説明

通信処理装置及び通信処理方法

【課題】回路規模の増大を抑えつつ、複数の通信方式に対応すること。
【解決手段】演算処理回路リソース270は、プログラム可能な複数の演算ユニット(FU:Function Unit)を有する。そして、動作モード決定部230は、通信方式の適用状態を示す動作モードを決定する。許容処理時間判定部240は、決定された動作モードに応じて、許容処理時間を判定する。リソース割り当て部250は、許容処理時間に応じて、複数のFUを分配して、動作モードが示す各通信方式毎に演算リソースを割り当てる。領域制御部260は、割り当てられた演算リソースを制御する。演算処理回路リソース270は、演算処理が完了したタイミングで、演算処理後のデータを出力する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、再構成可能又はプログラム可能なハードウェア回路リソースを利用して、様々な通信方式に対応する通信処理装置及び通信処理方法に関する。
【背景技術】
【0002】
近年、無線通信用のデジタル信号処理を行う方法として、ソフトウェア無線が注目されている。ソフトウェア無線は、再構成可能な回路(以下、再構成型回路という)、又は、プログラムにより処理内容を変更することが可能な回路等で構成される。
【0003】
従来のソフトウェア無線装置が、例えば特許文献1に開示されている。図1は、特許文献1に記載のソフトウェア無線装置の構成を示す図である。図1において、ソフトフェア無線装置10は、アンテナ11、無線送受信デバイス12、リソースコントローラ13、信号処理デバイス(リソース)14、記憶装置15、及び、システムコントローラ16を有する。
【0004】
リソースコントローラ13は、異なる通信システム間でのハンドオーバー制御を容易に実現するために、信号処理デバイス(リソース)14を制御する。具体的には、リソースコントローラ13は、信号処理デバイス(リソース)14が有する信号処理回路のうち、利用可能な回路リソース又はタイミング(又は周期)等を管理する。特許文献1には、リソース管理方法として、処理対象機能に必要な単位時間当たりの所要演算量と、リソース内の信号処理回路の処理性能とを勘案して、複数の回路リソースに演算処理を割り振る方法が記載されている。
【0005】
また、例えば特許文献2には、相互に自立的に運用されている異なる通信システム(例えば、衛星通信システム及びセルラー無線通信システム)に対応可能な端末が、複数の通信システムとの同時リンクを確立する方法が開示されている。特許文献2に記載の端末は、異なる通信システムにおいてリソースの共有が可能かどうかを確認し、可能な場合、リソースを共有する。具体的には、当該端末は、リンク確立の優先度に応じて、リソース共有可能な期間であるか否かを確認し、問題がなければリソースを共有し、優先度の低いリンク側との通信接続を行う。
【0006】
ここで、ソフトウェア無線に適用される再構成型回路又はプログラム可能な回路の一例が、非特許文献1に開示されている。非特許文献1には、複数の演算処理ユニット間の接続構成や個々の演算処理ユニットの処理内容を変更することで、様々な機能を実現する技術(粗粒度再構成(coarse grain reconfigurable)技術)が記載されている。
【0007】
また、更なる処理の効率化を実現するために、非特許文献2には、処理対象のプログラムを複数のスレッドに分割し、複数の領域において同時並列的に演算を行う、マルチスレッド化技術が開示されている。マルチスレッド化技術では、非同期又は独立に運用されている異なる複数の無線通信システムを、異なるスレッドに振り分けることにより、複数通信システムの同時処理が容易となる。ハードウェア回路リソースが有効活用されることにより、小型化が期待される。
【0008】
また、特許文献3には、通信システムに要求される処理時間を勘案し、DVS(Dynamic Voltage Scaling)、又は、DVFS(Dynamic Voltage and Frequency Scaling)技術を、ソフトウェア無線に適用する例が開示されている。特許文献3に記載のソフトウェア無線は、通信システムに要求される処理時間(以下、許容処理時間という)内に処理を完了させる条件を満たすと同時に、消費電力が最小となるように、演算処理回路の電圧及びクロック周波数を制御する。具体的には、制御方法は、過去に処理した際に要した平均的な処理サイクル数と、実際に処理する際に要した処理時間と、通信方式から規定される許容処理時間との対応関係から、必要に応じて電圧及びクロック周波数を増加又は低下させる。
【0009】
処理時間に対する要求仕様が厳しい例として、IEEE802.11標準規格に準じた無線LAN(Local Area Network)が挙げられる。CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)方式を採用する無線LANでは、許容処理時間が特に短い。具体的には、同規格では、受信側の端末が誤り検出を行い、誤りが無いか否かを判定する。受信側の端末は、誤りが無かったと判定した場合、受信完了後から所定時間(SIFS:Short InterFrame Space)経過後に、確認応答(Ack:Acknowledgment)信号を返信するよう定められている。そのため、実時間処理が所定時間内に完了するように、十分なハードウェア回路リソースも必要とされる。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2006−157935号公報
【特許文献2】特開2006−211725号公報
【特許文献3】特開2005−73231号公報
【非特許文献】
【0011】
【非特許文献1】Bougard,B.ら,「A Coarse-Grained Array Accelerator for Software-Defined Radio Baseband Processing」,Micro IEEE,Vol.28,Issue:4,Page41-50.
【非特許文献2】Kehuai Wuら,「MT-ADRES:Multithreading on Coarse-Grained Reconfigurable Architecture」,International Workshop on Applied Reconfigurable Computing(ARC),2007
【発明の概要】
【発明が解決しようとする課題】
【0012】
しかしながら、前記従来の技術では、回路規模と許容処理時間とを考慮して、複数の通信方法に対応することができるハードウェア回路リソースの制御を行うという視点からは十分な検討が行われていない。
【0013】
本発明の目的は、回路規模の増大を抑えつつ、複数の通信方式に対応することができる通信処理装置及び通信処理方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明の態様の一つに係る通信処理装置は、プログラム可能な複数の演算ユニットを有する演算処理部と、通信方式の適用状態を示す動作モードを決定する決定部と、前記動作モードに応じて、許容される第1の処理時間を判定する判定部と、前記第1の処理時間に応じて、前記複数の演算ユニットを分配して、前記動作モードが示す通信方式毎に演算リソースを割り当てる割当部と、前記通信方式に応じた処理命令を用いて、前記演算リソースを制御するリソース制御部と、を具備する構成を採る。
【0015】
本発明の態様の一つに係る通信処理方法は、通信方式の適用状態を示す動作モードを決定し、前記動作モードに応じて、許容される処理時間を判定し、前記処理時間に応じて、プログラム可能な複数の演算ユニットを分配して、前記動作モードが示す通信方式毎に演算リソースを割り当て、前記通信方式に応じた処理命令を用いて、前記演算リソースを制御する。
【発明の効果】
【0016】
本発明によれば、回路規模の増大を抑えつつ、複数の通信方式に対応することができる通信処理装置及び通信処理方法を提供することができる。
【図面の簡単な説明】
【0017】
【図1】従来のソフトウェア無線装置の構成を示す図
【図2】本発明の実施の形態1に係る通信システムの利用形態の一例を示した図
【図3】動作モードの種類と、それぞれの動作モードに対応付けた動作モード番号との関係を示す図
【図4】実施の形態1に係る通信処理装置の構成を示すブロック図
【図5】実施の形態1に係る演算処理回路リソースの構成を示すブロック図(テレビ放送波ベースバンド復調機能)
【図6】実施の形態1に係る演算処理回路リソースの構成を示すブロック図(無線LAN変復調ベースバンド処理機能)
【図7】実施の形態1に係る演算処理回路リソースの構成を示すブロック図(粗粒度再構成型)
【図8】実施の形態1に係る演算処理回路リソースの領域分配例を示す図(マルチスレッド対応が可能な粗粒度再構成型)
【図9】無線LAN端末における通常データ信号の受信処理を説明するための図
【図10】無線LAN端末におけるAck信号の受信処理を説明するための図
【図11】通信方式と演算リソースとの対応関係の一例を示す図
【図12】実施の形態1に係る通信処理装置の他の構成を示すブロック図
【図13】本発明の実施の形態2に係る通信処理装置の構成を示すブロック図
【図14】本発明の実施の形態3に係る通信処理装置の構成を示すブロック図
【図15】実施の形態3に係る演算処理回路リソースの構成を示すブロック図
【図16】通信方式と演算リソースとの対応関係の一例を示す図
【図17】本発明の実施の形態4に係る通信処理装置の構成を示すブロック図
【図18】実施の形態4に係るベースバンド信号処理部の他の構成を示すブロック図
【図19】リングバッファの構成を説明するための模式図
【図20】本発明の実施の形態5に係る通信処理装置の構成を示すブロック図
【図21】本発明の実施の形態6に係る通信処理装置の構成を示すブロック図
【図22】本発明の実施の形態7に係る演算処理回路リソースの構成を示すブロック図
【図23】通信方式と演算リソースとの対応関係の一例を示す図
【図24】通信方式と演算リソースとの対応関係の一例を示す図
【図25】本発明の実施の形態8に係る演算処理回路リソースの構成を示すブロック図
【図26】実施の形態8に係る演算処理回路リソースの他の構成を示すブロック図
【図27】実施の形態8に係る通信処理装置の構成を示すブロック図
【図28】本発明の実施の形態8に係る演算処理回路リソースの構成を示すブロック図
【図29】本発明の実施の形態9に係る通信処理装置の構成を示すブロック図
【図30】実施の形態9に係る通信処理装置の他の構成を示すブロック図
【発明を実施するための形態】
【0018】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0019】
(実施の形態1)
図2は、本発明の実施の形態1に係る通信システム100の利用形態の一例を示す図であり、宅内での利用形態の例を示している。図2に示す通信システム100は、据置き型テレビ受像機110、アクセスポイント120、及び、可搬型テレビ受像機130を有する。
【0020】
据置き型テレビ受像機110は、表示部111、映像蓄積部112、ベースバンド処理部113、無線フロントエンド部114、及び、テレビ放送波受信用と無線LAN用の共用アンテナ115,116を有する。
【0021】
可搬型テレビ受像機130は、表示部131、ベースバンド処理部132、無線フロントエンド部133、及び、テレビ放送波受信用と無線LAN用の共用アンテナ134,135を有する。
【0022】
アクセスポイント120は、無線LAN用のアクセスポイントであって、据置き型テレビ受像機110内部の映像蓄積部112に蓄積された映像データを、可搬型テレビ受像機130に無線転送する。なお、図2に示す通信システム100では、アクセスポイント120は、外部ネットワークに接続されていて、インターネット等にもアクセス可能であることを想定している。
【0023】
据置き型テレビ受像機110は、例えば、テレビ放送波を受信して、復調結果を表示部111に表示する。
【0024】
また、据置き型テレビ受像機110は、表示部111に表示するテレビ放送波とは異なるチャネルのテレビ放送波を受信して復調し、映像データとして映像蓄積部112に蓄積することも可能である。
【0025】
また、受信性能を向上させるために、据置き型テレビ受像機110は、共用アンテナ115,116を介してそれぞれ受信した同一チャネルのテレビ放送波をダイバーシチ合成して復調し、映像データとして表示又は蓄積することも可能である。
【0026】
また、据置き型テレビ受像機110は、無線LANの機能を有しており、アクセスポイント120を経由して得られる外部ネットワークからの映像データをダウンロードして、表示又は蓄積することも可能である。
【0027】
また、据置き型テレビ受像機110は、映像蓄積部112に蓄積済みの映像データを、可搬型テレビ受像機130に直接、又はアクセスポイント120を介して伝送することも可能である。
【0028】
