説明

金属エッチング排水の処理方法

【課題】 金属エッチング排水の処理方法の提供
【解決手段】還元阻害物質を含む金属エッチング排水の処理に際し、予め該還元阻害物質の一部を前処理剤により分解処理後、アルカリ性態で凝集剤を加えることを特徴とする排水処理方法である。特に、クロム含有鉄系合金のエッチング排水処理において、強酸性且つ過酸化水素を高濃度に含むエッチング排水に二酸化マンガンを加え一部の過酸化水素を分解除去した後、更に水酸化ナトリウムを添加しながら過酸化水素を分解し、中和後水酸化カルシウムによりpH9.5のアルカリ性とし、鉄を主体とする金属水酸化物を形成せしめ、更に還元性を有する凝集剤により排水中の鉄イオンおよび六価クロムを同時に凝集除去する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属成分を残留する排水であって、主として多量の鉄の中に少量のクロムを含有する強酸性液体であるエッチング(蝕刻)廃液に関する排水処理方法である。更に詳しくは、エッチング効果を高めるために使用される多量の過酸化水素水及びエッチング処理により溶出した多量の重金属、特にこれらに加え有害な少量の六価クロム等を含む排水を簡便且つ効率的に処理する排水処理方法に関する。
【背景技術】
【0002】
従来、銅エッチング排水の処理に関する技術は普及し、これらを対象とする文献は多数知られている。ところが、クロムを含む金属エッチング排水の処理に関する文献は見当たらない。
ここでエッチングとは、目的の金属板や金型等を硝酸、塩酸、沸酸ないしこれらの混合水である強酸性液中に浸漬し、金属の一部を溶出(蝕刻)させ所定の表面形状、性質を付与せしめる技術であり、金属のエッチング処理後の排水の場合には鉄を主体としさらに少量のクロム等の合金成分に由来する多量の金属イオンが含有されている。
【0003】
元来、金属のエッチング排水の処理方法としては電解析出等の電気化学的な方法や、消石灰による中和凝集沈殿法などが採用されて来た。しかしながら、前者は装置が大規模となり、装置の維持・管理に多大の費用がかかる等の問題がある。又、後者の処理方法に於いては、特にエッチング水が強酸性で過酸化水素水等の還元阻害物質を含有する場合、更にクロムが含まれていれば処理水中に排出規制以上の六価クロムが検出されるという問題があった。
【0004】
通常、六価クロムは酸性域では重クロム酸イオンとして存在し、アルカリ性域でも他の重金属の如く水酸化物とならずクロム酸イオンとして存在し、かつ毒性が強いためにその処置には特別な処理が必要となる。即ち、通常の六価クロム含有排水の処理法として一般的に、母液が酸性でない場合には先ず液を一旦強酸性とした後還元剤を投入し、六価クロムを三価クロムに還元し、次いでアルカリ性とし水酸化クロムの沈殿物とする。この後は、ポリ塩化アルミ等の無機凝集剤を加えた後消石灰で中和し、更に高分子凝集剤を加えフロックを生じせしめ、固液分離(濾過・脱水)するという公知方法が採られるが、工程が極めて煩雑となり、多大の手間と費用がかかっているのが現状である。
【0005】
更に、上述したエッチング排水中に過酸化水素水を含む場合には、消石灰による中和工程で消泡性の悪い気泡が発生し対策として消泡剤が使用され、同時に重亜硫酸ソーダ等の還元剤を大量に使用しなくてはならない欠点がある。
その上、凝集性を阻害する等の悪影響があり、良好なフロックが形成されずフィルタープレス布の交換頻度が高い等も処理の困難性と処理コスト増大の要因となっている。又、消石灰による中和に際し、過酸化水素の分解除去効果はあるものの、一旦三価に還元されていた六価クロムが、残存する過酸化水素水により酸化されて再び六価クロムに戻る等の問題が生じた。一方、水酸化ナトリウムを用いる中和ではスラッジの発生は少なくなるものの、中和によって生じた析出物の凝集性が悪く、凝集スラッジのサイズが微細であるために沈降性及びろ過性が悪いという問題も発生し実用上の解決が望まれている。
