなく送信データの振幅を所定の値に補正することができる。そのために、DMRSを送信するためのオーバーヘッドを回避し、送信効率を向上させることができる。
【0106】
上述の説明では、基地局装置A1が備えるアンテナ部101−1〜101−Nの数Nは、通信に係る端末装置B11〜B1Nの数と等しく、各端末装置宛の送信データを対応するアンテナ部を用いて送信する場合の例を挙げた。本実施形態において、単に一部のアンテナ部が通信に用いられていない場合には、アンテナ部の数とは、通信に用いられているアンテナ部の数を指す。本実施形態では、アンテナ部の数は必ずしも物理的なアンテナ部の数に限られず、空間ダイバーシティにおいて端末装置から見て仮想的にアンテナ数がNより少なくなるときは、その仮想的なアンテナ数であってもよい。
【0107】
また、上述の説明では、基地局装置A1が、アンテナ部を各1個ずつ備える端末装置B11〜B1Nと通信することを考慮して、各端末装置に1ストリームずつ送信する場合を例に挙げた。本実施形態は、基地局装置A1が各端末装置に複数のストリームを送信する場合にも適用できる。このとき、ストリーム数とは、各端末装置宛のストリーム数を合計した数である。
アンテナ数又はストリーム数とは、データ信号を送信する単位の数に係る送信単位数情報の一種である。
【0108】
上述したように、本実施形態では、送信装置(基地局装置)は、複数の受信装置に各々データ信号を送信する際、データ信号をプレコーディングし、データ信号を送信する単位の数に係る送信単位数情報を生成し、生成した送信単位数情報に対応する電力補正係数を係数保存部から読み出し、読み出した電力補正係数をプレコーディングしたデータ信号に共通して乗算し、係数を乗算したデータ信号を送信している。
【0109】
また、受信装置(端末装置)は、送信装置から送信単位数情報とデータ信号を受信し、送信装置からの伝搬路の特性を示す伝達関数を推定し、係数保存部から受信した送信単位数情報に対応する係数を読み出し、受信したデータ信号を前記読み出した係数で除算し、推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する。
これにより、本実施形態では伝搬路状態により送信アンテナ数やストリーム数が変化する場合においても、送信装置から複数の各受信装置にDMRSを送信することなく送信データの振幅を所定の値に補正することができる。同時に、本実施形態では送信アンテナ、ストリーム、又は端末装置毎に送信データの振幅を補正する必要がなくなる。そのために、DMRSを送信するためのオーバーヘッドを回避し、送信効率の低下を回避できる。
【0110】
(第2の実施形態)
以下、図面を参照しながら本発明の第2の実施形態について説明する。
本実施形態に係る通信システム2は、基地局装置A2及びN個の端末装置B21〜B2Nを含んで構成される。
図12は、本実施形態に係る基地局装置A2の構成を示す概略図である。
基地局装置A2は、アンテナ部101−1〜101−N、受信部102−1〜102−N、GI除去部103−1〜103−N、FFT部104−1〜104−N、伝搬路状態情報取得部105、フィルタ算出部306、符号化部121−1〜121−N、変調部122−1〜122−N、非線形プレコーディング部123、係数保存部124、係数乗算部325、CRS生成部326、フレーム構成部327、IFFT部128−1〜128−N、GI挿入部129−1〜129−N、送信部130−1〜130−N、スケジューリング部344、ストリーム選択部345及び制御部150を含んで構成される。
【0111】
従って、基地局装置A2は、基地局装置A1におけるフィルタ算出部106、係数乗算部125、CRS生成部126及びフレーム構成部127の代わりにフィルタ算出部306、係数乗算部325、CRS生成部326及びフレーム構成部327を備える。基地局装置A2は、アンテナ数情報生成部141の代わりに、スケジューリング部344及びストリーム選択部345を備える。基地局装置A2は、その他の部分の機能及び構成については、基地局装置A1と同様である。以下の説明では、主に基地局装置A1との差異について述べる。
【0112】
スケジューリング部344は、伝搬路状態情報取得部105から入力された伝搬路状態情報に基づき、MU−MIMOにより空間多重する端末装置の割当情報を生成する。
スケジューリング部344は、2つの端末装置の伝搬路状態情報が示す伝搬路状態ベクトル間の相関性又は類似性を示す指標値(例えば、内積)を算出する。スケジューリング部344は、算出した指標値が予め定めた値よりも小さいとき、互いに独立と判断する。
なお、2つの端末装置の伝搬路状態が「独立」であるとは、必ずしも端末装置同士が直交する伝搬路を持っていると言う意味では無く、プレコーディングによって2つの端末装置に所定の品質以上の信号を、同一周波数・同一時刻でMU−MIMOにより送信できる状態であることを意味する。所定の品質とは、例えば、データ信号の通信に用いる最も低レートの変調及び符号化方式を使用してもフレーム誤り率を例えば0.1以下に抑えることが出来る状態を言う。
スケジューリング部344は、算出した指標値が予め定めた値よりも小さいとき、この2つの端末装置間で独立な伝搬路状態情報であると判断し、その2つの端末装置について独立な伝搬路状態情報を示す割当情報を生成する。
【0113】
逆に、スケジューリング部344は、算出した指標値が予め定めた値よりも等しい又は大きいとき、この2つの端末装置間で独立ではない伝搬路状態情報と判断する。スケジューリング部344は、この2つの端末装置のうち何れか一方(例えば番号が小さいほう)の端末装置について独立な伝搬路状態情報を示す割当情報を生成し、他方の端末装置について独立でない伝搬路状態情報を示す割当情報を生成する。
スケジューリング部344は、その他の端末装置についても、かかる処理を行う。
【0114】
なお、スケジューリング部344は、割当情報を生成する際、各端末装置の伝搬路状態情報を要素とする伝搬路行列のランク(rank)を算出してもよい。スケジューリング部344は、ランクが最大となる伝搬路状態情報の組を定め、定めた組に属する端末装置について独立な伝搬路状態情報を示す割当情報を生成する。それ以外の端末装置について独立ではない伝搬路状態情報を示す割当情報を生成する。