また、据置き型テレビ受像機110は、復調したテレビ放送波の映像データを中継する機能も有しており、可搬型テレビ受像機130に直接、又はアクセスポイント120を介して当該映像データを伝送することも可能である。
【0029】
また、据置き型テレビ受像機110は、無線LANとして、高速伝送が可能なMIMO(Multi Input Multi Output)方式に対応することも可能である。さらに、無線LANは、複数の共用アンテナ115,116を介して信号を受信することも可能である。
【0030】
すなわち、据置き型テレビ受像機110のベースバンド処理部113の機能は、大別すると以下のような3つの使用形態(以下、動作モードともいう)に分類されると想定される。
(1)テレビ復調のみ
(2)テレビ復調及び無線LAN処理の同時動作
(3)無線LAN処理のみ
【0031】
なお、これらの機能は主に据置き型テレビ受像機110内のベースバンド処理部113が有する。
【0032】
使用形態(1)は、更に、以下のような形態に分類される。
(1−1)1チャネル分のテレビ復調
(1−2)2チャネル分のテレビ復調
(1−3)1チャネル分のダイバーシチ復調
【0033】
また、使用形態(2)は、更に、無線LAN処理に応じて、以下のような形態に分類される。
(2−1)テレビ復調と通常モードでの無線LAN処理との同時動作
(2−2)テレビ復調と送信主体モードでの無線LAN処理との同時動作
【0034】
使用形態(2−1)の通常モードでの無線LAN処理の例としては、Webブラウジング、ストリーミング視聴等がある。また、使用形態(2−2)の送信主体モードでの無線LAN処理の例としては、映像データ等のコンテンツ転送がある。
【0035】
図3は、上記使用形態(動作モード)の種類と、それぞれの使用形態(動作モード)に対応付けた動作モード番号との関係を示す図である。これら各使用形態の詳細については、後述する。
【0036】
無線フロントエンド部114は、受信したテレビ放送波又は無線LAN信号を無線周波数帯からベースバンド帯に変換し、ベースバンド処理部113で復調処理ができるようにアナログ信号処理を実施する。また、無線LANの送信モードの場合には、無線フロントエンド部114は、ベースバンド処理部113で生成されたベースバンド信号を無線周波数帯に変換し、共用アンテナ115,116から送信する。
【0037】
図4は、本実施の形態に係る通信処理装置の構成を示すブロック図である。なお、図4に示す通信処理装置200は、図2のベースバンド処理部113に適用される。
【0038】
図4において、通信処理装置200は、ADC(Analog to Digital Convertor)210、DAC(Digital to Analog Convertor)220、動作モード決定部230、許容処理時間判定部240、リソース割当部250、領域制御部260、及び、演算処理回路リソース270を有する。
【0039】
ADC210には、無線フロントエンド部114から共用アンテナ115,116を介して受信された信号が入力される。受信信号は、テレビ放送波、又は、無線LAN信号である。ADC210は、テレビ放送波、及び(又は)、無線LAN信号をそれぞれデジタル信号に変換し、変換後のデジタル信号を演算処理回路リソース270に出力する。
【0040】
DAC220には、演算処理回路リソース270からベースバンド信号が入力される。DAC220は、当該ベースバンド信号をアナログ信号に変換し、変換後のアナログ信号を無線フロントエンド部114に出力する。
【0041】
動作モード決定部230は、1つ以上の通信方式の適用状態を示す使用形態(動作モード)を判定する。例えば、動作モード決定部230は、アプリケーション情報から、前述の想定される使用形態(1−1)〜(1−3)、(2−1)、(2−2)、及び(3)のうち、通信処理装置200の使用形態がいずれであるか判定する。そして、動作モード決定部230は、判定した使用形態の情報を許容処理時間判定部240に通知する。
【0042】
許容処理時間判定部240は、使用形態に応じて、通信システムに要求される処理時間(許容処理時間)を判定する。例えば、許容処理時間判定部240は、使用形態(2−2)の場合、無線LANの許容処理時間はSIFSよりも十分長いと判定し、その他の使用形態の場合、許容処理時間はSIFSであると判定する。許容処理時間判定部240は、使用形態及び許容処理時間の情報をリソース割当部250に通知する。
【0043】
リソース割当部250は、許容処理時間に応じて、動作モードが示す各通信方式毎に、演算処理回路リソース270のハードウェア回路リソース(以下、演算リソースという)の割り当てを行う。リソース割当部250における演算リソースの割り当て方法については、後述する。リソース割当部250は、通信方式毎に割り当てた演算リソースの情報を領域制御部260に出力する。
【0044】
領域制御部260は、通信方式毎に割り当てられたそれぞれの演算リソースに対して、各通信方式に応じた処理命令を適用させる。領域制御部260における処理命令の適用方法の詳細については、後述する。
【0045】
演算処理回路リソース270は、複数の演算ユニット(FU:Function Unit)を有し、ADC210から出力されるデジタル信号に対して復調処理を行い、デジタルデータを取得する。また、動作モードが無線LANの送信モードの場合には、演算処理回路リソース270は、送信すべきデジタルデータを変調してベースバンド信号を生成し、生成したベースバンド信号をDAC220に出力する。なお、演算処理回路リソース270の内部構成及び動作の詳細については、後述する。
【0046】
図5及び図6は、演算処理回路リソース270の構成を示すブロック図である。図5に示す演算処理回路リソース270は、テレビ放送波ベースバンド復調機能を有する。また、図6に示す演算処理回路リソース270は、無線LAN(IEEE802.11n対応)変復調ベースバンド処理機能を有する。
【0047】
始めに、図5に示す演算処理回路リソース270について説明する。図5に示す演算処理回路リソース270の構成例は、最大2チャネル分のテレビ放送波の復調処理、又は、2アンテナ入力のダイバーシチ受信が可能な構成例である。
【0048】
図5において、演算処理回路リソース270は、時間/周波数同期部301−1,301−2、FFT(Fast Fourier Transform:高速フーリエ変換)部302−1,302−2、フレーム同期部303−1,303−2、チャネル推定部304−1,304−2、等化部305−1,305−2、デマッピング部306−1,306−2、デインターリーバ(De Interleaving)307−1,307−2、誤り訂正部308−1,308−2を有する。
【0049】
時間/周波数同期部301−1,301−2は、ADC210から入力された信号に対して、時間同期又は周波数同期を行う。具体的には、時間/周波数同期部301−1,301−2は、粗時間同期(フレーム同期)、及び、無線フロントエンド部114の自動利得制御を行う。また、時間/周波数同期部301−1,301−2は、サンプリングオフセット補償、高精度時間同期(FFTタイミング検出)、及び、周波数オフセット補償等を行う。
【0050】
FFT部302−1,302−2は、前段の時間/周波数同期部301−1,301−2の高精度時間同期機能により検出されたFFTタイミングで、時間領域の信号を高速フーリエ変換して、周波数領域の信号に変換する。
【0051】
フレーム同期部303−1,303−2は、周波数領域の信号に対してフレーム同期を実施し、変調方式又はスキャッタードパイロット(Scattered Pilot)の位置等を抽出する。
【0052】
チャネル推定部304−1,304−2は、抽出したスキャッタードパイロットパターンの変調成分を取り除くこと等により、伝送路特性推定を行う。
【0053】
等化部305−1,305−2は、推定した伝送路特性の逆特性を周波数領域の信号に乗算することで、伝送路等化を行う。
【0054】
デマッピング部306−1,306−2は、等化された信号に対して、変調方式によって定まる閾値からの距離に基づいて尤度比を求める。
【0055】
デインターリーバ307−1,307−2は、導出された尤度比に対して所定のパターンを用いてデインターリーブ(de-interleave)を行う。
【0056】
誤り訂正部308−1,308−2は、デインターリーブされた信号に対してビタビ復号等を行う。
【0057】
ここで、演算処理回路リソース270は、2アンテナ入力をダイバーシチ復調する場合、一方のアンテナ出力から推定されたチャネル推定値、及び、一方のFFT後の信号が、他方の等化部305−1に入力され、例えば最大比合成が行われる。図5に示す例において、等化部305−1は、最大比合成機能を有しているものとする。
【0058】
次に、図6に示す演算処理回路リソース270について説明する。図6に示す演算処理回路リソース270の構成例は、IEEE802.11n規格のMIMO変復調を実施する場合の構成例である。
【0059】
図6において、演算処理回路リソース270は、時間/周波数同期機能部401−1,401−2、FFT部402−1,402−2、チャネル推定部403−1,403−2、MIMO分離部404、位相追従部405−1,405−2、デマッピング部406−1,406−2、デインターリーバ407、誤り訂正部408、MAC(Media Access Control)処理部409、符号化部410、インターリーバ(Interleaving)411、マッピング部412−1,412−2、MIMO合成部413、及び、IFFT(Inverse Fast Fourier Transform:逆高速フーリエ変換)部414−1,414−2を有する。
【0060】
時間/周波数同期機能部401−1,401−2は、ADC210から入力された信号を用いて、粗時間同期(フレーム同期)、及び、無線フロントエンド部114の自動利得制御を行う。また、時間/周波数同期機能部401−1,401−2は、サンプリングオフセット補償、高精度時間同期(FFTタイミング検出)、及び、周波数オフセット補償等を行う。
【0061】
FFT部402−1,402−2は、前段の時間/周波数同期部401−1,401−2の高精度時間同期検出機能により検出されたFFTタイミングで、時間領域の信号を高速フーリエ変換して、周波数領域の信号に変換する。
【0062】
チャネル推定部403−1,403−2は、フレームの先頭付近で送信されている高精度時間同期用シンボルを用いて、伝送路特性を推定する。
【0063】
MIMO分離部404は、推定された伝送路特性の推定結果を用いて、空間多重された信号を複数のストリームに分離する。分離方法としては、様々な方法が提案されているが、例えば、周波数領域の信号にチャネル特性行列の逆行列を乗算する方法等がある。
【0064】
位相追従部405−1,405−2は、分離されたストリームに対してそれぞれ並列に、残留位相誤差補償を行う。
【0065】
デマッピング部406−1,406−2は、変調方式によって定まる閾値からの距離を用いて尤度比を求める。変調方式は、フレームの情報(データ部分の変調方式、フレーム長等)が含まれるSIGNAL部を復調することにより得られる。なお、SIGNAL部は、予め決められた変調方式で送信されている。
【0066】
デインターリーバ407は、導出された尤度比を所定のパターンでデインターリーブする。
【0067】
誤り訂正部408は、デインターリーブされた信号に対してビタビ復号等の誤り訂正を行う。
【0068】
MAC処理部409は、ビタビ復号結果に対してMAC処理を行い、上位層で規定されたプロトコルに従って、MAC処理後のデータを表示部111又は映像蓄積部112に出力する。また、映像蓄積部112から入力される映像データを送信する場合、MAC処理部409は、無線LAN規格で送信するために必要なデータ等を付加して、送信データを生成する。
【0069】
符号化部410は、送信データに対して誤り訂正符号化を行う。
【0070】
インターリーバ411は、誤り訂正符号化後の送信データをインターリーブする。
【0071】
マッピング部412−1,412−2は、変調方式によって定まる複素平面状の信号点に、誤り訂正符号化後の送信データをマッピングする。変調方式は、MAC処理部409によって、過去の通信成功状況等を勘案して最適な方式に設定されている。
【0072】
MIMO合成部413は、マッピングされた信号を、無線LAN規格で規定されたパターンでMIMO合成し、IFFT部414−1,414−2に出力する。
【0073】
IFFT部414−1,414−2は、MIMO合成後の周波数領域の信号に対してIFFTを行い、時間領域の信号に変換する。IFFT部414−1,414−2は、時間領域の信号をDAC220に出力する。
【0074】