【0006】
過酸化水素そのものを分解除去する物質としては、白金、パラジウム金、銀、等の貴金属、二酸化マンガン、酸化コバルト等の金属酸化物、亜硫酸、亜硫酸水素ナトリウム等の還元性物質、活性炭等の無機粉体、カタラーゼ、パーオキシダーゼ等の酵素(例えば、特許文献1参照)、鉄、コバルト、ルビジウム等の金属塩(例えば、特許文献2参照)、また二酸化マンガンを単独で使用する特許文献が多数存在する。(例えば、特許文献3、参照)
しかしながら、液が中性近傍では過酸化水素水は上記の物質等で容易に分解し酸素を発生するが、過酸化水素水を含む溶液が酸性になるほど安定となり容易に分解しない。(特許文献1参照)又、液が強酸性になると過酸化水素水は非常に安定となり、最早上述した公知の物質では殆ど分解が困難である。
即ち、上述の公知文献に於ける記載事項では、全て弱酸性以上のpH領域での過酸化水素水の分解を取り扱う技術であり、本発明者が意図する強酸性中の過酸化水素水含有の金属エッチング排水中での六価クロムの処理に関するものは何ら示唆されていない。
【0007】
【特許文献1】 特開2003−225678号公報
【特許文献2】 特開2003−326280号公報
【特許文献3】 特開2004−042574号公報
【特許文献4】 特開平10−314760号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、従来より問題であった前記課題に鑑みてなされたものであり、重金属として多量の鉄の中に少量の六価クロムを含有し、且つ過酸化水素を多量に含む強酸性のエッチング排水を、簡便な操作でこれらの金属および六価クロムの処理性を向上させる事が可能で且つ経時的にも六価クロムが再発現しない処理方法を提供するものである。
【課題を解決するための手段】
【0009】
前記課題を解決するため、本発明者等は鋭意検討し、排水中に多量に存在するため凝集性を阻害し、また一旦三価クロムに還元された六価クロムを再び六価クロムに酸化する性質を有する過酸化水素水の除去と、酸化を防御するための前処理剤を選定した。
更に、スラッジの発生を少なくする目的で敢えて中和乃至アルカリ域の設定、中和によって発生する多量の沈殿を凝集し、六価クロムの三価クロムへの還元と同時に水酸化クロムとして凝集処理出来る還元性能を有する無機系粉末凝集剤の使用により、簡便でかつ確実な金属エッチング排水の処理方法を見出した。
【0010】
即ち、従来の方法で本発明の目的を達成しようとすれば、当初に重亜硫酸ンーダ等の還元剤を大量に投入し六価クロムを還元した後、中和乃至アルカリ化処理の段階で、発生する多量の沈殿物に対し従来のポリ塩化アルミと消石灰及び高分子凝集剤を使用する方法では工程が多くなり極めて煩雑となるだけでなく、フィルターの交換頻度も高く、高コストの要因となっていた。
しかしながら、この点本発明では前処理剤の採用と還元機能を有する無機系粉末凝集剤を使用することにより、六価クロムを三価クロムに還元し、還元された三価クロムはアルカリにより水酸化クロムに変化するので、他の重金属の沈殿と同時に凝集することが出来、六価クロムの除去も同時に達成できる。
このように、強酸性の金属イオン含有排水に前処理剤を添加することにより、水酸化第二鉄を主体とする金属水酸化物の凝集性の向上と六価クロムの発現防止を同時に達成出来る方法を突き止め本発明に至った。
【0011】
