説明

除湿装置及びその通電脱着装置

【課題】除湿装置及びその通電脱着装置の提供。
【解決手段】本発明の除湿装置及びその通電脱着装置において、通電脱着装置はチタン−ケイ素酸化物類を含む導電性吸着材料を含む。金属成分を含むか金属成分と石墨の混合による導電層は、吸着材料の両側端面に被覆する。一対の電極構造はそれぞれ吸着材料の両側に結合し、各電極構造には相互に絶縁状態をなす複数の子電極を備える。また、電圧源と電極構造とは結合する。電極を利用して導電性吸着材料に結合し、電流を導電性吸着材料に直接通電することにより、導電性吸着材料に熱エネルギーを生じさせ脱着効果を達成し、さらに、導電性吸着材料には再び吸着する能力を維持させて動作を持続させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、通電方法を用いて吸着材料に導電発熱させて水分脱着を行うエネルギー低消費の除湿装置及びその通電脱着装置に関する。
【背景技術】
【0002】
従来の家庭用除湿機の除湿方式は、冷媒圧縮機システムによって空気中の水分を凝縮し、室内の空気を乾燥させる目的を果たす。しかし、CFC(クロロフルオロカーボン)冷媒の使用はオゾン層破壊問題を引き起こすため、冷媒を必要としない除湿技術の開発が益々重視されつつある。ロータリー式吸着除湿装置は、圧縮機と冷媒を必要とせず、除湿ローターによって室内の空気中の水分を吸着した後、電熱によって空気を加熱し、除湿ローターの再生側に流し、水蒸気の脱着を行う。再生側の出口端箇所の高温高湿の空気は熱交換器に入ると凝縮され、タンクに凝縮水が集められ、家庭用除湿装置の目的を果たす。ロータリー式除湿機は除湿ローターが吸湿する特性を用いて除湿メカニズムを完成させ、周囲の気体温度及び湿度条件の制限を受けず、現有のコンプレッサーを使用しないため、低騒音で、尚且つ冷媒使用等の技術的優勢を避けられる。
【0003】
図1に示すとおり、ロータリー式除湿機1は、室内の湿った空気90を吸着材料11内部の穴通路に吹き込み入れることにより、吸着材料が湿った空気90内の水分を吸着する。吸着が終わった乾燥した空気92は空気除湿機12から室内に排出され、空気の除湿作業を完了する。また、電熱器13は循環空気91の温度を上昇させるため、高温の循環空気91と吸着材料11上の水分子の温度差により、吸着材料11中の水分子は気化脱着される。続いて、高温高湿の循環空気91が熱交換器10に入った後、除湿機1入口の低温度の湿った空気90と熱交換を行い、熱交換器内の高温高湿空気は凝縮して液体水93となり、凝縮後の水分は集められて排出される。また、循環空気91は管路を再循環して電熱器13に戻る。前述の動作を行い、水分脱着の循環作業を完成する。前述した吸着材料11、電熱器13、及び熱交換器10の各機能を空気通路によって結合すると除湿効果を備えた除湿機1となる。
【0004】
除湿ローター内の吸着材料は主に、多孔型構造であり、孔構造は一般にハニカム型(Honeycomb Type)或いは波形型(Corrugate Type)とする。除湿作用は主に、構造体中の無数の微孔と吸着剤を用い、物理的吸着方式によって空気中の水分子を捕獲し、乾燥した空気にする。除湿ローターの水分吸着量は多くの要素によって決まり、該要素には、吸着剤の型式や分量、進入する空気の温度、湿度、除湿ローターの厚み、ハニカム構造の表面積、空気が除湿ローターに流れる速度、及び除湿ローターの回転速度等を含む。また、再生循環空気路は、除湿構造体中に吸着した水分を脱着排出しなければならず、吸着と脱着を続けて除湿と再生機能を達成する。再生循環空気路とは、空気が、電熱器13出口と吸着材料11(除湿ローター)の交わる面から熱交換器10を経て電熱器13入口に入る経路を指す。よって、吸着材料11(除湿ローター)について言えば、空気入口は加熱空気が入る除湿ローターの再生側で、空気出口は高温高湿空気が熱交換器に入る前の再生側のローター面であり、ロータリー式吸着除湿システムにおいては、再生側の高温高湿空気が凝縮装置に入った後、管外低温の空気と熱交換を行い、凝縮装置内の高温高湿空気が凝縮されて液体水となる。