ところで、図5及び図6に示す演算処理回路リソース270を、従来型の専用ハードウェアを用いて実現する場合は、個々の機能ブロックに必要な数式を実現するために、四則演算回路等が組合せて接続される。そして、その組合せ接続構成は、固定的なものとなる。しかしながら、個々の機能ブロックは、複数の無線通信方式間で共用可能な機能ブロックもある。そのため、従来型の専用ハードウェアの場合は、回路規模削減のために、共用可能な機能ブロックはできる限り共用する構成で実現することが望ましい。例えば、図5及び図6において、FFT部302−1,302−2とFFT部402−1,402−2とは、共用可能なブロックの1つである。ただし、FFTポイント数は、テレビ放送波の場合が8192ポイントであるのに対し、無線LANの場合が128ポイントであり、両者でFFTポイント数が異なる。そのため、全ての回路を共用することは、難しいものの、バタフライ演算部といった一部の回路のみを共用することは可能である。
【0075】
また、図5の時間/周波数同期部301−1,301−2と図6の時間/周波数同期部401−1,401−2において、相関演算機能の一部の回路(図示しない)や、フィルタ演算回路(図示しない)等は、共用の対象となりうる。
【0076】
これら共用可能回路を選択的に使用するために、演算処理回路リソース270を従来型の専用ハードウェアを用いて実現する場合は、演算処理回路リソース270には、状態遷移管理部又は制御部が備えられるのが一般的である。制御部は、シーケンサー等で構成される。そして、シーケンサーは、専用ハードウェアで実現されている演算回路の状態を管理することを主たる目的とし、選択制御を行うための簡易的なプログラムを必要する。そのため、シーケンサーは、フィルタ演算機能等のいわゆるデジタル信号処理を直接的に行うことはない。
【0077】
一方、図5及び図6に示す演算処理回路リソース270を実現する別の手法は、例えば、ソフトウェア無線技術によるアプローチを採用することも好適である。この場合、例えば、演算処理回路リソース270を、粗粒度再構成型回路を用いて構成する手法が考えられる。
【0078】
図7は、粗粒度再構成型回路を用いた演算処理回路リソース270の構成例である。図7において、演算処理回路リソース270は、データメモリ501、プログラムメモリ502、構成情報(コンフィギュレーション)メモリ503、ロジック部504を有する。図7に示す演算処理回路リソース270が、従来型専用ハードウェアと異なる点は、フィルタ演算機能等のいわゆるデジタル信号処理の機能が、プログラムによってロジック部504で直接的に処理されることである。
【0079】
ロジック部504は、制御部505,506、及び、アレー部508を有する。また、アレー部508は、複数のFU(Function Unit)507−1〜16を有し、同時並列的に四則演算を実行する。各FU507−1〜16は、主として汎用的な四則演算を行うことが可能であり、フィルタ機能等のいわゆるデジタル信号処理機能を実行するのに好適である。
【0080】
また、FU507−1〜16は、四則演算を行う他に、データメモリ501への読み出し/書き込みも行う。また、個々のFU507−1〜16には、データメモリ501以外に、他のFUからの出力が選択されて入力されることも可能であり、FU507−1〜16は、入力信号源を切替えて使用されることができる。
【0081】
各FU間の接続は、必ずしも隣接されるものに限定されるものではなく、図7は各FU間の接続の一例を模式的に示したに過ぎない。なお、各FUには、一時的にデータを保存するレジスタファイルが含まれるのが一般的である。そして、個々のFUが処理可能な機能は、必ずしも同じである必要はない。異なる機能を有するFUから構成されるヘテロ型のアレー部は、一般的である。
【0082】
一方で、制御部505,506は、アレー部508の演算に必要な定数等の事前準備、及び、演算後の有効データタイミングを規定する等の制御を実行する。例えば、制御部505,506は、信号処理における繰り返し処理を並列化してアレー部508に実行させ、その他の処理を制御部505,506で実行させるようにプログラミングすると好適である。
【0083】
一般に、粗粒度再構成型回路は、様々な機能を切替えて実行でき、高速クロックで動作することで、所定時間内に処理を完了するように設計される。機能を切替える際には、処理途中のデータをデータメモリ501に保存しておく必要がある。
【0084】
制御部505,506、アレー部508の機能の切替えが完了した時点で、各FUは、再度データメモリ501から必要なデータを読み出し、別の機能を実行する。例えば、図5に示した機能を実行する場合、対象FUは、時間同期機能を実行した後に、いったん実行後のデータをデータメモリ501に保存する。そして、対象FUは、次に周波数同期機能に切替えられた後に、データメモリ501に保存したデータを用いて周波数同期機能を実行し、以降、同様に順次様々な機能を実行する。
【0085】
なお、粗粒度再構成型回路は、並列処理可能な機能を効率的に実施することができるが、逐次的にしか処理できない機能を実施する場合、演算リソースの利用効率が低下する。よって、誤り訂正復号又はMAC処理等のように、逐次的に処理する機能については、別途専用ハードウェアで実施するように、従来型の回路と組合せて構成することも好適である。
【0086】
プログラムメモリ502及び構成情報メモリ503は、ロジック部504を動作させる順番又は内容が規定されたプログラムを保存する。特に、演算処理回路リソース270が、図7に示すように構成されている場合、プログラムメモリ502は、制御部505,506の動作を規定するプログラムを保存する。また、構成情報メモリ503は、各FU507−1〜16の動作に関する順番、内容に加え、FU間の接続状態も規定するプログラムを保存する。プログラムメモリ502、構成情報メモリ503、及び、制御部505,506は、領域制御部260により制御される。
【0087】
演算処理回路リソース270を複数通信方式に同時に対応させるためには、大きく分けて二通りの方法が想定される。一つ目の方法は、見掛け上の同時動作を満たすために、単一通信方式対応の場合よりも処理対象機能が増加する分だけ高速なクロックで演算処理回路リソース270を動作させ、個々の機能を早く処理して、通信方式を切替える。二つ目の方法は、演算処理回路リソース270をそれぞれの通信方式に対応する回路領域に分配し、分配した個々の回路領域でそれぞれの通信方式に対応した処理を並列的に実行する。
【0088】
一つ目の方法は、シングルプロセッサ化に相当し、二つ目の方法は、いわゆるマルチプロセッサ化に相当する。そのため、一つ目の方法に比べ、二つ目の方法は、消費電力の観点から有利である。また、複数の通信方式への適用という観点から、処理時間等の時間管理の容易性を考慮すると、やはり二つ目の方法が望ましい。特に、ソフトウェア無線技術によるアプローチの場合、変調方式によって所要演算量が異なるため、汎用的な演算回路を時分割で切替えて用いる一つ目の方法では、処理時間が変調方式毎に異なるといった事態も想定されるからである。
【0089】
二つ目の方法の一例として、例えば、マルチスレッド対応が可能な粗粒度再構成型回路を用いて、複数の通信方式を異なるスレッドに割り振り、並列的に処理する方法が考えられる。以下では、複数の通信方法が、テレビ放送及び無線LANの場合を例に、二つ目の方法について説明する。
【0090】
図8は、マルチスレッド対応が可能な粗粒度再構成型回路を用いた演算処理回路リソース270の構成例である。なお、図8において、図7と共通する構成部分には、図7と同一の符号を付して説明を省略する。
【0091】
図8に示す演算処理回路リソース270は、テレビ放送波復調及び無線LAN処理の同時処理を行う場合の構成例である。そして、図8において、領域601は、テレビ放送波復調の機能を実行する演算リソースであり、領域602は、無線LAN処理の機能を実行する演算リソースである。なお、領域601,602は、リソース割当部250において、動作モードに応じて、演算処理回路リソース270が有する複数のFU507−1〜16が分配されることにより割り当てられる。リソース割当部250におけるリソース割り当て方法については、後述する。
【0092】
図8に示すように、テレビ放送波復調及び無線LAN処理のそれぞれが独立して動作する場合、制御部505と制御部506とが連携する必要は無い。一方、例えば、セルラー通信処理と無線LANとのような異なる規格間でのハンドオーバー等がある場合には、制御部505と制御部506とが連携することにより、スムーズなハンドオーバーが実現できる。
【0093】
領域601と領域602とは、互いに重ならないようにすると、制御部505と制御部06との間で衝突が起こらず、好適である。なお、図8は、領域601と領域602とを模式的に示した例であって、両者の大きさが一致する必要はなく、また、柔軟に変更することも好適である。
【0094】
ところで、前述した使用形態の大別において、(2)テレビ復調及び無線LAN処理の同時動作の場合と、(3)無線LAN処理のみの場合とでは、無線LAN処理に割り当てることのできる演算リソースの領域の大きさが異なる。
【0095】
使用形態(2)の場合には、図8に示すように、無線LAN処理に対し粗粒度再構成型回路の半分の領域しか利用することができない。一方、使用形態(3)の場合には、無線LAN処理だけに対し、粗粒度再構成型回路の全領域を利用することができる。
【0096】
すなわち、単位時間当たりの理論的な演算処理量が使用形態(2)では、使用形態(3)の半分程度となる。このため、例えば、無線LANにおける高速モード(MIMO)を処理するために、粗粒度再構成型回路の全領域が必要であると仮定すると、使用形態(2)では使用形態(3)よりも低速モードでの通信を強いられる。
【0097】
ここで、使用形態(2)については、前述したように、無線LAN処理に応じて、更に使用形態(2−1)、(2−2)に分けられる。使用形態(2−1)は、無線LAN処理が主として受信モードであり、例えば、通信処理装置200が、外部ネットワークにアクセスし、ストリーミング視聴する場合である。また、使用形態(2−2)は、無線LAN処理が主として送信モードであり、例えば、通信処理装置200が、可搬型テレビ受像機130へ映像蓄積データを転送する場合である。
【0098】
ここで、使用形態(2−2)において、仮に転送プロトコルがUDP(User Datagram Protocol)であるとする。この場合、プロトコル上の受信データが無いため、通信処理装置200の受信信号は、無線LANのMAC(Media Access Control)層の確認応答(Ack)信号のみとなる。
【0099】
図9は、無線LAN端末における、Ack信号以外の通常の情報信号(以下、通常データ信号という)の受信処理を説明するための図である。
【0100】
図9に示すように、無線LAN端末は、通常データ信号を受信すると、IEEE802.11標準規格に規定されている通り、誤り検出を行う必要がある。そして、同規格では、誤りが検出されなければ、受信完了後から規定時間(SIFS、IEEE802.11aの場合16μs)経過後に確認応答(Ack)信号を返信することが定められている。このため、無線LANでは、実時間処理が必要とされるのに加えて、許容処理時間が短いという制約がある。
【0101】
一方、テレビ放送波復調では、受信信号の取りこぼしがないように、実時間処理は必要とされるものの、処理遅延に関しては設計事項とされており、特段の制約が無い。
【0102】
このように、無線LANとテレビ放送波復調とでは、処理遅延の点で特徴的な差異がある。そして、これまでの無線LAN回路の設計では、実時間処理を満たすために必要な演算リソースに加え、短い許容処理時間で処理を完了させるために、相応の演算リソースが必要とされていた。
【0103】
図10は、無線LAN端末におけるAck信号の受信処理を説明するための図である。
【0104】
IEEE802.11標準規格には、Ack信号を復調する際の処理遅延については明記されていない。そのため、実質的には、図10に示すように、次の信号を送信するタイミングTまでにAck信号の復調処理を完了すれば、通信手順上の問題は発生しない。
【0105】
IEEE802.11a規格の場合、Ack信号の受信が完了したタイミングTから次の信号を送信するタイミングTまでの時間ΔTは、以下のようになる。
ΔT=DIFS(Distributed Coordination Function Space)
+CW(Contention Window)サイズ最小値×スロット・タイム
=34μs+15×9μs=169μs
【0106】
なお、IEEE802.11a規格では、Ack信号の復調に失敗した場合(Ack信号が届かない場合も含む)、次の信号は新たなデータではなく、前回送信したデータを再送することが規定されている。そのため、無線LAN端末では、送信準備のために、4μs程度早めに復調処理を完了している必要がある。すなわち、復調処理時間は、165μs(169μs−4μs)程度であれば問題ない。
【0107】