本発明の要旨とするところは、還元阻害物質を含む強酸性の金属エッチング排水の処理に際し、予め該還元阻害物質の一部を前処理剤により分解処理後中和し、次いでアルカリ性態で凝集剤を加える一連の処理工程で、残留する該前処理剤の活用により凝集性の悪い金属水酸化物を凝集処理し、残存金属イオンを除去することを特徴とする排水処理方法にある。
ここに、還元阻害物質としては通常は過酸化水素を主体とする。又、本発明で用いる前処理剤は少なくとも四価以上のマンガン化合物が望ましく、好ましくは該マンガン化合物を前処理剤として、0.01〜0.3%添加する。
本発明では、金属エッチング排水の金属成分として、クロム或いは銅を主として含有する場合に適用されることが多い。
【0012】
本発明で、排水をアルカリ性に調整するに際し、中性までを苛性ソーダで、次いで消石灰で行うことにより、コスト面と従来技術への合流を容易にすることが出来る。
本発明では、凝集剤として無機系粉末凝集剤であることが望ましく、特に水酸化第二鉄、水酸化クロム或いは水酸化銅並びにこれらの混合物を主体とする懸濁物を凝集処理しうる機能を有することが更に好ましい。
排水が六価クロムを含有する場合に適応する無機系粉末凝集剤は還元性を有することが必要である。ただし、従来のポリ塩化アルミ、消石灰、高分子凝集剤を用いるものを排除するものではない。
【0013】
通常過酸化水素水の分解剤としては、前述した通り鉄系、マンガン系、チタン系、クロム系、バナジウム系等の各種金属化合物、金属塩類及び活性白土、活性炭等の無機化合物、亜硫酸塩、重亜硫酸塩等の無機塩類、また酵素カタラーゼが知られている。
しかしこれらは、強酸性下では過酸化水素を分解することは出来ず、本発明者等が鋭意検討し強酸性中での過酸化水素分解性能として唯一マンガン系化合物が効果を示すことを発見した。
特に、二酸化マンガンや過マンガン酸塩等のMn(IV価)以上の化合物が強酸性中の過酸化水素水の分解性能と凝集時のフロックの性状及び六価クロムの発現防止効果に優れていることを突き止めた。中でも、過マンガン酸塩(MnがVII価)は溶解性も良く酸化力も強く更に過マンガン酸イオンの紫色の提色が自身の消費と過酸化水素の分解性の目安となる点でも実用性に優れ便利である。
【0014】
本発明で採用する、二酸化マンガンは過酸化水素を分解し酸素を得る触媒として一般的に使用され回収再利用されるが、通常中性乃至弱アルカリ性であり、活性表面に於ける触媒的利用に限られて来た。(ここで触媒とは自身は変質、溶解せず、作用対象物のみ変化させる物質を指す)
しかし、本発明の処理工程に於いてはこれをpH1ないし2の強酸性下で添加使用する点で極めて特徴がある。つまり添加当初、粉末固体表面では触媒的な働きをするとともに次第に溶解してマンガンイオンとなり、一旦は過酸化水素水分解作用が低下するものの、続く苛性ソーダによる中和工程で再度触媒作用を強く発現し過酸化水素水の分解作用を促進する。
又、溶解したマンガンイオンは中和工程で発生する主として鉄の水酸化物が凝集時ヘドロ状フロックとなるのを防ぎ、濾過性の良いフロックとする効果を有することを発見した。更に、溶解後のマンガンイオン自体はアルカリ化により水酸化物となり、凝集によりフロックとして溶液中から分離除去されるため、二酸化マンガンを0.3%程度添加してもマンガンの排水規制に抵触する程の汚染は生じない。
【0015】
又、本発明では前処理剤として過酸化水素分解性および水酸化第二鉄の凝集性の向上効果を有するものを選択使用し、特に強酸性下での過酸化水素分解能力を有する化合物として四価以上のマンガン化合物を対象とする。該化合物としては、二酸化マンガンや過マンガン酸カリウム等のマンガン塩などが挙げられる。