【0115】
スケジューリング部344は、生成した割当情報が表す独立な伝搬路状態情報に対応する端末装置の総数(ストリーム数)をカウントし、カウントした結果であるストリーム数を表すアンテナ数情報を生成する。なお、ここでは各端末装置に対して1ストリームずつ信号を送信する場合について説明する。
また、スケジューリング部344は、制御部150から入力されたストリーム数情報に基づきストリーム数を算出してもよい。スケジューリング部344は、算出したストリーム数情報に基づいてアンテナ数情報を生成してもよく、算出したアンテナ数とストリーム数の組に基づくアンテナ数情報を生成してもよい。
なお、独立な伝搬路状態情報を示す割当情報は、データを送信しようとする端末装置を表し、独立ではない伝搬路状態情報を示す割当情報は、データを送信しない端末装置を表す。
【0116】
スケジューリング部344は、生成した割当情報とアンテナ数情報をCRS生成部326及びフレーム構成部327に出力する。スケジューリング部344は、生成したアンテナ数情報を係数乗算部325及びストリーム選択部345に出力する。
スケジューリング部344は、生成した割当情報が独立な伝搬路状態情報であることを示す端末装置に係る伝搬路状態情報をフィルタ算出部306に出力する。
【0117】
フィルタ算出部306は、スケジューリング部344から入力された伝搬路状態情報に基づき伝搬路行列Hを生成する。
フィルタ算出部306は、生成した伝搬路行列Hに基づく擬似逆行列H+を算出する。擬似逆行列H+を算出する理由は、伝搬路行列Hの行数と列数が必ずしも等しくないからである。
フィルタ算出部306は、算出した擬似逆行列H+をフィルタ係数として非線形プレコーディング部123に出力する。
【0118】
ストリーム選択部345は、スケジューリング部344から割当情報を入力される。ストリーム選択部345は、変調部122−1〜122−Nから入力された変調データ信号のうち、割当情報がデータを送信しようとする端末装置に係る変調データを非線形プレコーディング部123に出力する。ストリーム選択部345は、変調部122−1〜122−Nから入力された変調データ信号のうち、割当情報がデータを送信しない端末装置に係る変調データを非線形プレコーディング部123に出力しない。
【0119】
係数乗算部325は、スケジューリング部344から入力されたアンテナ数情報に対応する電力補正係数を係数保存部124から読み出す。係数乗算部325は、読み出した電力補正係数を非線形プレコーディング部123から入力された非線形プレコーディング信号に乗算して、係数乗算信号(データ信号)を生成する。係数乗算部325は、生成した係数乗算信号(データ信号)をフレーム構成部327に出力する。
【0120】
CRS生成部326は、スケジューリング部344から入力されたアンテナ数情報及び割当情報に基づきCRSを生成し、生成したCRSをフレーム構成部327に出力する。割当情報は、データを送信しようとする端末装置であるか否かを示す情報であるから、CRS生成部326は、データを送信しようとする端末装置に対してCRSを生成する。
【0121】
フレーム構成部327は、予め複数のCRS配置情報をアンテナ数情報、割当情報及びCRS配置符号に対応付けて記憶する記憶部を備える。割当情報がデータを送信しようとする端末装置であることを示す情報である場合、対応するCRS配置情報は、もっぱらデータを送信しようとする端末装置に係数乗算信号(データ信号)、CRS及び制御信号を割り当てることを示す。
フレーム構成部327は、スケジューリング部344から入力されたアンテナ数情報及び割当情報に対応するCRS配置情報及びCRS配置符号を読み出し、読み出したCRS配置情報に基づいて送信しようとするアンテナ毎の送信信号フレームを生成する。ここで、フレーム構成部327は、読み出したCRS配置符号を送信信号フレームに含める。
【0122】
フレーム構成部327は、送信信号フレームを生成する際、そのCRS配置情報に基づいて係数乗算部325から入力された係数乗算信号(データ信号)、CRS生成部326から入力されたCRS及び制御部150から入力された制御信号を送信信号フレームに割り当てる。フレーム構成部327は、スケジューリング部344から入力されたアンテナ数情報及び割当情報を制御信号の一部に含める。
フレーム構成部327は、生成した送信信号フレームをIFFT部126−1〜126−Nのうち、送信しようとするアンテナ101−nに対応するIFFT部128−nに出力する。
【0123】
図13は、本実施形態に係る端末装置B2nの構成を示す概略図である。
端末装置B2nは、アンテナ部201、受信部202、GI除去部203、FFT部204、信号分離部405、係数保存部206、係数除算部407、伝搬路推定部408、伝搬路補償部209、Modulo補償部210、復調部211、復号部212、伝搬路状態情報生成部213、IFFT部231、GI挿入部232、送信部233及び割当情報取得部446を含んで構成される。
【0124】
従って、端末装置B2nは、端末局装置B1nにおける信号分離部205、係数除算部207、伝搬路推定部208、及びアンテナ数情報取得部242の代わりに信号分離部405、係数除算部407、伝搬路推定部408及び割当情報取得部446を備える。端末装置B2nは、その他の部分の機能及び構成については、端末装置B1nと同様である。以下の説明では、主に端末装置B1nとの差異について述べる。
【0125】
信号分離部405は、FFT部204から入力された周波数領域信号からCRS配置符号を抽出し、抽出したCRS配置符号に対応するCRS配置情報を記憶部から読み出す。信号分離部405は、フレーム構成部327が備える記憶部と同様な複数のCRS配置情報をアンテナ数情報、割当情報及びCRS配置符号に対応付けて記憶する記憶部を備える。