【0005】
現有のロータリー式吸着除湿装置は全て、電熱器で再生側の空気を加熱し再生空気の温度を高めている。この部分の加熱脱着メカニズムは主に次の二つに分けられる。
(1)空気の熱交換による気化:再生側の空気を加熱することにより温度勾配が生じる。熱交換によって生じた熱量によって除湿構造体の穴中の水分を気化する。水蒸気脱着過程では高温空気を作る必要があり、しかも長時間の気化を行って初めて水蒸気脱着効果が得られる。よって、ドライ除湿の目的を達成するためには、非常に大きなエネルギーの消耗を必要とする。
(2)輻射熱による気化:加熱器中の電熱ワイヤーは電流が流れると高温となる。この熱を輻射熱の方式で除湿構造体の微孔中の水分子が直接輻射熱を吸収して気化し脱着する。輻射熱は表面温度の4乗に比例し、電熱ワイヤー表面は皆400℃を超えて輻射熱が非常に高くなるため、生じる水蒸気脱着効果は空気の熱交換による気化脱着と比べはるかに効果的となる。
【0006】
上述の二つの気化メカニズムの分析から、現有する加熱式再生脱着法は、再生空気を加熱して間接的に気化脱着を起こす方法、或いは輻射熱が水分子によって吸収されるとともに大部分の輻射熱も吸湿構造体によって吸収される方法に拘わらず、二者いずれとも避けられないエネルギー消耗の源となっている。また、輻射熱によって引き起こされる吸湿構造体表面の温度上昇もまた、水分子の吸着に不利となり、大幅に除湿能力を低下させる原因である。よって、加熱式再生脱着法はロータリー式除湿装置のエネルギー消耗を向上させ、除湿効率低下の主因となる。
【発明の概要】
【発明が解決しようとする課題】
【0007】
上述の欠点に鑑み、本発明は、通電脱着装置の提供を目的とする。該通電脱着装置は、導電性吸着材料の両側に電極と導電層を設置したもので、電極に通電することで電流を導電層に通過させて導電性吸着材料に均等に電気供給をし温度上昇させ、設定した条件の下、被吸着分子と導電性吸着材料間の吸引力に影響を与え、さらに、導電性吸着材料に吸着された水分子を脱着する。
【0008】
また、本発明の提供する除湿装置は、電極に直接電圧を加えて吸着材料を通過する電流を生じさせ、導電性吸着材料に吸着した物質を発熱、離脱させることにより、導電性吸着材料に空気中の水分を何度も吸着して周囲の湿度を低下させるものである。本発明の除湿装置に含まれる再生循環の空気が脱着した水分を運び、並びに、通電により直接吸着材料に脱着作用を起こし、空気を先に加熱することがないため、効果は直接的であり、熱損失を減少させ、脱着のエネルギー消耗を低下させる。
【課題を解決するための手段】
【0009】
上述目的を達成するために、本発明の提供する通電脱着装置に用いる技術手段には、チタン−ケイ素酸化物類を含む導電性吸着材料と、金属成分を含むか石墨と混合し尚且つ吸着材料の両側端面上を被覆する導電層と、吸着材料両側の導電層にそれぞれを係合させて各々に複数個の絶縁し合う子電極を備える一対の電極構造と、電極構造と係合する電圧源とを含む。
【0010】
また、本発明がさらに提供する除湿装置には、凝縮部と、チタン−ケイ素酸化物類を含む導電性吸着材料と、金属成分を含むか石墨と混合し尚且つ吸着材料の両側端面を被覆する導電層と、各々が絶縁し合う複数個の子電極を備える一対の電極構造と、電極構造と係合する電圧源とを含む通電脱着装置と、凝縮部及び通電脱着装置とにそれぞれ係合し尚且つ導電性吸着材料をさらに係合する再生部とを含み、電極構造は選択性で該導電性吸着材料の両側の導電層と係合させる。
【発明の効果】
【0011】
本発明の除湿装置及びその通電脱着装置は、電極を導電性吸着材料と係合させ、電流を直接導電性吸着材料に通電させることにより、導電性吸着材料に熱エネルギーを生じさせて脱着効果を達成し、さらに、導電性吸着材料には再び吸着する能力を維持させて動作を持続させるため、エネルギー消耗を減少させ、除湿効率を向上させる効果を奏する。
【図面の簡単な説明】
【0012】
【図1】公知の除湿ローターを用いた除湿装置を示す図である。
【図2】本発明の通電脱着装置を示す図である。