前処理剤として二酸化マンガンを使用した場合、添加量は0.005%〜1%が好ましい。多いほど過酸化水素分解能力は増大するが、スラッジの増大とマンガンイオンが処理水中に残存する可能性が有るため、0.01%から0.3%が最も好ましい。0.005%以下では脱過酸化水素力が不足し後工程での処理に支障を来たす。
【0016】
二酸化マンガンには天然産と、製法の1例として炭酸マンガン鉱石を粉砕して硫酸に溶解し電解により析出させた電解マンガンが存在するが、本発明の金属エッチング排水の処理に使用する酸化マンガンは表面触媒的使用のみではなく、溶解させマンガンイオンとして作用させるのでいずれでもよい。又、粒度は特に制限されず取り扱い性や分散性の観点より15メッシュから400メッシュが好ましく、更により好ましくは30から100メッシュが良い。
二酸化マンガンの添加に際しては、瞬間的な気泡の発生を平準化するため攪拌をしながら少量ずつ添加することが好ましい。二酸化マンガンの添加では、消泡性のよい微細な気泡(酸素)が発生するので、消石灰の様に泡が強固で消失せず水面に溢れるようなことはない。従って中和工程での消泡剤の使用も不要である。
【0017】
中和工程では攪拌下、1モル/L以上より好ましくは10モル/Lの水酸化ナトリウムを徐々に滴下しながら中和する。当初は水酸化ナトリウムを滴下した部分のみ水酸化第二鉄が発生し茶褐色となるが直ぐ消失する。しかし、滴下を続けるとpH4.5近傍から液が徐々に全体茶色になり水酸化第二鉄が発生し全体が茶色の懸濁水となる。約pH7に至り消石灰の添加に切り替える。消石灰は粉末の添加でもよいが、10〜20%のスラリ−として添加するのが好ましい。
消石灰によるアルカリ化はpH9乃至pH10の域まで行うが、少なくともpH9.5程度は必要である。pH9未満では六価クロムの除去が完全となりにくい。またpH10以上では凝集性が悪くなり、また処理水の中和に要する酸の量がより多く必要となる。
更に、該金属エッチング排水中にフッ素が存在する場合は、除去のため塩化カルシウムを添加する。添加量は存在するフッ素濃度に応じて添加量を調節する。
【0018】
次いで金属エッチング排水中の鉄を主とした重金属類の水酸化物と六価クロムを除去する為に凝集剤を添加する。還元性を有する該無機系粉末凝集剤を使用すれば、六価クロムは三価クロムに還元されて水酸化クロムの沈殿となるので、他の重金属の水酸化物と同時に凝集剤によりフロックとなり沈殿する。
該凝集剤の添加量は1,000mg/lから5,000mg/lが好ましいが、より好ましくは2,000mg/lから3,000mg/lである。2,000mg/l未満では凝集力が不足し、また六価クロムの除去性が十分ではない。5,000mg/l超はフロックが大きくなりすぎ工程通過性が悪くなる場合がある。
【0019】
攪拌は、理想的にはインバーター付攪拌機により強攪拌を1〜2分間、次いで弱攪拌を2〜5分間行うのが望ましいが中強攪拌で3分間でもよい。ただし、初期の攪拌時間が短すぎると凝集剤の分散と反応が不十分となり、大きなフロックが出来ず処理水が濁る。長すぎると一旦生じたフロックが崩壊する場合がある。
攪拌を止め静置するとフロックは沈降し上澄水が分離する。沈降したフロックは濾過装置で濾過、脱水を行う。濾過、脱水は工業的にはフィルタープレスやベルト式真空脱水機等の装置が使用出来、一方目開き30ミクロン程度の不織布、布帛等による自然濾過でも簡単に濾過、脱水が出来る。
処理水はpH9.3程度のアルカリ性であるので、下水道または公共用水域へ放流する為には希硫酸等で中和しpH5.8〜8.6とする必要がある。
【0020】