信号分離部405は、読み出したCRS配置情報に基づいて、入力された周波数領域信号からCRS、係数乗算信号(データ信号)及び制御信号を分離する。信号分離部405は、分離した係数乗算信号(データ信号)を係数除算部407に出力し、CRSを伝搬路推定部408に出力する。信号分離部405は、分離した制御信号を割当情報取得部446に出力する。信号分離部405は、分離した制御信号のうち変調方式情報を抽出し、抽出した変調方式情報をModulo補償部210及び復調部211に出力する。
【0126】
割当情報取得部446は、信号分離部405から入力された制御信号からアンテナ数情報と割当情報を抽出し、抽出したアンテナ数情報を係数除算部407に出力し、抽出した割当情報を伝搬路推定部408に出力する。
係数除算部407は、係数保存部206から、割当情報取得部446から入力されたアンテナ数情報に対応する電力補正係数を読み出す。係数除算部407は、信号分離部405から入力された係数乗算信号(データ信号)を読み出した電力補正係数で除算して、データ信号を生成する。係数除算部407は、生成したデータ信号を伝搬路補償部409に出力する。
【0127】
伝搬路推定部408は、信号分離部405から入力されたCRSに基づいて、割当情報取得部446から入力された割当情報が独立な伝搬路情報であることを示すアンテナ(ストリーム)からの伝達関数を伝搬路状態情報として推定する。
伝搬路推定部408は、推定した伝搬路状態情報を正規化して伝搬路状態ベクトル及び正規化係数を算出し、算出した伝搬路状態ベクトルを伝搬路状態情報生成部213に出力し、算出した正規化係数を伝搬路補償部209に出力する。
【0128】
次に、本実施形態に係る通信システム2の動作について説明する。
通信システム2において端末装置B2m(mは1以上N以下の整数)は、端末装置B2m宛のストリームに対する基地局装置A1からの伝搬路情報が独立ではない端末装置である。
図14は、本実施形態に係る通信システム2の動作を表すシーケンス図である。
通信システム2の動作は、ステップS101〜ステップS111を有する点で、図10に示す通信システム1の動作と同様であるが、ステップS212〜ステップS214を有する点が異なる。以下、主に通信システム1の動作と異なる点について述べる。
【0129】
(ステップS212)基地局装置A2が備えるスケジューリング部344は、端末装置B21〜B2Nから受信した伝搬路状態情報に基づき独立な伝搬路状態情報を判断し、アンテナ(ストリーム)毎の伝搬路情報が独立か否かを示す割当情報を生成する。その後、ステップS213に進む。
(ステップS213)基地局装置A2が備えるスケジューリング部344は、生成した割当情報を端末装置B21〜B2Nに送信する。その後、ステップS107に進む。
【0130】
(ステップS214)端末装置B21〜B2Nは基地局装置A2から割当情報を受信する。
その後、独立な伝搬路情報であることを示すアンテナに対応する端末装置B2nについては、ステップS110に進む。独立ではない伝搬路情報であることを示すアンテナに対応する端末装置B2mについては、処理を終了する。
【0131】
なお、図14において、ステップS101〜ステップS111を実行する機能部は次の点で、図10に示す通信システム1の動作とは異なる。
ステップS101は、基地局装置A2が備えるスケジューリング部344がアンテナ数情報を生成し、端末装置B21〜B2Nに送信する処理である。
ステップS102は、端末装置B21〜B2Nが備える割当情報取得部446がアンテナ数情報を取得する処理である。
ステップS103は、基地局装置A2が備えるCRS生成部326がCRSを生成する処理である。
ステップS104は、端末装置B2nが備える伝搬路推定部208が伝搬路状態ベクトルを生成する処理である。
ステップS108は、基地局装置A2が備える係数乗算部325が係数乗算信号(データ信号)を生成する処理である。
ステップS110は、基地局装置A2が備える係数除算部407が係数乗算信号(データ信号)を読み出した電力補正係数で除算して、データ信号を生成する処理である。
【0132】
上述したように、本実施形態では、送信装置である基地局装置A2においてデータ信号を送信する単位の数に係る送信単位数情報を生成する際、各受信装置である端末装置B2nから送信された伝達関数に基づいて送信単位数であるアンテナ数もしくはストリーム数を算出している。
これにより、本実施形態では伝搬路状態に基づき送信単位(例えば、アンテナ数、ストリーム数、又はアンテナ数及びストリーム数の組)を変化させる場合においても、送信装置から複数の各受信装置にDMRSを送信することなく送信データの振幅を所定の値に補正することができる。そのために、DMRSを送信するためのオーバーヘッドを回避し、送信効率の低下を回避することができる。
【0133】
(第3の実施形態)
以下、図面を参照しながら本発明の第3の実施形態について説明する。
本実施形態に係る通信システム3は、基地局装置A3及びN個の端末装置B31〜B3Nを含んで構成される。
図15は、本実施形態に係る基地局装置A3の構成を示す概略図である。
基地局装置A3は、アンテナ部101−1〜101−N、受信部102−1〜102−N、GI除去部103−1〜103−N、FFT部104−1〜104−N、伝搬路状態情報取得部105、フィルタ算出部106、符号化部121−1〜121−N、変調部122−1〜122−N、線形プレコーディング部523、係数保存部124、係数乗算部125、CRS生成部126、フレーム構成部127、IFFT部128−1〜128−N、GI挿入部129−1〜129−N、送信部130−1〜130−N、アンテナ数情報生成部141及び制御部150を含んで構成される。
【0134】
従って、基地局装置A3は、基地局装置A1における非線形プレコーディング部123の代わりに線形プレコーディング部523を備える。基地局装置A3は、その他の部分の機能及び構成については、基地局装置A1と同様である。以下の説明では、主に基地局装置A1との差異について述べる。
【0135】