【図3A】本発明の電極構造の正面図である。
【図3B】図3AのFF線における電極構造と吸着材料の断面図である。
【図4】本発明の電極構造の作動図である。
【図5A】本発明の電極構造についてのもう一つの実施例の一部立体図である。
【図5B】本発明の電極構造についてのもう一つの実施例の一部立体図である。
【図6】本発明の電極構造に再生空気路を接続した状態の立体図である。
【図7】本発明の電極構造についての更にもう一つの実施例図である。
【図8A】本発明の回転する再生空気路の実施例についての動作図である。
【図8B】本発明の回転する再生空気路の実施例についての動作図である。
【図8C】本発明の回転する再生空気路の実施例についての動作図である。
【図9】通電時間と除湿ローターが脱着後に重量変化した結果を示すグラフである。
【図10】1号除湿ローターの特定時間における変化結果を示すグラフである。
【図11】2号除湿ローターの特定時間における変化結果を示すグラフである。
【図12】3号除湿ローターの特定時間における変化結果を示すグラフである。
【図13】4号除湿ローターの特定時間における変化結果を示すグラフである。
【図14】本発明の除湿装置を示す図である。
【図15】複数組のアルミニウム−ケイ素沸石の脱着石による実験データである。
【図16】チタン−ケイ素沸石の除湿ローターが示した低電圧通電脱着の実験データである。
【図17】ケイ素/チタンの比率が1.8(22.47/12.31)に近づいたチタン−ケイ素酸化物類成分。
【図18】ケイ素/チタンの比率が1.8(22.47/12.31)に近づいたチタン−ケイ素酸化物類成分。
【図19】ケイ素/チタンの比率が1.132(13.21/11.66)に近づいたチタン−ケイ素酸化物類成分。
【図20】ケイ素/チタンの比率が1.132(13.21/11.66)に近づいたチタン−ケイ素酸化物類成分。
【図21】ケイ素/チタンの比率が3.7(22.22/6.01)に近づいたチタン−ケイ素酸化物類成分。
【図22】ケイ素/チタンの比率が3.7(22.22/6.01)に近づいたチタン−ケイ素酸化物類成分。
【図23】本発明の導電性テスト曲線比較図である。
【発明を実施するための形態】
【0013】
次に、特定した具体的実施例を用いて本発明の実施方式を説明する。本技術分野において一般の知識を有する者であれば、本説明書の開示内容に基づき容易に本発明のその他の特徴や効果を理解することができるであろう。
【実施例】
【0014】
図2に示すとおり、本発明の通電脱着装置3は、一導電性吸着材料30、二導電層314、一対の電極構造31と電極構造32、及び電圧源33を備える。
【0015】
導電性吸着材料30は、空気中に含まれる有機揮発物、窒素、或いは水分等の吸着を提供するが、これに制限されないものとする。尚、導電性吸着材料の材質は、多孔性チタン−ケイ素酸化物類とアルミニウム−ケイ素酸化物を比率に基づいて混合した材質である。該導電性吸着材料のチタン−ケイ素酸化物類のケイ素−チタン原子の比率は
【化1】

とし、導電性吸着材料に含まれるチタン−ケイ素酸化物類の含量範囲は、1%〜99.99%、或いは導電性吸着材料に含まれるアルミニウム−ケイ素酸化物の含量範囲は、0.01%〜95%とするが、これに限定されないものとする。その他、チタン−ケイ素酸化物類の含量範囲1%〜98.99%と組み合わせる導電性或いは非導電性の材料に多種を混合させたものも本発明の特許登録請求の範囲に含まれる。
【0016】
導電層314は導電性吸着材料30の両側端面にそれぞれ位置し、導電層314は再生エリアの導電性吸着材料の端面各所に同じレベルの外付け電圧値を提供するために設置して、吸着材料が再生エリア通電時に顕著な電流差異(各局部の電流差異を平均し最も好ましくは≦±10%に抑える)を受けるのを防ぐ。また、導電層の材質は金属、導電性金属酸化物、石墨、或いは石墨と金属の混合物質とする。
【0017】
一対の電極構造31と電極構造32は、導電性吸着材料30の両側の端面の導電層314と係合させ、電流が均等に導電性吸着材料30を通過するようにする。