したがって、使用形態(2−2)では、送信主体のモードで無線LANを運用する場合、復調処理時間を、通常モードの場合の処理時間12μs(16μs−4μs)から165μs(169μs−4μs)程度まで延長しても問題がない。このように、使用形態(2−2)では、復調処理時間を延長しても問題がないため、復調処理に要求される粗粒度再構成型回路の領域を削減することが可能となる。
【0108】
必要な演算リソースという観点から、送信処理と受信処理とを比較すると、送受信で変調方式が同じ場合、送信処理の方が受信処理よりも必要な演算リソースが少ない。必要な演算リソースの差は、一概に定まるものではないものの、一般的に、送信処理に必要な演算リソースは、受信処理に必要な演算リソースの1/2〜1/3程度と考えても支障はない。特に、MIMO方式のように、復調側に複雑な演算が要求される場合には、この差は大きいと考えられる。
【0109】
このような特徴を利用すると、送信主体の使用形態(2−2)では、粗粒度再構成型回路で必要とされる領域を、通常モード(2−1)の場合よりも削減することが可能である。なお、送信処理では実時間処理が要求される。そのため、送信処理の実時間処理に必要な演算リソースは、最低限確保しなくてはならない。
【0110】
使用形態(2−2)に示すUDPプロトコルによる送信主体の場合、受信信号は、Ack信号だけであり、処理遅延の制約が緩和されるため、無線LANの送信処理に必要な領域だけを割り当てたとしても、特段の問題が生じないことがわかる。すなわち、前述した「無線LANにおける高速モード(MIMO)を処理するために、粗粒度再構成型回路の全領域が必要である」という条件は、送信主体の使用形態(2−2)の場合には緩和される。
【0111】
そのため、粗粒度再構成型回路の半分の領域であっても、無線LANにおける高速モード(MIMO)の適用が可能となる。すなわち、テレビ放送波の復調を行いながら、無線LANにおける高速モードでの映像蓄積データの転送が可能となり、可搬型テレビ受像機130側では、高品質な映像を視聴することが可能となる。
【0112】
なお、処理時間の制約が緩和されたAck信号の受信処理に必要な粗粒度再構成型回路の領域と、通常データ信号(Ack信号以外)の受信処理に必要な領域とは、大きさが異なる。しかし、受信処理の機能そのものには変わりはなく、両方の場合ともに、受信処理は、図6に示すような機能ブロックによって行われる。すなわち、機能ブロックの処理に必要な四則演算等の数は一定であり、これらを小さい領域で時間を掛けて処理するか、又は、十分な領域を用いて短時間で処理するかの違いだけである。このことは、送信処理に関しても同様であり、粗粒度再構成型回路の全領域を使用して処理する場合も、半分の領域だけを使用して処理する場合も、使用する領域が異なるだけであり、機能的には同じである。
【0113】
そこで、本実施の形態に係る通信処理装置200は、使用形態に応じた許容処理時間を判定し、許容処理時間を考慮して、動作モードが示す通信方式毎に、演算処理回路リソース270の演算リソースを割り当てる。この結果、通信処理装置200は、最小限の演算リソースで高速なデータ転送を実現することが可能となる。
【0114】
具体的には、動作モード決定部230は、通信処理装置200の使用形態(動作モード)を判定する。例えば、動作モード決定部230は、据置き型テレビ受像機110のインターフェースを介したユーザからの指定、又は、可搬型テレビ受像機130により指示されたアプリケーション情報に従って、使用形態を判定する。
【0115】
また、動作モード決定部230は、例えば、図3に示すように、使用形態と使用形態を示す動作モード番号とが対応付けられたテーブルを有し、判定した使用形態に対応する動作モード番号を許容処理時間判定部240に通知する。
【0116】
動作モード番号が使用形態(2−2)であることを示す「4」の場合、許容処理時間判定部240は、無線LANの許容処理時間がSIFSよりも十分長いと判定し、その他の場合にはSIFSと同じであると判定する。許容処理時間判定部240は、判定した許容処理時間の情報をリソース割当部250に出力する。
【0117】
リソース割当部250は、許容処理時間に応じて、動作モードが示す通信方式毎に、演算リソースを割り当てる。具体的には、リソース割当部250は、許容処理時間に応じて、通信方式毎に、演算処理回路リソース270の複数の演算ユニット、すなわち、FU507−1〜16を分配する。例えば、使用形態(2−2)の場合、リソース割当部250は、図8のように、テレビ復調用に領域601を割り当て、無線LAN処理用に領域602を割り当てる。
【0118】
そして、リソース割当部250は、動作モードが示す通信方式の各々に対し配分された演算リソースの情報(以下、リソース配分情報という)を領域制御部260に通知する。なお、リソース配分情報には、図11に示すように、通信方式と演算リソースとの対応関係が含まれている。
【0119】
領域制御部260は、リソース配分情報に基づいて、配分された演算リソースを制御する。例えば、領域制御部260は、領域601に対してはテレビ復調用の処理命令を適用し、領域602に対しては無線LAN用の処理命令を適用する。それぞれの処理命令は、プログラムメモリ502に保存される制御部505,506用と、構成情報メモリ503に保存されるアレー部508用の2種類から構成される。そのため、領域制御部260は、プログラムメモリ502に対して、テレビ復調用の処理命令を制御部505に出力するよう指示する。また、領域制御部260は、プログラムメモリ502に対して、無線LAN用の処理命令を制御部506に出力するよう指示する。また、領域制御部260は、構成情報メモリ503に対して、領域601においてテレビ復調用の処理命令を実行する際のプログラムを、制御部505に出力するよう指示する。また、領域制御部260は、構成情報メモリ503に対して、領域602において無線LAN処理用の処理命令を実行する際のプログラムを、制御部506に出力するよう指示する。
【0120】
データメモリ501は、ADC210によりデジタル信号に変換された信号を蓄積する。
【0121】
制御部505及び制御部506は、所望のタイミングで、データメモリ501からデジタル信号を読み出す。
【0122】
アレー部508の各FU507−1〜16は、実質的なデジタル信号処理を行う。デジタル信号処理の内容は、テレビ放送波復調の場合、図5に示した機能ブロック処理であり、無線LAN処理の場合、図6に示した機能ブロック処理である。
【0123】
繰り返し処理の内容が変わる度に、処理途中のデータは、データメモリ501に一時的に蓄積され、構成情報メモリ503から新たな命令がアレー部508に書き込まれる。そして、個々のFU507−1〜16の動作内容、動作順序、他のFUとの接続構成が指定される。
【0124】
新たな命令のアレー部508への書き込みが完了した時点で、アレー部508は、再度データメモリ501から処理途中のデータを読み出し、命令に従った次の機能を実行する。使用形態(2−1)、(2−2)のように、テレビ放送波復調と無線LAN処理とを同時に異なる領域で処理する場合には、それぞれの領域が独立して動作することとなる。
【0125】
全ての機能の処理が完了すると、データメモリ501に書き込まれた処理済のデータは、表示部111又は映像蓄積部112に出力される。
【0126】
ところで、使用形態(2−2)と使用形態(3)とでは、前述のように処理する機能自体は同じであるが、処理する演算リソースの領域が異なる。そのため、使用形態(2−2)と使用形態(3)とでは、処理機能は同じであっても処理時間が異なる。すなわち、デジタル信号処理が共に無線LAN処理であったとしても、演算処理回路リソース270の後段に出力される有効データのタイミングが、使用形態毎に異なる。そこで、演算処理回路リソース270は、自身から有効データのタイミングを示す制御信号を出力させることも好適である。
【0127】
以上のように、本実施の形態に係る通信処理装置200において、演算処理回路リソース270は、プログラム可能な複数の演算ユニット(FU)を有する。そして、動作モード決定部230は、通信方式の適用状態を示す動作モードを決定する。許容処理時間判定部240は、決定された動作モードに応じて、許容処理時間を判定する。リソース割当部250は、許容処理時間に応じて、複数のFUを分配して、動作モードが示す各通信方式毎に演算リソースを割り当てる。領域制御部260は、割り当てられた演算リソースを制御する。演算処理回路リソース270は、演算処理が完了したタイミングで、演算処理後のデータを出力する。
【0128】
これにより、通信処理装置200は、粗粒度再構成回路にマルチスレッド化技術を適用した構成を用いて、同時に複数の通信方式に対応する場合に、一方の通信方式の処理に対して過剰な演算リソースが使用されるのを回避することができる。この結果、他方の通信方式の処理に投入することができる演算リソースの制限を緩和することができ、小さい回路規模で、高速な通信を実現することができるようになる。例えば、受信処理に必要な処理量に対する送信処理に必要な処理量の割合だけの回路規模の削減が期待され、通信処理装置200は、従来の約1/2の規模で、演算処理回路リソース270を実現することができる。また、通信処理装置200は、複数の通信方式の同時処理が可能なため、ユーザの利用シーンの制限を緩和することができる。
【0129】
なお、演算処理回路リソース270は、使用される命令を、プログラムメモリ502及び構成情報メモリ503に、全ての使用形態に対応させて保存しておくことも可能である。しかし、これらのメモリは、制御部505,506及びアレー部508からの高速かつ頻度の高いアクセスに耐えうるものである必要がある。そのため、全ての命令をプログラムメモリ502又は構成情報メモリ503に保存しておくことは、消費電力又は回路面積の観点から不利である。
【0130】
そこで、図12に示すように、低速かつ頻度の少ないアクセスが前提で、大容量の記憶が可能なメモリ280を、演算処理回路リソース270の外部に構成することも好適である。メモリ280は、全ての使用形態のそれぞれに対応する命令(プログラム及び構成情報)を、使用形態毎に個別に保存している。
【0131】
使用形態(2−2)、(3)は、共にMIMOに対応可能であることが前提であり、機能的には同一処理となるが、粗粒度再構成型回路の使用領域が異なる。そのため、使用形態(2−2)と使用形態(3)とでは、無線LAN用の命令(プログラム及び構成情報)の内容が異なる。具体的には、処理機能がソースコードで記述されている場合、ソースコード自体は同一だが、コンパイル条件の一つである使用可能領域が異なるため、コンパイル後の実行用バイナリー命令(プログラム及び構成情報)が異なることとなる。
【0132】
これに対して、使用形態(2−1)の場合は、通常の無線LANモードで動作し、かつ、使用可能領域が使用形態(3)よりも小さいため、受信処理を規定時間内に収めるために、MIMOモードには対応することができない。よって、実行用バイナリーだけでなく、機能的にも、使用形態(2−1)は、使用形態(2−2)、(3)とは異なる。
【0133】
このように、各使用形態によって、命令のバイナリーコードが異なる。そこで、メモリ280は、これらのバイナリーコードの全てを保存し、領域制御部260は、使用形態に対応する命令のバイナリーコードをプログラムメモリ502及び構成情報メモリ503に書き込むようにする。これにより、本実施の形態は、アクセス速度及び頻度が高いプログラムメモリ502及び構成情報メモリ503の消費電力及び回路面積の増加を、抑制することができる。なお、使用形態に対応する命令のバイナリーコードの書き込みは、通信処理装置200の使用形態が変わる時にのみ実施されるものであり、大容量記憶可能なメモリ280のアクセス頻度は少ない。そのため、メモリ280のアクセス速度は、低速なもので構わない。
【0134】
(実施の形態2)
図13は、本発明の実施の形態2に係る通信処理装置の構成を示すブロック図である。なお、図13の本実施の形態に係る通信処理装置において、図4と共通する構成部分には、図4と同一の符号を付して説明を省略する。図13に示す通信処理装置700は、図4に示す通信処理装置200に対して、リソース割当部250に代えて、リソース割当部710を有する。また、図13に示す通信処理装置700は、ADC210と演算処理回路リソース270との間に、FIFO(First In First Out)メモリ720を追加した構成を採る。
【0135】
前述したように、使用形態(2−2)では、無線LAN処理において、受信信号はAck信号のみであることを前提としている。通常データ信号に比べ、Ack信号は、概してフレーム長が短い。よって、演算リソースの領域を限定することにより、処理時間が遅くなるだけでなく、実時間処理も達成されない場合であっても、次の信号を送信するタイミングまでに、長い時間を掛けて復調処理することも可能である。
【0136】