線形プレコーディング部523は、フィルタ算出部106から入力されたフィルタ係数に基づき変調部122−1〜122−Nから入力された変調データ信号に対して線形プレコーディング処理を行う。線形プレコーディング部523は、プレコーディング処理において、入力されたフィルタ係数である行列に、変調部122−1〜122−Nから入力された変調データ信号を要素とするベクトルを乗算してプレコーディング済信号ベクトルを算出する。プレコーディング済信号ベクトルは、各要素値がアンテナ(ストリーム毎)のプレコーディング済信号とするベクトルである。線形プレコーディング部523は、算出したプレコーディング済信号を係数乗算部525に出力する。
【0136】
次に、線形プレコーディング部523から出力されるプレコーディング済信号の電力である送信電力について説明する。この送信電力は、常に変動している値である。そのため、従来技術では、基地局装置A3がプレコーディング済信号の送信電力が一定の値になるように正規化していた。これにより、端末装置の受信信号の振幅が常に変動することとなり、端末装置は、DMRSから推定した送信電力に基づきプレコーディング済信号の振幅を推定する必要があった。このように、送信電力が変動する要因は、基地局装置から各端末装置までの伝搬路特性(伝達関数)の他、多重端末装置数、即ち実際の送信に係る送信アンテナ数やストリーム数が挙げられる。ここで、本実施形態に係る送信電力の一例について説明する。
【0137】
図16は、本実施形態に係る送信電力の一例を示す図である。
図16において、横軸は送信電力の平方根を表す、縦軸はC.D.F.を表す。図16に示す送信電力は、全アンテナからの総送信電力の時間平均値が一定という条件のもとで算出したアンテナ1個当たりの送信電力である。図16において、実線は、いずれも送信アンテナ数Nが4の場合を示す。ここで、△印、□印は、各々ストリーム数が3、2の場合を示す。破線は、いずれも送信アンテナ数が8の場合を示す。ここで、○印、△印、□印は、各々ストリーム数が4、3、2の場合を示す。
【0138】
図16によれば、送信アンテナ数が増加するほど、送信電力は減少する傾向がある。また、ストリーム数が増加するほど、送信電力は増加する傾向がある。例えば、送信電力の平方根の平均値の平方根は、送信アンテナ数が4であって、ストリーム数が2、3のとき、それぞれ0.74、1.0である。また、送信アンテナ数が8であって、ストリーム数が、4、6、8のとき、送信電力の平均値の平方根は、それぞれ0.41、0.45、0.50である。
また、図16は、いずれの送信アンテナ数及びストリーム数の場合でも、C.D.F.の送信電力の平方根に対する傾きは比較的急であって、送信電力が中央値を中心として狭い範囲で分布していることを示す。従って、図16は、送信アンテナ数とストリーム数が、送信電力が変動する主要因であることを示す。
【0139】
次に、係数保存部124が保存する電力補正係数について説明する。本実施形態に係る送信電力の逆数値は、図7に示す送信電力の逆数値と異なるため、係数保存部124は、図8又は図9とは異なる電力補正係数を記憶する。
図17は、本実施形態に係る電力補正係数の一例を示す表である。
図17に示す電力補正係数は、送信アンテナ数とストリーム数の組毎の送信電力の平均値の平方根に対する逆数である。送信アンテナ数が4であって、ストリーム数が、2、3のとき、電力補正係数は、それぞれ1.35、1.0である。送信アンテナ数が8であって、ストリーム数が、2、3、4のとき、電力補正係数は、それぞれ2.44、2.22、2.0である。
【0140】
図18は、本実施形態に係る電力補正係数のその他の例を示す表である。
図18に示す電力補正係数は、送信アンテナ数とストリーム数の組毎のC.D.F.が0.99の場合の送信電力の平方根(99%値)に対する逆数である。送信アンテナ数が4であって、ストリーム数が、2、3のとき、電力補正係数は、それぞれ0.57、0.41である。送信アンテナ数が8であって、ストリーム数が、2、3、4のとき、電力補正係数は、それぞれ1.43、1.33、1.18である。
【0141】
なお、送信アンテナ数とストリーム数の差が大きい場合には、係数保存部124は、ダイバーシチオーダ毎に電力補正係数を記憶してもよい。ダイバーシチオーダとは、基地局装置A3が備えるアンテナ数Nの空間多重して送信するストリーム数Mの差に1を加えた値N+M−1であって、空間多重化における自由度を表す指標値である。このような場合には、送信電力は主にダイバーシチオーダに依存するからである。ここでアンテナ数Nは、物理的なアンテナ数ではなく送信先である端末装置B3nからみた実質的なアンテナ数,例えば、端末装置B3nが基地局装置A3に送信する伝搬路状態ベクトルhnの成分の数(次元数)である。
この場合において、アンテナ数情報生成部141は、アンテナ数とストリーム数に基づきアンテナ数情報としてダイナーシチオーダを生成する。また、係数乗算部125は、アンテナ数情報生成部141から入力されたアンテナ数情報が示すダイバーシチオーダに対応する電力補正係数を係数保存部124から読み出す。
【0142】
図19は、本実施形態に係る端末装置B3nの構成を示す概略図である。
端末装置B3nは、端末装置B1nと同様に、アンテナ部201、受信部202、GI除去部203、FFT部204、信号分離部205、係数保存部206、係数除算部607、伝搬路推定部208、伝搬路補償部209、Modulo補償部210、復調部211、復号部212、伝搬路状態情報生成部213、IFFT部231、GI挿入部232、送信部233及びアンテナ数情報取得部242を含んで構成される。
【0143】
従って、端末装置B3nは、端末装置B1nと同様な機能を奏する。但し、係数保存部206は、基地局装置A3における係数保存部124と同様な電力補正係数を記憶する。
また、係数保存部206が、ダイバーシチオーダ毎に電力補正係数を記憶する場合、係数除算部207は、アンテナ数情報取得部242から入力されたアンテナ数情報が示すダイバーシチオーダに対応する電力補正係数を係数保存部206から読み出す。
係数除算部207は、信号分離部205から入力された係数乗算信号(データ信号)を係数保存部206から読み出した電力補正係数で除算して、データ信号を生成する。係数除算部207は、生成したデータ信号を伝搬路補償部209に出力する。