本発明に於いて、前処理剤で含有過酸化水素の全てを分解除去する必要はない。もしも、全て分解除去しようとすれば、多量の二酸化マンガンを必要とし、その上処理水中に規制濃度値以上のマンガンイオンが含有され好ましくない。この対策として、本発明では二酸化マンガンを用い、少量の添加量で本来なら凝集性が悪くスラッジ量が少ない沈殿を生じせしめる水酸化ナトリウムの使用を可能にすることにより、六価クロムの除去及び再現防止効果を確立する事が出来た。
中和処理後のアルカリ化は、発泡の問題を回避出来るので脱水性のよいスラッジとフッ素の除去の目的を兼ねた消石灰を使用する事が出来る。又、フッ素が多量含有される場合には、更に塩化カルシウムの添加によりフッ化カルシウムの沈殿を形成し、フッ素も凝集により同時に除去することが出来る。
【発明の効果】
【0021】
本発明の金属エッチング排水の処理方法に於いて、二酸化マンガンの事前添加により通常の触媒効果による分解のみならず、完全に溶解しマンガンイオンに変化する事で更に水酸化ナトリウムによる中和時には触媒効果を発揮し、過酸化水素を効率的に分解出来る。
又、中和乃至アルカリ化により生じる水酸化第二鉄のスラッジは、通常は微細でヘドロ状となりその濾過・脱水性が極めて悪いが、二酸化マンガンの溶解によって生じるマンガンイオンの水酸化物の効果により水酸化第二鉄の凝集剤による凝集性が向上し、スラッジの濾過時に脱水性が向上する作用を発揮する。
【0022】
本発明では、中和迄の工程を水酸化ナトリウムで行うために、過酸化水素の分解で生ずる酸素の泡は破瓜性がよく、消石灰を使用する場合のような強力な消泡剤の使用は必要ではない。
一方、還元性を有する凝集剤を使用することにより、排水中に含まれる六価クロムが三価クロムに還元され、これが水酸化クロムとなり凝集されるので、多量の鉄を主体とする金属水酸化物の凝集と六価クロムの処理が一度の凝集処理で行うことが出来る。更に、水酸化マンガンおよび還元性を有する凝集剤処理の効果で、残存する過酸化水素水による三価クロムから六価クロムへの戻り現象も抑制することが出来る効果を有するものである。
【発明を実施するための最良の形態】
【0023】
図1は、本発明の実施形態を模式図で示すもので、金属エッチング排水処理方法のフローシートである。即ち、強酸性の排水で重金属イオン及び過酸化水素水などを含有する原水中に、本発明で規定する前処理剤を添加した後中和し、次いでアルカリ化する。更に、必要に応じ添加剤を加えた後、凝集剤にてフロックを形成し個液分離を行なうものである。
以下、本発明を実施例に従って説明するが、本発明は以下に示す実施例のみに限定されるものではない。
【実施例1】
【0024】
本実施例は、六価クロムを含有する強酸性エッチング排水への二酸化マンガンの添加効果を確認するものである。
強酸性(pH1.4)のほぼ無色透明のクロム合金エッチング排水((株)日本エッチングより入手)200ccに電解二酸化マンガン(純度90%)(第一カーボン(株))40mgを加え攪拌を30分攪拌を行った。原水からは二酸化マンガン添加直後から盛んに微細気泡ガス(酸素)が発生し、添加10分程度で止まり、添加した二酸化マンガンはすべて溶解し消失した。
これに攪拌下、10モル/Lの水酸化ナトリウムの溶液を滴下しながらpHを上げて行った。二酸化マンガンの添加攪拌後、一旦ガスの発生は止んでいたが、水酸化ナトリウムの滴下につれて再び発生が始まり持続した。pH5程度から茶色の沈殿が消えなくなり、pH7では液全体が茶色懸濁状態となった。
【0025】
水酸化ナトリウムによる中和工程では発生する泡は消泡性がよく、特に消泡剤を必要としなかった。この系に15%の消石灰スラリーを添加しながらPHを9.5まで上昇させ、塩化カルシウムを0.4g添加した。次に還元性を有する無機系粉末凝集剤スーパーナミットTN315CY−K2((株)ノアテック製)を0.5g添加し、3分間攪拌すると大きなフロックが生成した。静置するとフロックはすべて沈降し上澄水と分離した。この上澄水及びフロックを目開き25μの不織布で濾過した。濾過水は無色透明でpH9.3、六価クロム濃度は0.05mg/l以下、マンガンイオンも0.05mg/l以下であった。