ところが、例えば、無線LANがブロックAck方式を採用し、Ack信号のフレーム長が長くなり、実時間処理が間に合わなくなると、受信信号の取りこぼしが発生してしまう。ここで、ブロックAck方式とは、複数の受信フレームに対する通信成功/失敗状況をまとめて返信する方式である。したがって、ブロックAck方式では、演算処理回路リソース270における復調処理が完了する前に次の無線LAN信号が入力され、データメモリ501に次の無線LAN信号を保存しきれない場合が発生する。
【0137】
そこで、本実施の形態に係る通信処理装置700は、フレーム長が長い無線LAN信号を一時的に保存するためのFIFOメモリ720を、データメモリ501の前段に設けた構成を採るようにした。
【0138】
FIFOメモリ720は、無線LAN処理において実時間処理が間に合わない場合に、ブロックAck信号のようなフレーム長が長い信号を一次的に保存する。
【0139】
無線LAN処理の制御を行う制御部506は、シンボル毎に処理すべき機能が完了するタイミングに合せて、FIFOメモリ720に蓄積されているデータをデータメモリ501に書き込む。そして、制御部506は、次のシンボルに対する処理が遅延無く実施できるように領域602を制御する。もちろん、ブロックAck信号のフレーム長と、演算リソースの領域を限定した場合の処理速度との関係によっては、通信処理装置700がFIFOメモリ720を有しても、通信処理装置700は信号を取りこぼしてしまう可能はある。しかしながら、ブロックAck信号で返信する対象のフレーム数は、調整可能であり、無線LANの運用モードが規定するパラメータの一つである。ここで、無線LANの運用モードとは、例えば、ストリーム数、フレームフォーマット、フレームレート等、様々なパラメータにより特定される無線LANの運用形態である。そのため、本実施の形態では、処理速度と事前の設計に基づくFIFOメモリ720の容量とを勘案して、ブロックAck信号の対象フレーム数の最大値を超えないような当該フレーム数を見積もるようにしてもよい。そして、この場合、無線LANの運用モードは、見積もったフレーム数をブロックAck信号で返信する対象のフレーム数に設定すればよい。
【0140】
以上のように、本実施の形態に係る通信処理装置700は、フレーム長が長い信号を一時的に保存するためのFIFOメモリ720を有する。これにより、通信処理装置700は、ブロックAck信号のようなフレーム長が長いAck信号を受信する場合においても、限定した演算リソースで通信処理を行うことができ、小型化に好適である。
【0141】
(実施の形態3)
図14は、本発明の実施の形態3に係る通信処理装置の構成を示すブロック図である。なお、図14の本実施の形態に係る通信処理装置800において、図4と共通する構成部分には、図4と同一の符号を付して説明を省略する。図14に示す通信処理装置800は、図4に示す通信処理装置200に対して、動作モード決定部230、許容処理時間判定部240、リソース割当部250、及び、演算処理回路リソース270に代えて、動作モード決定部810、許容処理時間判定部820、リソース割当部830、及び、演算処理回路リソース840を有する。
【0142】
図15は、本実施の形態に係る演算処理回路リソース840の構成を示すブロック図である。なお、図15の本実施の形態に係る演算処理回路リソース840において、図8と共通する構成部分には、図8と同一の符号を付して説明を省略する。図15に示す演算処理回路リソース840は、図8の演算処理回路リソース270に対して、FU507−1〜8に代えて、バックアップ用のレジスタファイル(RF:Register File)1〜8を備えるFU841−1〜8を有する。
【0143】
実施の形態1及び2では、使用形態(2−2)として、転送プロトコルが例えばUDPであり、受信信号がAck信号だけの場合を前提とした。本実施の形態は、転送プロトコルがUDPではなく、TCP(Transmission Control Protocol)の場合においても、適応できる。本実施の形態では、TCPに適用し、小さい回路規模で、許容処理時間を満たしつつ、複数の通信方式に対応することができる通信処理装置について説明する。
【0144】
TCPのように、上位層においてもAck信号が必要な場合、IEEE802.11標準規格が規定するAck信号に加え、上位(TCP)層のAck信号がカプセル化された信号(上位Ack信号)も、無線LANにおける受信信号となる。この上位Ack信号は、無線LAN処理においては、Ack信号以外の通常の情報信号(通常データ信号)として受信される。したがって、通信処理装置800は、規定時間内に、通常データ信号としての上位Ack信号に対するAck信号を返信できるように、短い処理時間で処理を完了しなくてはならない。
【0145】
本実施の形態は、短い処理時間に最大限対応できるように、一時的に、テレビ放送波復調用の領域601を減らす、又は、領域601におけるテレビ放送波復調を中断することにより、無線LAN処理用の演算リソースの領域を拡張する。以下では、領域601においてテレビ放送波復調処理を中断する場合を例に説明する。
【0146】
テレビ放送波復調用の領域601は、非同期で独立に動作している無線LAN処理用の領域の拡張部として使用される。そのため、テレビ放送波復調時の演算処理途中のデータを一時的に退避させる必要がある。FU841−1〜8のそれぞれは、一時退避用の記憶部として、FU841−1〜8に通常備わるレジスタファイルに加え、一時退避用のレジスタファイル(RF1〜8)を備える。
【0147】
動作モード決定部810は、通信規格よりも上位層の通信プロトコル、又は、アプリケーションに基づいて、通信処理装置800の使用形態を判定する。そして、動作モード決定部810は、判定した使用形態の情報を許容処理時間判定部820に通知する。
【0148】
許容処理時間判定部820は、許容処理時間判定部240と同様に、使用形態に応じて、許容処理時間を判定する。特に、許容処理時間判定部820は、通信プロトコルがTCPの場合、許容処理時間がSIFSであると判定する。そして、許容処理時間判定部820は、判定した許容処理時間の情報をリソース割当部830に出力する。
【0149】
リソース割当部830は、許容処理時間に応じて、FU841−1〜8,FU507−9〜16を分配して、動作モードが示す各通信方式毎に演算リソースを割り当てる。ただし、リソース割当部830は、特に、許容処理時間が短い場合、短い処理時間で処理を完了させるために、各通信方式に分配する演算ユニットを一時的に変更して、各通信方式を処理する演算リソースの領域を拡張又は縮小させる。例えば、通信プロトコルがTCPの動作モードの場合、リソース割当部830は、無線LAN処理用の領域602を拡張する必要があると判定し、無線LAN処理用に拡張領域を割り当てる。
【0150】
このように、リソース割当部830は、許容処理時間に応じて、制御部505,506の制御対象となるFUとの対応付けを変更する。リソース割当部830は、割り当てた演算リソースの情報(リソース配分情報)を領域制御部260に通知する。なお、リソース配分情報には、例えば図16に示すように、通信方式と演算リソースとの対応関係の組合せ(セット)が複数含まれ(図16のセット1,2)、更に、当該組合せを適用する適用時間(ΔT,ΔT)が含まれている。
【0151】
領域制御部260は、リソース配分情報に基づいて、配分された演算リソースを制御する。したがって、領域制御部260は、リソース割当部830から図16に示すようなリソース配分情報が通知される場合、領域制御部260は、始めに、領域601に対してはテレビ復調用の処理命令を適用する。また、領域制御部260は、領域602に対しては無線LAN用の処理命令を適用する。そして、適用時間ΔTが経過すると、領域制御部260は、領域601及び領域602に対して無線LAN用の処理命令を適用する。
【0152】
これにより、適用時間ΔT経過後、制御部506は、制御部505に対して、領域拡張を要請する。領域601を無線LAN処理用に用いるために、制御部505は、直ちに、処理の途中であるデータ及び通常用レジスタファイルの内容を一時退避用のレジスタファイル(RF1〜8)に複製させる。一時退避用のレジスタファイル(RF1〜8)への複製が完了したタイミングで、制御部506は、無線LAN処理用の領域を拡張し、アレー部508の全てのFU841−1〜8,507−9〜16を活用して、無線LAN処理の処理を行う。
【0153】
ここで、FU841−1〜8がレジスタファイルを備えず、処理途中のデータをデータメモリ501に書き込むことも可能である。しかし、多数のFUはデータメモリ501に同時にアクセスすることができないという制限から、一時退避のために時間を要してしまう。よって、対象となる全てのFUが同時に一時退避処理を行える本構成は、処理時間の面で好適である。
【0154】
なお、プログラムメモリ502及び構成情報メモリ503は、使用形態(3)に対応する命令も予め記憶しておく必要がある。そのため、プログラムメモリ502及び構成情報メモリ503は、実施の形態1及び2よりも大きな容量が必要である。
【0155】
ここで、粗粒度再構成型回路を用いるソフトウェア無線技術によるアプローチでは、粗粒度再構成型回路は、処理対象のシステムを処理するのに必要とされる最小サイクル数で常に動作しているわけではない。当該アプローチでは、多少の余裕サイクルが残されており、粗粒度再構成型回路が動作しない休止時間が存在するものと想定される。これは、将来のソフトウェア変更による性能向上の余地を残しておくという理由、又は、対応すべき規格毎に最小サイクル数が異なるため、一定程度のマージンを有しておくことが望ましいという理由からである。
【0156】
例えば、この余裕サイクルが、全演算リソースを活用した場合の10%程度であると仮定する。テレビ放送波の1シンボル長が仮に1msとすると、1シンボルあたり100μsの余裕サイクルがある。そのため、1msの間に、テレビ放送波復調を100μs中断しても、システム的に処理が破綻することがない。よって、無線LAN復調が、テレビ放送波復調の余裕サイクル(100μs)以内に完了すれば、本実施の形態を適用し、テレビ放送波復調を一時的に中断した場合においても、テレビ放送波復調において問題は生じない。
【0157】
無線LAN復調が完了し、領域601において再度テレビ放送波復調を再開させる場合、制御部506は、制御部505に無線LAN復調が完了した旨を通知する。そして、制御部505は、一時退避したデータをレジスタファイルから読み出し、読み出しが完了したタイミングで、中断する直前の処理を再開させる。具体的には、制御部505は、中断したタイミングでの命令を、別途、記憶しておき、中断したタイミングの命令から実行させる。
【0158】
無線LAN復調に必要とされる処理時間は、無線LANのフレーム長、変調方式等、及び、設計時に把握可能な変調方式毎に必要な粗粒度再構成型回路の処理サイクル数によって一意に定まる。なお、無線LAN復調に必要とされる処理時間は、無線LAN信号の先頭に付加されている情報(SIGNALシンボル)を復調することにより求められる。よって、通信処理装置800は、SIGNALシンボルを復調した結果、無線LAN復調にテレビ放送波復調の余裕サイクル以上の処理時間が必要であると判定した場合、無線LAN信号の復調を中止することも好適である。
【0159】
また、通信処理装置800は、SIGNALシンボルを復調するまでは、限定した領域602のみで無線LAN復調を行うようにしてもよい。そして、通信処理装置800は、テレビ放送波復調の余裕サイクル内で処理が完了するフレーム長及び変調方式であると判定した場合にのみ、制御部505にテレビ放送波復調を中断させるリソース割り当てを行うことも好適である。
【0160】
なお、テレビ放送波復調の余裕サイクルは、設計時に予め把握することができる。そこで、余裕サイクル以上の処理時間を必要とするフレーム長及び変調方式の組合せで送信されないように、アクセスポイント120又は可搬型テレビ受像機130の無線LANの運用モードが設定しておくことも好適である。
【0161】
ここで、Ack信号は、通常データ信号の送信完了後、IEEE802.11標準規格に規定された一定時間(SIFS)経過後に到着する。そのため、事前にAck信号が到着する時間の予測が可能である。そこで、MAC処理部(図示しない)とも連携し、予測された時間に到着した信号はAck信号であるとみなし、その間、演算処理回路リソース840は、領域602だけで無線LAN復調するように限定することも好適である。
【0162】
以上のように、本実施の形態に係る通信処理装置800において、動作モード決定部810は、通信規格よりも上位層の通信プロトコル、又は、アプリケーションに基づいて、使用形態(動作モード)を判定する。リソース割当部830は、許容処理時間に応じて、使用形態が示す各通信方式に対して、複数の演算ユニットの分配を変更して、制御部505,506が制御する演算リソースの領域を拡張又は縮小する。これにより、通信処理装置800は、許容処理時間が短い場合においても、複数の通信方式に対応することができる。