【0144】
上述したように、本実施形態ではプレコーディング部は線形プレコーディングを行い、アンテナ数やストリーム数に基づく送信単位数情報を生成している。
これにより、本実施形態では伝搬路状態によりアンテナ数やストリーム数が変化する場合においても、送信装置である基地局装置A3から各受信装置である端末装置B3nにDMRSを送信することなく送信データの振幅を所定の値に補正することができる。そのために、DMRSを送信するためのオーバーヘッドを回避し、送信効率の低下を回避することができる。また、送信単位数情報はダイバーシチオーダであっても、本実施形態はかかる効果を奏する。
【0145】
(第4の実施形態)
以下、図面を参照しながら本発明の第4の実施形態について説明する。
本実施形態に係る通信システム3は、基地局装置A4及びN個の端末装置B41〜B4Nを含んで構成される。端末装置B41〜B4Nの機能及び構成は、端末装置B11〜B1Nと同様であってよい。
【0146】
他方、基地局装置A4は、基地局装置A1又はA2において、非線形プレコーディング部123の代わりに、非線形プレコーディング部723を備える構成である。
図20は、本実施形態に係る非線形プレコーディング部723の構成を示す概略図である。
非線形プレコーディング部723は、変調部122−1〜122−Nから入力された変調データ信号に対して、フィルタ算出部106から入力された伝搬路行列Hに基づく非線形プレコーディング処理を行い、プレコーディング済信号を生成する。非線形プレコーディング部723は、THP法(Tomlinson Harashima Precoding)を用いて非線形プレコーディングを行う。非線形プレコーディング部723は、生成したプレコーディング済信号を係数乗算部125に出力する。ここで、フィルタ算出部106は、フィルタ係数Wを算出するための伝搬路行列Hを非線形プレコーディング部723に算出するようにする。
非線形プレコーディング部723は、減算部7231−2〜7231−N、Modulo演算部7232−2〜7232−N、干渉算出部7233及び線形フィルタ乗算部7234を含んで構成される。
【0147】
減算部7231−2〜7231−Nは、変調部122−2〜122−Nから入力された変調データ信号s2〜sNから干渉算出部7233から入力された干渉信号f2〜fNを各々減算して残差信号s2−f2〜sN−fNを生成する。減算部7231−2〜7231−Nは、生成した残差信号s2−f2〜sN−fNをそれぞれ、Modulo演算部7232−2〜7232−Nに出力する。
【0148】
Modulo演算部7232−2〜7232−Nは、減算部7231−2〜7231−Nから入力された残差信号s2−f2〜sN−fNに各々Modulo演算を行って剰余信号v2〜vNを生成し、生成した剰余信号v2〜vNを干渉算出部7233及び線形フィルタ乗算部7234に出力する。Modulo演算部7232−2〜7232−Nが行うModulo演算は、変調部122−2〜122−Nが行う変調方式に対応するModulo幅τに基づくModulo演算である。
【0149】
干渉算出部7233は、フィルタ算出部106から入力された伝搬路行列Hを入力され、入力された伝搬路行列Hの共役転置行列HHをQR分解し、上三角行列R及びユニタリ行列Qを算出する。伝搬路行列H、上三角行列R及びユニタリ行列Qは、例えば(4)式に示す関係がある。
【0150】
【数4】

【0151】
干渉算出部7233は、算出した上三角行列Rから対角成分を抽出して対角行列Aを生成し、生成した対角行列の逆行列A−1を算出する。
干渉算出部7233は、算出したユニタリ行列Qに、算出した逆行列A−1を乗算して線形フィルタ行列Pを算出する。干渉算出部7233は、算出した線形フィルタ行列Pを線形フィルタ乗算部7234に出力する。
干渉算出部7233は、算出した上三角行列Rと逆行列A−1に基づいて干渉フィルタ係数行列Fを、例えば式(5)を用いて算出する。
【0152】
【数5】

【0153】
式(5)において、Iは、N行N列の単位行列である。式(5)に示される干渉フィルタ係数行列Fは、データ信号を要素とするデータ信号ベクトルから干渉信号成分を抽出する行列である。干渉信号成分とは、基地局装置A4のアンテナ101−nから送信することが意図された端末装置B4n以外の端末装置B4m(m≠n)に宛てた信号に基づく成分である。
【0154】
干渉算出部7233は、変調部122−1から入力された変調データ信号s1、Modulo演算部7232−2〜7232−Nから入力された剰余信号v2〜vNに対して算出した干渉フィルタ行列Fに基づいて干渉信号f2〜fNを生成する。干渉算出部7233は、生成した干渉信号f2〜fNを減算部7231−2〜7231−Nに出力する。干渉算出部7233が干渉信号f2〜fNを生成する処理については後述する。
【0155】
線形フィルタ乗算部7234は、変調部122−1から変調データ信号s1を入力され、Modulo演算部7232−2〜7232−Nから剰余信号v2〜vNを入力され、干渉算出部7233から線形フィルタ算出行列Pを入力される。
線形フィルタ乗算部7234は、入力された変調データ信号s1及び入力された剰余信号v2〜vNを要素とする剰余信号ベクトルvに線形フィルタ算出行列Pを乗算してプレコーディング済信号を要素とするプレコーディング済信号ベクトルxを算出する。これにより、線形フィルタ乗算部7234は、プレコーディング済信号を生成する。
【0156】
次に、非線形プレコーディング部723が行う非線形プレコーディング処理について説明する。
図21は、本実施形態に係る非線形プレコーディング部723が行う非線形プレコーディング処理を示すフローチャートである。
(ステップS301)干渉算出部7233は、フィルタ算出部106から入力された線形フィルタである伝搬路行列Hに基づき上三角行列R及びユニタリ行列Qを算出する。干渉算出部7233は、算出したユニタリ行列Qに、上三角行列Rから対角成分を抽出して生成した対角行列Aの逆行列A−1を乗算して線形フィルタ行列Pを算出する。干渉算出部7233は、算出した線形フィルタ行列Pを線形フィルタ乗算部7234に出力する。