【0026】
又濾過分離したフロックの脱水性は良好であり、絞り水の六価クロム濃度は0.05mg/l以下であった。尚、濾過水を空気中で7日間放置した後の六価クロム濃度は0.05mg/l以下で経時変化(空気および残存過酸化水素による溶存三価クロムの六価クロムへ酸化)は認めれなかった。
以上の実施例から示されるように、本発明で活用する二酸化マンガンの効果が単なる触媒的効果に留まらず、溶解してマンガンイオンとなり、水酸化ナトリウム添加に際し過酸化水素の分解を促進させる効果を発揮している。
更にマンガンイオンが中和乃至アルカリ化で水酸化マンガンとなり、これが原水中に多量存在した鉄イオンの中和乃至アルカリ化によって生じる水酸化第二鉄の凝集性を向上せしめ、フロックを安定させる為に沈降速度が速く、また濾過脱水性が向上させている現象と観察できる。
【比較例1】
【0027】
実施例1において、二酸化マンガンを使用せずに実施例1と同じ手順で処理を行ったところ、フロックサイズは微細でろ過水の透明度は悪く、濾過水中の六価クロム濃度は0.3mg/lであった。
これらの結果より、二酸化マンガンが存在しない場合には水酸化第二鉄の凝集性が悪く、又、六価クロムの除去性の効果が全く示されていない。
【実施例2】
【0028】
本実施例は、実施例1と同様に天然二酸化マンガンによる効果を確認するものである。強酸性(pH1.4)の無色透明のクロム合金エッチング排水((株)日本エッチングより入手)200ccに天然二酸化マンガン(純度80%)(第一カーボン(株))40mgを加え攪拌を20分行った。原水からは二酸化マンガン添加直後から盛んに微細気泡ガス(酸素)が発生したが10分程度で止まり、添加した二酸化マンガンはすべて溶解消失した。
これに攪拌下、10モル/Lの水酸化ナトリウムの溶液を滴下しながら徐々にPHを上げた。二酸化マンガンの添加攪拌後、一旦ガスの発生は停止したが水酸化ナトリウムの滴下に従い再び発生が始まった。pH5程度から茶色の沈殿が消えなくなり、pH7では液全体が茶色懸濁状態となった。
【0029】
水酸化ナトリウムによる中和時発生する泡は消泡性がよく特に消泡剤を必要としなかった。この系に15%の消石灰スラリーを添加しながらpHを9.5まで上昇させた。次いで還元性を有する無機系粉末凝集剤スーパーナミットTN315CY−K2((株)ノアテック製)を0.4g添加し、3分攪拌すると大きなフロックが発生した。静置するとフロックはすべて沈降し上澄水と分離した。
この上澄水を目開き25μの不織布で濾過した。得られた濾過水は無色透明でpH9.4、六価クロム濃度は0.05mg/l以下、マンガンイオン濃度0.05mg/l以下であった。
又、濾過、分離したフロックの絞り水は六価クロム濃度が0.05mg/l以下であった。尚、濾過水を空気中で5日放置した後の六価クロム濃度は、0.05mg/l以下であった。
以上の実施例から示されるように、本発明で活用する二酸化マンガンの使用においても実施例1とほぼ同等効果を示すことが確認された。
【比較例2】
【0030】
実施例2において、天然二酸化マンガンを使用せず、また水酸化ナトリウムの代わりに15%の消石灰スラリーを用いて実施例2と同じ手順で処理を行ったところ、消石灰スラリオーの添加によって大きな泡が発生した。この泡は容易に消失しないため消石灰の添加量を増やすに従って泡が液表面に滞留し、ビーカーから溢れるようになり非常に作業性が悪かった。