【0163】
(実施の形態4)
実施の形態3では、無線LAN復調に必要とされる処理時間が、テレビ放送波復調の余裕サイクル未満の場合に、無線LAN復調用の演算リソースを拡大することができる通信処理装置について説明した。本実施の形態では、無線LAN復調に必要とされる処理時間が、テレビ放送波復調の余裕サイクル以上の場合においても、テレビ放送波復調への影響を抑えつつ、無線LAN復調を行うことができる通信処理装置について説明する。
【0164】
図17は、本発明の実施の形態4に係る通信処理装置に係る構成を示すブロック図である。なお、図17の本実施の形態に係る通信処理装置900において、図14と共通する構成部分には、図14と同一の符号を付して説明を省略する。図17に示す通信処理装置900は、図14の通信処理装置800に対して、リソース割当部830に代えて、リソース割当部910を有する。また、図17に示す通信処理装置900は、ADC210と演算処理回路リソース270との間にFIFOメモリ920を更に追加した構成を採る。
【0165】
実施の形態3に係る通信処理装置800は、無線LAN復調のために、テレビ放送波復調の余裕サイクル以上の期間にわたってテレビ放送波復調を中断すると、テレビ放送波信号の取りこぼしが発生してしまう。これを防ぐために、本実施の形態に係る通信処理装置900は、FIFOメモリ920を備える。
【0166】
例えば、通信処理装置900が、テレビ放送波信号の5シンボル分を蓄積することができるFIFOメモリ920を有する場合を考える。前述したように、テレビ放送波復調の余裕サイクルが1ms当たり100μsの場合、通信処理装置900は、無線LAN復調のために、テレビ放送波復調の中断を、連続的に1msの間に100μsまで許容することができる。又は、通信処理装置900は、断続的に5msの間に500μsまで許容することができる。無線LAN復調のために、通信処理装置900が、断続的にテレビ放送波復調を中断した場合、FIFOメモリ920にテレビ放送波信号が少しずつ蓄積される。そして、最終的には、やはり、FIFOメモリ920がテレビ放送波信号を取りこぼしてしまう可能性もある。
【0167】
そこで、リソース割当部910は、FIFOメモリ920に蓄積されたデータ量を観測し、その観測結果を演算処理回路リソース270の制御部506に通知する。そして、制御部506は、処理対象の無線LAN信号の復調処理時間とFIFOメモリ920の残余量とを比較する。そして、制御部506は、FIFOメモリ920に十分な残余量が無いと判断した場合には、制御部505への中断処理の依頼は行わず、無線LAN信号の復調を中断する。
【0168】
無線LAN復調が完了し、再度領域601においてテレビ放送波復調が再開される以降の通信処理装置900の動作については、実施の形態3で述べた通信処理装置700の動作と同様である。テレビ放送波復調の再開後は、FIFOメモリ920に蓄積されたテレビ放送波信号が無くなるまで、通信処理装置900は、休止時間無く粗粒度再構成型回路にて連続的にテレビ放送波復調処理を行う。
【0169】
なお、FIFOメモリ920の容量が大きすぎると、テレビ放送波復調データが表示部111にしばらく出力されない状態となり、表示部111において映像が止まってしまう場合がある。つまり、FIFOメモリ920の容量が大きすぎると、テレビ放送波復調データが表示部111に出力されるタイミングにジッタ(jitter)が生じる可能性がある。そこで、このタイミングジッタに耐えることができるように、表示部111が、バッファメモリ等を有するように構成すると好適である。
【0170】
ここで、表示部111が、タイミングジッタを吸収するためのバッファメモリを有する場合のデータ蓄積状態を考察する。FIFOメモリ920にデータが蓄積されるに従って、演算処理回路リソース270からのテレビ放送波復調データの出力が滞ることとなる。このため、表示部111のバッファメモリに蓄積していた映像データが順次読み出され、表示部111のバッファメモリのデータ蓄積量が徐々に減少していく。すなわち、FIFOメモリ920にデータが蓄積されるに従って、表示部111のバッファメモリのデータが読み出されるため、FIFOメモリ920とバッファメモリとの蓄積状態は、補完関係となる。そのため、FIFOメモリ920とバッファメモリとの共用化が可能となる。
【0171】
そこで、図18に示すように、通信処理装置900は、FIFOメモリ920に代えて、リングバッファ930を有するようにしてもよい。
【0172】
リングバッファ930は、2入力2出力が可能なマルチポートリングバッファであり、テレビ放送波復調前の信号データ、及び、テレビ放送波復調後の映像データの入出力が個別に可能な構成を採る。
【0173】
図19は、リングバッファ930の動作を説明するための図である。図19に示されるように、例えば、テレビ放送波復調後の映像データは、データ1,データ2,データ3,…,データ22の順にリングバッファ930に書き込まれる。そして、データ23を書き込む前のタイミングでデータ1が読み出され、データ24を書き込む前のタイミングでデータ2が読み出され、順次、データを書き込む前のタイミングでリングバッファ930からデータが読み出される。この時、映像データの出力がデータ25で止まった後は、映像が切れないように、データ4、データ5、…の順に、映像データが読み出されていく。映像データが読み出されたアドレスには、信号データa,信号データb,信号データc、…の順に復調前のテレビ放送波信号が書き込まれる。その後、復調前のテレビ放送波信号の蓄積が不要となると、例えば、読み出しが完了したデータ11が書き込まれていたアドレスに、新たな映像データ26が書き込まれるように、リングバッファ930が制御される。また、書き込まれた信号データa、信号データb、信号データcは、必要なタイミングで読み出されていく。
【0174】
このように、通信処理装置900は、リングバッファ930を用いることにより、テレビ放送波信号を蓄積するメモリと、表示部111用の映像データを保持メモリとの共有化を図ることができる。そのため、通信処理装置900は、メモリ領域を節約することができ、回路規模の増大を抑制することができる。
【0175】
以上のように、本実施の形態に係る通信処理装置900は、テレビ放送波信号を一時的に保存するためのFIFOメモリ920又はリングバッファ930を有する。これにより、通信処理装置900は、無線LAN復調に必要とされる処理時間が、テレビ放送波復調の余裕サイクル以上の場合においても、テレビ放送波復調への影響を抑えつつ、無線LAN復調を行うことができる。
【0176】
なお、本実施の形態において、通信処理装置900は、FIFOメモリ720を有するようにしてもよい。この場合には、通信処理装置900は、ブロックAck信号のようなフレーム長が長いAck信号を受信する場合においても、限定した演算リソースで通信処理を行うことができ、回路規模の増大を抑制することができる。
【0177】
(実施の形態5)
図20は、本発明の実施の形態5に係る通信処理装置の構成のブロックを示す図である。なお、図20の本実施の形態に係る通信処理装置1000において、図17と共通する構成部分には、図17と同一の符号を付して説明を省略する。図20に示す通信処理装置1000は、図17に示す通信処理装置900に対して、リソース割当部910に代えて、リソース割当部1010を有し、MAC処理部1020を更に追加した構成を採る。本実施の形態に係る通信処理装置1000は、FIFOメモリ920にその容量を超えてテレビ放送波信号が入力され、FIFOメモリ920が、テレビ放送波信号を取りこぼしてしまうのを回避する。
【0178】
リソース割当部1010は、リソース割当部910と同様に、FIFOメモリ920に蓄積されたデータ量を観測し、その観測結果を演算処理回路リソース270の制御部506に通知する。更に、リソース割当部1010は、FIFOメモリ920に蓄積されたデータ量と所定の閾値とを比較し、比較結果を、MAC処理部1020に通知する。
【0179】
MAC処理部1020は、FIFOメモリ920に蓄積されたデータ量が所定の閾値以上の場合、テレビ放送波信号の取りこぼしが発生する可能性が高いと判定する。この場合、MAC処理部1020は、今後の処理時間が短縮できるように、フレーム長の縮小又は変調方式の簡素化を依頼するための制御信号を生成する。ここで、変調方式の簡素化とは、例えば、MIMOからSISO(Single Input Single Output)に変更する場合をいう。また、変調方式の簡素化とは、64QAM(Quadrature Amplitude Modulation)から16QAMに変更する場合をいう。そして、MAC処理部1020は、情報データを送信するフレームとは別のフレームで、この制御信号を送信するための制御を行う。これにより、この制御信号を受信したアクセスポイント120、又は可搬型テレビ受像機130は、フレーム長の縮小又は変調方式の簡素化を行って、次のデータを送信するように制御される。このような、フレーム長又は変調方式の指定に関しては、標準規格で規定されていないものの、アプリケーションレベルの制御として実施することが可能である。
【0180】
一方、MAC処理部1020は、フレーム長の縮小又は変調方式の簡素化により、FIFOメモリ920に蓄積されたデータ量が所定の閾値未満の場合、更なる高速伝送が可能であると判定する。この場合、MAC処理部1020は、前述と逆の制御、すなわち、フレーム長の拡張又は変調方式の複雑化を依頼するための制御信号を生成する。そして、MAC処理部1020は、情報データを送信するフレームとは別のフレームで、この制御信号を送信するための制御を行う。これにより、この制御信号を受信したアクセスポイント120、又は可搬型テレビ受像機130は、フレーム長の拡張又は変調方式の複雑化を行って、次のデータを送信するように制御される。ここで、変調方式の複雑化とは、例えば、SISOからMIMOに変更する、又は、16QAMから64QAMに変更する場合をいう。
【0181】
以上のように、本実施の形態に係る通信処理装置900において、MAC処理部1020は、FIFOメモリ920に蓄積されているデータ量に応じて、送信側で定められるフレーム長又は変調方式の変更依頼を送信側に通知する。これにより、通信処理装置900は、演算リソースを最大限有効活用した高速伝送を実現することができる。
【0182】
(実施の形態6)
図21は、本発明の実施の形態6に係る通信処理装置の構成を示すブロック図である。なお、図21の本実施の形態に係る通信処理装置1100において、図20と共通する構成部分には、図20と同一の符号を付して説明を省略する。図21に示す通信処理装置1100は、図20に示す通信処理装置1000に対して、リソース割当部1010に代えて、リソース割当部1110を有し、最長フレーム長判定部1120を更に追加した構成を採る。本実施の形態に係る通信処理装置1100は、無線LAN信号がマルチユーザMIMOで送信され、無線LANのフレーム長がユーザ毎に異なる場合においても、複数の通信方式に対応することができる。
【0183】
マルチユーザMIMOの場合、自局宛の所望の信号に他局宛の信号が空間多重されて送信される。そして、他局宛信号のフレーム長と自局宛信号のフレーム長とが一致しない場合も想定される。この場合、最も長いフレーム長に合せ、通信処理装置1100は、十分な処理時間をかけて復調処理を行ってもよい。Ack信号を返信するタイミングは、フレーム長が最も長い信号の復調処理が終了した後となるためである。
【0184】
そこで、最長フレーム長判定部1120は、マルチユーザMIMOにおいて、最も長いフレーム長を検出し、最長フレーム長と自局宛信号のフレーム長との差分から許容処理時間を導出する。最長フレーム長判定部1120は、導出した許容処理時間をリソース割当部1110に出力する。
【0185】
リソース割当部1110は、許容処理時間判定部820において使用形態から判定された許容処理時間と、最長フレーム長判定部1120により導出された許容処理時間とを比較する。そして、リソース割当部1110は、これらのうち、時間が長い許容処理時間に応じて、動作モードが示す通信方式毎に演算リソースを割り当てる。
【0186】
また、リソース割当部1110は、リソース割当部910と同様に、FIFOメモリ920に蓄積されたデータ量を観測し、その観測結果を演算処理回路リソース270の制御部506に通知する。
【0187】
また、MAC処理部1020が、送信側にフレーム長又は変調方式を指定することができる場合には、リソース割当部1110は、実施の形態の5と同様に、FIFOメモリ920に蓄積されたデータ量と所定の閾値とを比較する。そして、リソース割当部1110は、比較結果を、MAC処理部1020に通知する。そして、MAC処理部1020は、復調可能なフレーム長及び変調方式を示す制御信号を生成し、生成した制御信号の送信制御を行う。この時、他局宛フレーム長が事前に分からない場合には、他局宛フレーム長の最大値と自局宛フレーム長との差分を指定し、指定した差分以上の処理時間が確保できるよう、MAC処理部1020は、送信側に要求する。ただし、実時間処理ができない場合には、通信処理装置1100は、FIFOメモリ720を備え、MAC処理部1020は、このFIFOメモリ720の最大容量を勘案した処理時間を要求する必要がある。