干渉算出部7233は、算出した上三角行列Rと逆行列A−1に基づいて干渉フィルタ係数行列Fを、例えば式(5)を用いて算出する。その後、ステップS302に進む。
【0157】
(ステップS302)非線形プレコーディング部723は、端末装置(またはストリーム)B4nを識別する変数nの初期値を1と定める。その後、ステップS303に進む。
(ステップS303)非線形プレコーディング部723は、変調部122−1から入力された変調データ信号s1、を信号v1と設定する。その後、ステップS304に進む。
(ステップS304)非線形プレコーディング部723は、処理対象とする端末装置B4nを次の端末装置B4(n+1)に進める。その後、ステップS304に進む。
【0158】
(ステップS305)干渉算出部7233は、ベクトルF(n,1:n−1)と既に処理対象となった端末装置についての信号を要素とする剰余信号ベクトル[v1,…,vn−1]Tとの内積を、端末装置B4nが受信する干渉信号fnとして算出する。ここで、ベクトルF(n,1:n−1)は、干渉フィルタ行列Fのn行目の第1〜n−1列成分を示す行ベクトルである。干渉算出部7233は、算出した干渉信号fnを減算部7231−nに出力する。その後、ステップS306に進む。
【0159】
(ステップS306)減算部7231−nは、干渉算出部7233から入力された干渉信号fnを変調部122−nから入力された変調データ信号snから減算して残差信号sn−fnを生成する。減算部7231−nは、生成した残差信号sn−fnをModulo演算部7232−nに出力する。その後、ステップS307に進む。
(ステップS307)Modulo演算部7232−nは、減算部7231−nから入力された残差信号sn−fnに対しmodulo幅τに基づくmodulo演算を行い、剰余信号vnを算出する。Modulo演算部7232−nは、算出した剰余信号vnを干渉算出部7233及び線形フィルタ乗算部7234に出力する。これにより、送信電力を所定値よりも小さくすることができる。その後、ステップS308に進む。
【0160】
(ステップS308)非線形プレコーディング部723は、変数nがアンテナ数N以上か否か判断する。非線形プレコーディング部723は、変数nがアンテナ数Nよりも小さいと判断したとき(ステップS308 No)、ステップS304に進む。非線形プレコーディング部723は、変数nがアンテナ数N以上と判断したとき(ステップS308 Yes)、ステップS309に進む。
【0161】
(ステップS309)線形フィルタ乗算部7234は、信号v1と、Modulo演算部7232−2〜7232−Nから入力された剰余信号v2〜vNを要素とする剰余ベクトルvに干渉算出部7233から入力された線形フィルタ算出行列Pを乗算する。線形フィルタ乗算部7234は、乗算によって算出されたプレコーディング済信号ベクトルxを要素とするプレコーディング済信号を係数乗算部125に出力する。
【0162】
また、本実施形態において、干渉算出部7233が、線形フィルタ行列Pを算出するためにZF規範に基づく伝搬路行列Hの代わりに、上述のMMSE規範に基づく行列Hexを用いてもよい。また、干渉算出部7233は、QR分解の代わりにソート付QR分解、V−BLAST法(Vertical Bell Laboratories Layerd Space−Time argorithm)を用いて干渉信号を算出してもよい。
また、本実施形態において、非線形プレコーディング部723は、上述のようにTHP法に基づく非線形プレコーディング処理の代わりにオーダリングを用いたTHP法又はLR−THP(Lattice Reduction aided THP)法に基づく非線形プレコーディング処理を行ってもよい。
【0163】
なお、非線形プレコーディング部723は、THP(Tomlinson−Harashima Precoding)法、又はLR−THP(Lattice Reduction−Aided THP;格子縮約THP)法を用いて算出した線形フィルタPに基づき、プレコーディング済信号の送信電力の平均値Eaveを算出してもよい。非線形プレコーディング部723は、送信電力の平均値Eaveを算出するために、例えば式(6)を用いる。
【0164】
【数6】

【0165】
式(6)において、Trace(...)は、行列...の対角成分の和である。Cvは、信号vの共分散行列であり、N行N列の対角行列である。信号ベクトルvは、信号vnの各サンプルを要素とするベクトルである。例えば、Cvの第n行n列成分は、信号vnが、I−ch(信号の同相(In−phase)成分)、Q−ch(信号の直交(Quadrature)成分)共に原点を中心としてModulo幅τ間隔に一様分布すると仮定して算出した平均電力である。Cvは、対角行列であるから非対角成分はゼロとなる。
ここで、非線形プレコーディング部723は平均電力を、上述の送信切替部526に出力し、送信切替部526は、非線形プレコーディング部723から入力された平均電力に基づきクリッピングを行ってもよい。
【0166】
上述の非線形プレコーディング処理において、データ信号から逐次に算出した干渉信号との差分信号に基づく剰余ベクトルに線形フィルタ行列を演算している。そのため、非線形プレコーディング部123のように摂動ベクトルを探索する必要がなくなり、非線形プレコーディングに係る処理量を低減することができる。
【0167】
なお、上述の説明では、係数除算部207、407においてデータ信号に電力補正係数を除算し、さらに伝搬路補償部209において正規化係数を乗算して伝搬路補償信号を生成する例を挙げたが、本実施形態ではこれには限られない。本実施形態では、係数除算部207、407又は伝搬路補償部209のいずれか一方においてデータ信号に、正規化係数を電力補正係数で除算した商を乗算して伝搬路補償信号を生成してもよい。
また、上述の説明では、係数保存部206は係数保存部124と同一の電力補正係数を記憶する例を挙げたが、本実施形態ではこれには限られない。