又、凝集剤の添加後のフロックサイズは小さく、濾過水の透明性も悪く六価クロム濃度は0.5mg/lであった。分離したスラッジの量は、実施例2のスラッジと比べ約1.3倍の量であった。この上澄水を目開き25μの不織布で濾過した。濾過水は極微褐色透明でpH9.0で、六価クロム濃度は0.05mg/l以下であり、マンガンイオン濃度は10mg/lであった。7日後の処理水の六価クロムは0.05mg/l以下であった。
これらの結果より、二酸化マンガンを使用せず、中和を消石灰で行なった場合には発生する泡が作業性を悪くし、凝集工程で生じたフロックのサイズが小さく濾過水の透明度が悪い。更に、処理水の六価クロムが完全に取れない等の問題を示した。
【実施例3】
【0031】
本実施例は、高濃度に銅及び過酸化水素水を含む強酸性エッチング排水に対する二酸化マンガンの効果を確認するものである。
強酸性(pH0.15)高銅濃度(40g/L)の濃青色の銅エッチング排水(メック(株)より入手)100ccに、電解二酸化マンガン(純度90%)(第一カーボン(株)社製)30mgを加え攪拌を20分行った。原水からは二酸化マンガン添加直後から盛んに微細気泡ガス(酸素)が発生したが10分程度で止まり、添加した二酸化マンガンはすべて溶解消失した。
これに攪拌下、10モル/Lの水酸化ナトリウムの溶液を滴下した。二酸化マンガンの添加攪拌後一旦ガスの発生は停止したが、水酸化ナトリウムの滴下に従い再び発生が始まった。水酸化ナトリウムの添加により、発泡しながら茶褐色の沈殿が生じ、直ぐに溶解し緑色透明となり液温が約70℃程度まで上昇した。
【0032】
更に添加を続けると全体が黒緑色懸濁水となった。水酸化ナトリウムによる中和工程で発生する泡は消泡性がよく特に消泡剤を必要としなかった。pHが6になった時点で消石灰の添加に切り替えpHを8に調整した。
この系に無機系粉末凝集剤スーパーナミットTN315NY((株)ノアテック製)を0.3g添加し、1.5分攪拌した。生じたフロックサイズは小さかったが目開き25μのろ布で濾過すると無色透明の処理水が得られた。
処理水のpHは7.3で銅濃度は2.5mg/lであった。濾布で分離したスラッジを手絞りで強く脱水した時のスラッジの含水率は65%であった。
【0033】
以上の実施例から示されるように、本発明で活用する二酸化マンガンの効果が単なる触媒的効果に留まらず、溶解後マンガンイオンとして水酸化ナトリウムの添加時過酸化水素の分解を促進させる効果を発揮している。
更に、マンガンイオンが中和乃至アルカリ化で水酸化マンガンに変化移行し、これが原水中に多量存在する銅イオンの中和乃至アルカリ化によって生じる水酸化銅の凝集性を向上させている。
その結果、フロックを安定させ沈降性を改善し濾過脱水性が向上する現象となって現れている。
【比較例3】
【0034】
実施例3に於いて、二酸化マンガンを添加せずに、実施例4と同じ手順で処理を行ったところ、微細なフロックが一部漏れ、濾過水が微黄緑色に着色した。またpHは7.7、銅濃度は10mg/lであった。
これらの結果より、二酸化マンガンが存在しない場合には中和後の水酸化銅の凝集性が悪く、フロックサイズが小さいため、濾布よりの漏れが生じ濾過水の透明性が悪く処理水中の銅の除去が不十分であった。
【産業上の利用可能性】
【0035】
上述したように本発明の方法によれば、凝集性に悪影響を与え且つ処理水中の六価クロムの発現の要因となっている過酸化水素の分解を促進する事並びにアルカリ化工程を改良する事により、六価クロムの再発現を生じる事無く、且つ処理性を向上せしめた排水処理作業プロセスを提供することが出来る。
【0036】