【0188】
ところで、マルチユーザMIMOにおけるシステムの総スループットの観点からは、他局宛ユーザへの総干渉量が少なくなるため、できる限り、多値化又は空間多重化した変調方式により短時間で信号を伝送するのが望ましい。ただし、ソフトウェア無線技術によるアプローチの場合は、高度な変調方式を処理するための演算リソースを十分確保できない場合もある。そのため、通信処理装置1100が処理可能な変調方式のうち、最も高度な変調方式を選択してもらえるよう、MAC処理部1020が、許容処理時間を送信側に伝えることの意義は大きい。
【0189】
以上のように、本実施の形態に係る通信処理装置1100において、最長フレーム長判定部1120は、マルチユーザMIMOにおいて、最長フレーム長を検出する。そして、最長フレーム長判定部1120は、最長フレーム長と自局宛信号のフレーム長との差分から許容処理時間を導出する。そして、リソース割当部1110は、許容処理時間判定部240において使用形態から判定された許容処理時間と、最長フレーム長判定部1120により導出された許容処理時間とを比較する。そして、リソース割当部1110は、これらのうち、時間が長い許容処理時間に応じて、動作モードが示す通信方式毎に、演算リソースを割り当てる。これにより、通信処理装置1100は、無線LAN信号がマルチユーザMIMOで送信され、無線LANのフレーム長がユーザ毎に異なる場合においても、限定した演算リソースで複数の通信方式に対応することができる。この結果、通信処理装置1100は、回路規模の増大を抑制することができる。
【0190】
(実施の形態7)
図22は、本発明の実施の形態7に係る演算処理回路リソースの構成を示すブロック図である。なお、本実施の形態に係る通信処理装置の構成は、上記各実施の形態と同様であるため、図4等を援用して説明する。
【0191】
図22の本実施の形態に係る演算処理回路リソース270Aにおいて、図8と共通する構成部分には、図8と同一の符号を付して説明を省略する。図22に示す演算処理回路リソース270Aは、図8に示す演算処理回路リソース270に対して、制御部505,506に代えて、制御部511〜513を有する。
【0192】
図22に示す演算処理回路リソース270Aは、3つの通信方式に対する同時処理を可能とする構成である。図8では、演算処理回路リソース270内のFU507−1〜16が2つの領域601,602に分配されたのに対し、図22では3つの領域611,612,613に分配される。そして、各制御部511〜513は、それぞれの領域を制御する。具体的には、制御部511は、領域611内のFU507−1〜4を制御し、制御部512は、領域612内のFU507−5〜8を制御し、制御部513は、領域613内のFU507−9〜16を制御する。
【0193】
例えば、テレビ放送波信号が、ISDB−T(Integrated Services Digital Broadcasting-Terrestrial)の場合、領域611,612は、ワンセグメント復調処理を行うことが想定される。また、領域613は、無線LAN処理を行う使用形態等が想定される。このとき、領域611と領域612とは、異なるチャネルのワンセグメント復調処理を行うことができ、制御部511、制御部512、及び、制御部513は、必要に応じて互いに連携する。
【0194】
図23は、この場合に、リソース割当部250から領域制御部260に通知されるリソース配分情報であって、このリソース配分情報に含まれる通信方式と演算リソースとの対応関係の一例を示す図である。
【0195】
なお、実施の形態3と同様に、本実施の形態に係る通信処理装置は、各通信方式に分配するFUを一時的に変更し、各通信方式を処理する演算リソースの領域を、拡張又は縮小させるリソース割当部830を有するようにしてもよい。図24は、リソース割当部830から領域制御部260に通知されるリソース配分情報に含まれる、通信方式と演算リソースとの対応関係の組合せ(セット)の一例を示す図である。この場合、制御部511は、一時的に制御部512,513に対して、処理の中断要請を行い、領域611に加え、領域612,613の演算リソースを使用して、ワンセグメント復調処理を行う。
【0196】
(実施の形態8)
図25及び図26は、本発明の実施の形態8に係る演算処理回路リソースの構成を示すブロック図である。なお、本実施の形態に係る通信処理装置の構成は、上記各実施の形態と同様であるため、図4等を援用して説明する。
【0197】
図25及び図26の本実施の形態に係る演算処理回路リソース270Bにおいて、図8と共通する構成部分には、図8と同一の符号を付して説明を省略する。図22に示す演算処理回路リソース270Bは、図8に示す演算処理回路リソース270に対して、制御部505,506に代えて、制御部521を有する。
【0198】
図25及び図26に示す演算処理回路リソース270Bは、1つの通信方式のみに対応する構成であり、アレー部508を制御する制御部は、制御部521のみで構成される。
【0199】
本実施の形態に係る通信処理装置は、図25に示すように、領域621のみを使用する場合と、図26に示すように、領域621より大きい領域631を使用する場合と、所定の通信方式に対して柔軟に使用領域を変更して割り当てる。
【0200】
例えば、動作モード決定部230が、使用形態(2−2)であり、UDPプロトコルを用いた無線LAN送信が行われていて、自局がUDPモードにおいて受信側であると判定した場合、受信信号は、Ack信号に限られる。このような場合、演算処理回路リソース270Bが、MIMO方式で送信されたAck信号を、領域631を使用せずに、限定した領域621のみで長い処理時間を費やして処理した場合においても、通信プロトコル上は問題がない。そこで、動作モード決定部230が、自局がUDPモードにおいて受信側であると判定した場合、許容処理時間判定部240は、通常データ信号の受信処理よりも長い処理時間を許容処理時間と判定する。そして、リソース割当部250は、必要な領域として領域621を割り当て、この領域で処理するのに適した命令(プログラム及び構成情報)を実行させるように、領域制御部260を介して、演算処理回路リソース270を制御する。なお、演算処理回路リソース270Bが処理する機能自体は、Ack信号を受信する場合と通常データ信号を受信する場合とで同様であり、例えば、図6に示すような機能ブロックにより実施されることに変わりはない。しかし、処理を実施する領域が異なるため、命令のバイナリーコードは、Ack信号を受信する場合と通常データ信号を処理する場合とで異なることとなる。演算処理回路リソース270Bが、領域621だけで処理する場合、領域621外のFU507−9〜16は動作する必要が無い。そのため、通信処理装置がこの領域の電源を切断しておくと、リーク電流が流れないため、省電力化を図ることができる。
【0201】
ここで、Ack信号は、通常データ信号の送信完了後、IEEE802.11標準規格に規定された一定時間(SIFS)経過後に到着するため、事前に予測が可能である。そこで、MAC処理部1020とも連携し、予測された時間に到着した信号は、Ack信号であるとみなす。なお、その間、演算処理回路リソース270は、使用形態等に関わりなく、領域621だけで無線LAN復調するように限定することも好適である。
【0202】
図27は、この場合の通信処理装置1200の構成を示すブロック図である。MAC処理部1020は、Ack受信タイミングの情報をリソース割当部250に通知する。そして、リソース割当部250は、Ack受信タイミングでは、領域621のみで処理し、その他のAck受信タイミングでは、領域631で処理するように、演算リソースを割り当てることも可能である。
【0203】
また、ここで、粗粒度再構成型回路を用いた演算処理回路リソース270Bは、その規模を始めから限定化し、領域621のみで構成しておくことも、回路規模を小さくでき好適である(図28参照)。例えば、SIFS経過後にAck信号を返信しなくてはならない通常データ信号を受信する場合、処理可能な通信モードは、SISOモードに限られる。SISOモードは、MIMOモードに比べ、復調処理演算が少ない。そのため、SISOモードは、限られた演算リソースでの処理が可能である。また、許容処理時間が比較的長い場合、通信処理装置は、長い処理時間を費やして、限定された領域621のみでMIMO復調処理を行うとことが考えられる。許容処理時間が長い場合の例としては、Ack受信、又は、前述したマルチユーザMIMOの場合等に限定されるものではない。本実施の形態では、例えば、広告配信等、一方的にデータを送信している送信局からのデータを受信する場合のように、ベストエフォート的な送信がされており、無線LANにおけるAck信号を返信する必要が無い場合が想定される。
【0204】
(実施の形態9)
実施の形態1〜8では、演算処理回路リソースのクロック周波数及び電源電圧は一定であり、演算処理回路リソースの演算リソースの領域のみを制御する場合について説明した。
【0205】
本実施の形態は、DVFS技術又は電源遮断技術と、上記各実施の形態で説明した演算処理回路リソースの演算リソースの領域制御とを組合せる場合について説明する。具体的には、本実施の形態に係る通信処理装置は、許容消費エナジーと、使用形態(同時使用可能な通信方式数や最高伝送レート等)とのトレードオフを考慮してリソース制御を行う。
【0206】
図29は、本発明の実施の形態9に係る通信処理装置の構成を示すブロック図である。なお、図29の本実施の形態に係る通信処理装置1300において、図4と共通する構成部分には、図4と同一の符号を付して説明を省略する。図29に示す通信処理装置1300は、図4に示す通信処理装置200に対して、リソース割当部250に代えて、リソース割当部1320を有する。さらに、図29に示す通信処理装置1300は、許容消費エナジー決定部1310、クロック周波数制御部1330、及び、電圧制御部1340を更に追加した構成を採る。
【0207】
許容消費エナジー決定部1310は、電池残量又はユーザによるエナジー消費モードのパラメータを入力とし、演算処理回路リソース270の許容消費エナジーを決定する。エナジー消費モードには、例えば、エナジー節約重視型、又は、性能重視型等がある。例えば、エナジー消費モードがエナジー節約重視型を示す場合、許容消費エナジー決定部1310は、電池残量に関わらず、常に最小のエナジー消費量を許容消費エナジーに決定する。また、エナジー消費モードが性能重視型を示す場合、許容消費エナジー決定部1310は、電池残量に応じて、許容消費エナジーを決定する。例えば、電池残量が50%以上の場合には、許容消費エナジー決定部1310は、性能を重視し、最高伝送速度、又は複数の通信規格を同時に処理することができるエナジー消費量を許容消費エナジーに決定する。また、電池残量が50%を下回ると、許容消費エナジー決定部1310は、最小のエナジー消費量を許容消費エナジーに決定する。
【0208】
そして、許容消費エナジー決定部1310は、決定した許容消費エナジーの情報を、リソース割当部1320に通知する。もちろん、エナジー消費モードは、上記のような単純な2つのモードだけでなく、許容消費エナジー決定部1310は、多数のモードに対して許容消費エナジーを決定することも可能である。
【0209】
リソース割当部1320は、決定された許容消費エナジーを用いて、使用形態(動作モード)が示す所望の通信規格を処理すべく、演算処理回路リソース270の使用領域、クロック周波数、及び、動作電圧を決定する。
【0210】
例えば、通信処理装置1300が、演算処理回路リソース270の全領域を使用して、同時演算処理可能数を最大限利用する場合を考える。この場合、クロック周波数及び電圧を低下させても、少ない演算リソースだけで処理する場合と同じ機能を、同じ処理時間で完了することができる。この結果、回路全体の消費エナジーが削減される。一般に、クロック周波数低下及び電圧低減による消費エナジーの低減効果は、稼動領域増大による消費エナジーの増大分よりも大きい。これは、消費エナジーと稼動面積との関係が線形的であるのに対して、消費エナジーとクロック周波数(及びそのクロック周波数での動作達成に必要な印加電圧)との関係が指数関数的であるからである。
【0211】
これに対し、演算処理回路リソース270内の限定した領域のみで、全領域を使用して演算処理を行う場合と同じ機能を、同じ処理時間で処理するためには、クロック周波数及び印加電圧を増大させる必要が生じる。この場合、クロック周波数増加及び電圧増加による消費エナジーの増大効果が、稼動領域を縮小することによる消費エナジーの低減分よりも大きい。ただし、使用していない領域において他の通信規格を同時処理することができるため、システム全体は高機能化される。