係数保存部206は係数保存部124に記憶されている電力補正係数の逆数を記憶してもよい。その場合、係数除算部207、407は、入力された係数乗算信号(データ信号)に読み出した係数を乗じてデータ信号を生成する。従って、本実施形態では、電力補正係数を除算することは、この電力補正係数の逆数を乗ずることも含む。
【0168】
なお、上述した実施形態における基地局装置A1〜A4、端末装置B11〜B1N、B21〜B2N、B31〜B3Nの一部、例えば、GI除去部103−1〜103−N、FFT部104−1〜104−N、伝搬路状態情報取得部105、フィルタ算出部106、符号化部121−1〜121−N、変調部122−1〜122−N、非線形プレコーディング部123、723、係数乗算部125、325、CRS生成部126、326、フレーム構成部127、327、IFFT部128−1〜128−N、GI挿入部129−1〜129−N、送信切替部143、アンテナ数情報生成部341、線形プレコーディング部523、GI除去部203、FFT部204、信号分離部205、405、係数除算部207、407、伝搬路推定部208、408、伝搬路補償部209、409、Modulo補償部210、復調部211、復号部212、伝搬路状態情報生成部213、IFFT部231、GI挿入部232、又はアンテナ数情報取得部442をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは基地局装置A1〜A4、又は端末装置B11〜B1N、B21〜B2N、B31〜B3Nに内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
また、上述した実施形態における基地局装置A1〜A4、及び端末装置B11〜B1N、B21〜B2N、B31〜B3Nの一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現しても良い。基地局装置A1〜A4、及び端末装置B11〜B1N、B21〜B2N、B31〜B3Nの各機能ブロックは個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化しても良い。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いても良い。
【0169】
以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。
【符号の説明】
【0170】
A1〜A4…基地局装置、
101−1〜101−N…アンテナ部、102−1〜102−N…受信部、
103−1〜103−N…GI除去部、104−1〜104−N…FFT部、
105…伝搬路状態情報取得部、106、306…フィルタ算出部、
121−1〜121−N…符号化部、122−1〜122−N…変調部、
123、723…非線形プレコーディング部、124…係数保存部、
125、325…係数乗算部、126、326…CRS生成部、
127、327…フレーム構成部、128−1〜128−N…IFFT部、
129−1〜129−N…GI挿入部、130−1〜130−N…送信部、
143…送信切替部、141…アンテナ数情報生成部、344…スケジューリング部、
345…ストリーム選択部、523…線形プレコーディング部、
7231−2〜7231−N…減算部、
7232−2〜7232−N…Modulo演算部、7233…干渉算出部、
7234…線形フィルタ乗算部
B11〜B1N、B21〜B2N、B31〜B3N…端末装置、
201…アンテナ部、202…受信部、203…GI除去部、204…FFT部、
205、405、605…信号分離部、206、606…係数保存部、
207、407、607…係数除算部、208、408、608…伝搬路推定部、
209、409、609…伝搬路補償部、210…Modulo補償部、211…復調部、212…復号部、213…伝搬路状態情報生成部、231…IFFT部、
232…GI挿入部、233…送信部、242…アンテナ数情報取得部、
446…割当情報取得部

【特許請求の範囲】
【請求項1】
同時に複数の受信装置に各々データ信号を送信する送信装置において、
データ信号をプレコーディングするプレコーディング部と、
データ信号を送信する単位の数に係る送信単位数情報を生成する送信単位数情報生成部と、
送信電力を補正するための電力補正係数を送信単位数情報に対応して記憶する係数保存部と、
前記送信単位数情報生成部が生成した送信単位数情報に対応する電力補正係数を前記プレコーディング部がプレコーディングしたデータ信号に乗算する係数乗算部と
を備え、
前記係数を乗算したデータ信号を送信すること
を特徴とする送信装置。
【請求項2】
前記送信単位数情報は、前記データ信号の送信先である受信装置のアンテナ数に基づくことを特徴とする請求項1に記載の送信装置。
【請求項3】
前記送信単位数情報は、前記受信装置へデータ信号を送信するストリーム数に基づくことを特徴とする請求項1に記載の送信装置。
【請求項4】
前記送信単位数情報は、前記受信装置へのデータ信号の送信に係るダイバーシチオーダに基づくことを特徴とする請求項1に記載の送信装置。
【請求項5】
前記プレコーディング部は、
非線形プレコーディングを行うことを特徴とする請求項1ないし4のうちいずれか1項に記載の送信装置。
【請求項6】
前記プレコーディング部は、
線形プレコーディングを行うことを特徴とする請求項1ないし4のうちいずれか1項に記載の送信装置。
【請求項7】
前記送信単位数情報を各受信装置に送信することを特徴とする請求項1ないし6のうちいずれか1項に記載の送信装置。
【請求項8】
送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部を備え、
複数の受信装置に各々データ信号を送信する送信装置における送信方法において、
前記送信装置が、データ信号をプレコーディングする過程と、
前記送信装置が、送信単位数情報を生成する過程と、
前記送信装置が、生成した送信単位数情報に対応する電力補正係数をプレコーディングしたデータ信号に乗算する過程を有し、