本発明の第一の特徴は、処理作業性の向上である。即ち、本発明の二酸化マンガンを処理の初期工程で添加することにより、中和工程では過酸化水素分解性は有るが消泡性の悪い消石灰に代替して、過酸化水素分解性は小さいが消泡性に優れる水酸化ナトリウムの使用を可能とし消泡剤の使用を不要とし、その結果発生スラッジ量が著しく減少することが出来た。
又、中和乃至アルカリ化により大量の鉄を主体とした水酸化物の沈殿が生じ、ヘドロ状で強固なフロックになり難く濾過し難い状態を回避した。一方、マンガンイオンが水酸化物として共存することにより凝集性を向上せしめ、強固なフロックとし沈降性および濾過、脱水性を向上せしめる事が出来た。
更に還元性を有する無機系凝集剤を使用することにより酸性域での還元剤の添加、高分子溶液の調整等の手間を要せず作業工程を単純化し作業性を向上させ、付随する薬品管理、機器管理作業を軽減出来る。
【0037】
本発明の第二の特徴は、六価クロムの除去の確実化にある。即ち、排水中の六価クロムの処理において、排水中に過酸化水素が存在すると従来の方法では大量の還元剤を必要とし、かつ確実に六価クロムを除去することが出来なかった。特にスラッジをフィルタープレス等で脱水した時に出る水には六価クロムが検出されることが多かった。
本発明では、二酸化マンガンを少量添加する事により、過酸化水素の分解、除去が促進されると共とに、マンガンイオンを水酸化物とし水酸化第二鉄及び水酸化クロムの沈殿と共存させる事により六価クロムの再発現を抑えた。以上に詳説した如く、本発明の方法により過酸化水素を含むクロム合金エッチング排水の処理性を向上させ、且つ六価クロムの無い処理水を安定して得る事が可能となり、本発明の効用は工業的に著大であるものと確信する。
【図面の簡単な説明】
【0038】
【図1】 図1は本発明の金属エッチング排水の処理に関する代表例として共通するプロセスを示すフローシートである。

【特許請求の範囲】
【請求項1】
還元阻害物質を含む強酸性の金属エッチング排水の処理に際し、予め該還元阻害物質の一部を前処理剤により分解処理後中和し、次いでアルカリ性態で凝集剤を加える一連の処理工程で、残留する該前処理剤の活用により凝集性の悪い金属水酸化物を凝集処理し、残存金属イオンを除去することを特徴とする排水処理方法。
【請求項2】
該還元阻害物質が主として過酸化水素であることを特徴とする請求項1記載の排水処理方法。
【請求項3】
該前処理剤が少なくとも四価以上のマンガン化合物であることを特徴とする請求項1ないし2記載の排水処理方法。
【請求項4】
該金属エッチング排水の金属成分として、クロム或いは銅を主として含有することを特徴とする請求項1ないし3記載の排水処理方法。
【請求項5】
該マンガン化合物を前処理剤として、0.01〜0.3%添加することを特徴とする請求項1ないし4記載の排水処理方法。
【請求項6】
該排水をアルカリ性に調整するに際し、中性までを苛性ソーダで、次いで消石灰で行うことを特徴とする請求項1ないし5記載の排水処理方法。
【請求項7】
該凝集剤が無機系粉末凝集剤であることを特徴とする請求項1ないし6記載の排水処理方法。
【請求項8】
該凝集剤として、水酸化第二鉄、水酸化クロム或いは水酸化銅並びにこれらの混合物を主体とする懸濁物を凝集処理しうる機能を有することを特徴とする請求項1ないし7記載の排水処理方法。

【図1】
image rotate


【公開番号】特開2007−38196(P2007−38196A)
【公開日】平成19年2月15日(2007.2.15)
【国際特許分類】
【出願番号】特願2005−250227(P2005−250227)
【出願日】平成17年8月4日(2005.8.4)
【出願人】(303012995)株式会社ノアテック (3)
【Fターム(参考)】