【0212】
また、リソース割当部1320が、演算処理回路リソース270の全領域を稼動領域に割り当てた上で、クロック周波数及び印加電圧を増大させるようにすれば、同じ処理時間において、より複雑な演算処理が可能となる。例えば、クロック周波数及び印加電圧を増大させない場合には、通信処理装置1300は、SISOモードにしか対応できないと仮定する。この場合、リソース割当部1320は、クロック周波数及び印加電圧を増大させることで、通信処理装置1300は、MIMO復調が可能となる。また、これにより、通信処理装置1300は、より高性能なMIMO復調方式(例えばMLD:Maximum Likelihood Detection等)の採用も可能となり、復調性能を向上させることができる。
【0213】
ここで、許容消費エナジーと許容処理時間との対応関係は、シミュレーション又は測定等によって調査しておき、リソース割当部1320が、当該関係表を保持しておくようにすると、常に最適なリソース制御で運用でき、好適である。
【0214】
このようにして、リソース割当部1320は、容消費エナジー及び許容処理時間に応じて、使用形態が示す各通信方式毎に演算リソースを割り当てる。更に、リソース割当部1320は、演算リソースのクロック周波数、及び、演算リソースへの印加電圧を決定する。そして、リソース割当部1320は、割り当てた演算リソースの情報(リソース配分情報)を領域制御部260に通知する。また、リソース割当部1320は、決定したクロック周波数の情報をクロック周波数制御部1330に通知する。また、リソース割当部1320は、決定した印加電圧の情報を電圧制御部1340に通知する。
【0215】
クロック周波数制御部1330は、決定されたクロック周波数で演算処理回路リソース270を動作させる。
【0216】
電圧制御部1340は、決定された印加電圧を演算処理回路リソース270に印可する。
【0217】
なお、演算処理回路リソース270は、例えば図25又は図26のように、稼動領域を拡張又は縮小させることができる構成となっているのに加え、クロック周波数及び電圧が可変な構成とする。この構成は、従来のDVFS技術を応用することで対応可能である。
【0218】
また、図30は、本実施の形態に係る通信処理装置の他の構成を示すブロック図である。なお、図30の本実施の形態に係る通信処理装置1400において、図29と共通する構成部分には、図29と同一の符号を付して説明を省略する。図30に示す通信処理装置1400は、図29に示す通信処理装置1300に対して、クロック周波数制御部1330、及び、電圧制御部1340を削除し、電源制御部1410を追加した構成を採る。
【0219】
通信処理装置1400は、演算処理回路リソース270内の限定した領域だけを用いて演算処理を行う場合と同じクロック周波数及び電圧を用いて、演算処理回路リソース270内の全領域で演算処理を行う。つまり、通信処理装置1400は、演算処理回路リソース270内の全領域で演算処理を行う場合にも、クロック周波数並びに電圧を低下させずに演算処理を行う。この場合、同時演算処理可能数の増大に伴い、処理時間が短縮される。
【0220】
電源制御部1410は、この処理時間の短縮によって生み出された演算処理をする必要の無い空き時間だけ、電源を遮断する。これにより、通信処理装置1400は、消費エナジーを低減することができるようになる。
【0221】
なお、演算処理回路リソース270は、一定期間だけ部分的に電源を遮断させ、その後電源を再投入することが可能な構成とする。この構成は、電源遮断技術を応用することで対応可能である。
【0222】
以上のように、本実施の形態に係る通信処理装置1300において、許容消費エナジー決定部1310は、電池残量又はユーザによるエナジー消費モードのパラメータを入力とし、演算処理回路リソース270の許容消費エナジーを決定する。そして、リソース割当部1320は、許容消費エナジー及び許容処理時間に応じて、使用形態が示す各通信方式毎に演算リソースを割り当てるとともに、演算リソースのクロック周波数、及び、演算リソースへの印加電圧を決定する。これにより、通信処理装置1300は、使用形態、又は、許容処理時間に応じて、演算リソースの利用効率を最大化することができる。この結果、通信処理装置1300は、稼働時間を増大し、高機能化又は高性能化に適応的に対応することができ、ユーザの利用シーンの自由度を向上させることができる。
【0223】
また、本実施の形態に係る通信処理装置1400において、電源制御部1410は、処理時間の短縮によって生み出された演算処理をする必要の無い空き時間だけ、電源を遮断する。これにより、通信処理装置1400は、消費エナジーを低減することができ、電池動作の稼働時間を増大させることができるため、ユーザの利用シーンの自由度を向上させることができる。
【産業上の利用可能性】
【0224】
本発明に係る通信処理装置及び通信処理方法は、許容処理時間を考慮して演算処理回路リソースを割り当てる機能を有し、様々な通信方式に対応するソフトウェア無線等として有用である。また、本発明に係る通信処理装置及び通信処理方法は、映像コーデック処理等との同時動作の用途にも応用できる。
【符号の説明】
【0225】
100 通信システム
110 据置き型テレビ受像機
111,131 表示部
112 映像蓄積部
113,132 ベースバンド処理部
114,133 無線フロントエンド部
115,116,134,135 共用アンテナ
120 アクセスポイント
130 可搬型テレビ受像機
200,700,800,900,1000,1100,1200,1300,1400 通信処理装置
210 ADC
220 DAC
230,810 動作モード決定部
240,820 許容処理時間判定部
250,710,830、910,1010,1110,1320 リソース割当部
260 領域制御部
270,270A,270B,840 演算処理回路リソース
301−1,301−2,401−1,401−2 時間/周波数同期部
302−1,302−2,402−1,402−2 FFT部
303−1,303−2 フレーム同期部
304−1,304−2,403−1,403−2 チャネル推定部
305−1,305−2 等化部
306−1,306−2,406−1,406−2 デマッピング部
307−1,307−2,407 デインターリーバ
308−1,308−2,408 誤り訂正部
404 MIMO分離部
405−1,405−2 位相追従部
409,1020 MAC処理部
410 符号化部
411 インターリーバ
412−1,412−2 マッピング部
413 MIMO合成部
414−1,414−2 IFFT部
501 データメモリ
502 プログラムメモリ
503 構成情報メモリ
504 ロジック部
505,506,511〜513,521 制御部
507−1〜16,841−1〜8 FU
508 アレー部
601,602,611,612,613,621,631 領域
720,920 FIFOメモリ
930 リングバッファ
1120 最長フレーム長判定部
1310 許容消費エナジー決定部
1330 クロック周波数制御部
1340 電圧制御部
1410 電源制御部

【特許請求の範囲】
【請求項1】
プログラム可能な複数の演算ユニットを有する演算処理部と、
通信方式の適用状態を示す動作モードを決定する決定部と、
前記動作モードに応じて、許容される第1の処理時間を判定する判定部と、
前記第1の処理時間に応じて、前記複数の演算ユニットを分配して、前記動作モードが示す通信方式毎に演算リソースを割り当てる割当部と、
前記通信方式に応じた処理命令を用いて、前記演算リソースを制御するリソース制御部と、
を具備する通信処理装置。
【請求項2】
前記決定部は、
アプリケーション、又は、前記通信方式が定義される通信規格よりも上位層の通信プロトコルに基づいて、前記動作モードを決定する、
請求項1に記載の通信処理装置。
【請求項3】
前記割当部は、
許容される消費エナジー及び前記第1の処理時間に応じて、前記動作モードが示す通信方式毎に前記演算リソースを割り当てるとともに、前記演算処理部の動作クロック周波数、及び、前記演算処理部への印加電圧を決定し、
前記リソース制御部は、
前記通信方式に応じた処理命令を用いて、前記演算リソースを制御し、前記動作クロック周波数、及び、前記印加電圧を用いて、前記演算処理部を制御する、
請求項1に記載の通信処理装置。
【請求項4】
前記通信方式に応じた処理に必要な数値演算の組合せから成る一連の機能は、前記第1の処理時間の長さによらず同一である、
請求項1に記載の通信処理装置。
【請求項5】
前記演算処理部は、
前記複数の演算ユニットを制御する制御部と、
前記制御部の制御手順を規定したプログラムを記憶する第1の記憶部と、
前記複数の演算ユニットの構成情報を記憶する第2の記憶部と、を具備する、
請求項1に記載の通信処理装置。
【請求項6】
前記演算処理部は、
前記複数の演算ユニットが分配された複数の前記演算リソースのうち、第1の演算リソースを制御する第1の制御部と、第2の演算リソースを制御する第2の制御部と、を具備し、
前記第1の演算リソースと前記第2の演算リソースとは、排他的である、
請求項1に記載の通信処理装置。
【請求項7】
前記リソース制御部は、
前記第1の処理時間に応じて、前記第1又は前記第2の演算リソースを拡張又は縮小する、
請求項6に記載の通信処理装置。
【請求項8】
全ての前記動作モードに対する、前記プログラム及び前記構成情報を記憶する第3の記憶部、を更に具備し、
前記リソース制御部は、
前記動作モードに応じて、前記第3の記憶部から前記プログラム及び前記構成情報を選択し、選択した前記プログラム及び前記構成情報を前記第1及び前記第2の記憶部に書き込む、
請求項5に記載の通信処理装置。
【請求項9】
前記演算処理部への入力を一時的に蓄積し、読み出す第4の記憶部、を更に具備する、
請求項1に記載の通信処理装置。
【請求項10】
前記リソース制御部は、
前記第1の演算リソースを、前記第2の制御部により制御させ、
前記第1の演算リソースは、
前記第2の制御部により制御される直前の演算途中のデータを保持するレジスタを具備する、
請求項6に記載の通信処理装置。
【請求項11】
前記リソース制御部は、
前記第2の制御部の制御による前記第1の演算リソースにおける演算処理が完了した時点で、再度、前記第1の演算リソースを前記第1の制御部により制御させる、
請求項10に記載の通信処理装置。
【請求項12】
前記リソース制御部は、
前記第1の演算リソースを制御する制御部を前記第1の制御部と前記第2の制御部とで切り替える際に、前記プログラム及び前記構成情報を、前記第3の記憶部から選択し、前記第1及び前記第2の記憶部に書き込む、
請求項10に記載の通信処理装置。
【請求項13】
複数の入力ポートを有し、前記演算処理部への入力を一時的に蓄積し、読み出す第5の記憶部、を更に具備する、
請求項1に記載の通信処理装置。
【請求項14】
前記割当部は、
前記第5の記憶部に蓄積されているデータ量を監視し、前記データ量に応じて、前記通信方式毎に演算リソースを割り当てる、
請求項13に記載の通信処理装置。
【請求項15】
前記第5の記憶部は、前記演算処理部により処理された出力信号を記憶する、
請求項13に記載の通信処理装置。
【請求項16】
前記第5の記憶部は、リングバッファである、
請求項13に記載の通信処理装置。
【請求項17】
前記データ量に応じて、送信側で定められるフレーム長又は変調方式の変更依頼を前記送信側に通知する通知部、を更に具備する、
請求項14に記載の通信処理装置。
【請求項18】
前記動作モードが示す通信方式の少なくとも一つは、マルチユーザーMIMO方式であって、
フレームの最長フレーム長を判定するフレーム長判定部、を更に具備し、
前記割当部は、
前記最長フレーム長と自局宛フレーム長との差分に応じて許容される第2の処理時間を判定し、前記第1の処理時間と前記第2の処理時間とに基づいて、演算リソースを割り当てる、
請求項1に記載の通信処理装置。
【請求項19】
通信方式の適用状態を示す動作モードを決定し、
前記動作モードに応じて、許容される処理時間を判定し、
前記処理時間に応じて、プログラム可能な複数の演算ユニットを分配して、前記動作モードが示す通信方式毎に演算リソースを割り当て、
前記通信方式に応じた処理命令を用いて、前記演算リソースを制御する、
通信処理方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate


【公開番号】特開2012−105001(P2012−105001A)
【公開日】平成24年5月31日(2012.5.31)
【国際特許分類】
【出願番号】特願2010−250900(P2010−250900)
【出願日】平成22年11月9日(2010.11.9)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】