前記係数を乗算したデータ信号を送信すること
を特徴とする送信方法。
【請求項9】
送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部を備え、複数の受信装置に各々データ信号を送信する送信装置におけるコンピュータに、
データ信号をプレコーディングする手順と、
送信単位数情報を生成する手順と、
生成した送信単位数情報に対応する電力補正係数をプレコーディングしたデータ信号に乗算する手順を実行させること
を特徴とする送信プログラム。
【請求項10】
送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部を備え、複数の受信装置に各々データ信号を送信する送信装置における集積回路であって、
データ信号をプレコーディングするプレコーディング部と、
送信単位数情報を生成する送信単位数情報生成部と、
送信電力を補正するための電力補正係数を送信単位数情報に対応して記憶する係数保存部と、
前記送信単位数情報生成部が生成した送信単位数情報に対応する電力補正係数を前記プレコーディング部がプレコーディングしたデータ信号に乗算する係数乗算部と
を備えること
を特徴とする送信装置における集積回路。
【請求項11】
送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部と、
送信装置から送信単位数情報とデータ信号を受信する受信部と、
前記送信装置からの伝搬路の特性を示す伝達関数を推定する伝搬路推定部と、
前記受信したデータ信号を、前記係数保存部に記憶された前記受信した送信単位数情報に対応する係数で除算する係数除算部と、
前記推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する伝搬路補償部を備えること
を特徴とする受信装置。
【請求項12】
前記送信単位数情報は、前記送信装置からデータ信号の送信先である受信装置のアンテナ数であることを特徴とする請求項11に記載の受信装置。
【請求項13】
前記送信単位数情報は、前記送信装置からデータ信号を送信するストリーム数であることを特徴とする請求項11に記載の受信装置。
【請求項14】
前記送信単位数情報は、前記送信装置から受信装置へのデータ信号の送信に係るダイバーシチオーダであることを特徴とする請求項11に記載の受信装置。
【請求項15】
送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部と、送信装置から送信単位数情報とデータ信号を受信する受信部を備える受信装置における受信方法において、
前記受信装置が、前記送信装置からの伝搬路の特性を示す伝達関数を推定する過程と、
前記受信装置が、前記受信したデータ信号を、前記係数保存部に記憶された前記受信した送信単位数情報に対応する係数で除算する過程と、
前記受信装置が、前記推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する過程を有すること
を特徴とする受信方法。
【請求項16】
送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部と、送信装置から送信単位数情報とデータ信号を受信する受信部を備える受信装置におけるコンピュータに、
前記送信装置からの伝搬路の特性を示す伝達関数を推定する手順、
前記受信したデータ信号を、前記係数保存部に記憶された前記受信した送信単位数情報に対応する係数で除算する手順、
前記推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する手順を実行させること
を特徴とする受信プログラム。
【請求項17】
送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部と送信装置から送信単位数情報とデータ信号を受信する受信部を備える受信装置において、
前記送信装置からの伝搬路の特性を示す伝達関数を推定する伝搬路推定部と、
前記受信したデータ信号を、前記係数保存部に記憶された前記受信した送信単位数情報に対応する係数で除算する係数除算部と、
前記推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する伝搬路補償部を備えること
を特徴とする集積回路。
【請求項18】
送信装置が同時に複数の受信装置に各々データ信号を送信する通信システムにおいて、
前記送信装置は、
データ信号をプレコーディングするプレコーディング部と、
データ信号を送信する単位の数に係る送信単位数情報を生成する送信単位数情報生成部と、
送信電力を補正するための電力補正係数を送信単位数情報に対応して記憶する係数保存部と、
前記送信単位数情報生成部が生成した送信単位数情報に対応する電力補正係数を前記プレコーディング部がプレコーディングしたデータ信号に乗算する係数乗算部を備え、
前記係数を乗算したデータ信号を送信することを特徴とし、
前記複数の受信装置は、それぞれ
送信電力を補正するための電力補正係数を、データ信号を送信する単位の数に係る送信単位数情報に対応して記憶する係数保存部と、
送信装置から送信単位数情報とデータ信号を受信する受信部と、
前記送信装置からの伝搬路の特性を示す伝達関数を推定する伝搬路推定部と、
前記受信したデータ信号を、前記係数保存部に記憶された前記受信した送信単位数情報に対応する係数で除算する係数除算部と、
前記推定した伝達関数に基づいて前記除算されたデータ信号の振幅を補償する伝搬路補償部を備えること
を特徴とする通信システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2013−12831(P2013−12831A)
【公開日】平成25年1月17日(2013.1.17)
【国際特許分類】
【出願番号】特願2011−142882(P2011−142882)
【出願日】平成23年6月28日(2011.6.28)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】