【0018】
電圧源33は電極構造31と電極構造32と係合させ、電圧源33は電極構造31と電極構造32に電圧を提供し、電圧源33は直流または交流とし、電圧源33は500ボルト以下とする。
【0019】
電極構造31と電極構造32は導電性吸着材料30の二端に位置するため、通電後は、短時間に電圧を加えて電子の駆動力となるか、或いは被吸着物質を分離するか被吸着物質と特定の金属イオン或いは陽子にイオン導電性を持たせ、吸着材料に対して直接、導電発熱効果を起こし、被吸着物質にエネルギーを得させて該吸着材料を脱着させる。本発明の電流通電メカニズムは、吸着材料中のイオン跳躍、または被吸着物質の分離によって引き起こされるイオン或いは陽子の伝導、或いは前述作用の総合的結果とし、該状況のもと、大部分のエネルギーは被吸着物質上に直接加えられ、効果的な脱着を生み、これによってエネルギー消耗を減少させる。
【0020】
導電性吸着材料30の吸着材料に特定エリア(これを再生エリアと呼ぶ)内での脱着効果を生じさせ、尚且つ、導電性吸着材料30の吸着材料にその他エリア(これを吸着エリアと呼ぶ)での吸着効果を維持させるために、電極上にさらに絶縁体を備えて導電性吸着材料30の吸着材料を複数エリアに分ける。
【0021】
各エリア間は、絶縁体が存在する故に、電極通電時には特定エリアだけの通電能力が確保され、導電性吸着材料30は通電電極エリアに対して脱着効果を起こし、その他の通電されていない電極エリアは物質伝達現象によって吸着物質の能力を維持し続ける。導電性吸着材料30に対する転置或いは電極部材の転置により、導電性吸着材料30の特定エリアを脱着再生エリアとすることも可能である。
【0022】
図3Aに示すとおり、電極構造31は複数個の子電極310を備え、導電性吸着材料30は円柱状或いは円盤状とするが、これに制限されず、各子電極310の外形は等分された扇形とする。
【0023】
各子電極310には絶縁フレーム体311及び導電構造312を備える。
【0024】
絶縁フレーム体311は子電極310の両側に設置するため、相隣する子電極310は絶縁を保持できる。絶縁フレーム体311の材料は、高純度の酸化アルミニウム、陶磁、石英、高分子材、テフロン(登録商標)、ポリエーテルエーテルケトン(PEEK)、フェノール樹脂、エポキシ樹脂等とし、前記材質を単独使用或いは混合使用可能とするが、これに制限されないものとする。絶縁フレーム体の厚さは1mm〜5mmとするが、これに制限されないものとする。
【0025】
導電構造312は子電極310の外縁に設置し、導電構造312は金属帯もしくは金属線とする。
【0026】
導電性能を強化するために、導電構造312にはさらに金属網構造313を備え、その表面には大きさが規則的或いは不規則の穴を備えて、空気を導電性吸着材料30に進入させるための微小通路とする。
【0027】
金属網構造313の材料には一定の制限は設けず、導電性金属材料であればよい。図3Bに示すとおり、金属網構造313と導電性吸着材料30間にはさらに、接触抵抗を下げるための導電層314を備えることにより、電流を均等分布させ、尚且つ、導電性吸着材料の通路表面を通過させる。
【0028】
導電層314は抗酸化導電材料であり、各子電極310と導電性吸着材料30間の回路の導電性と安定性を強化し、アーク放電の異常発生による吸着材料の破壊を防ぐ。
【0029】
導電層314の材料は、純金属材料(例えば金、白金、銀、銅、鉄等とするが、これに制限されないものとする)、合金材料(ステンレス)、導電性を備えた何れかの金属酸化物もしくは非金属酸化物(例えば酸化インジウムスズ/Indium Tin Oxide,ITO,(In2O3+SnO2))等である。
【0030】
図4に示すとおり、本実施例の導電性吸着材料30は回転可能である。よって、各子電極310に単独通電させるために、電圧源33にはさらに電気ブラシ330構造を係合させる。電気ブラシ330は、導電性吸着材料30が回転した時に、導電性吸着材料30の回転位置に応じて異なる子電極310と電気的に接続する。
【0031】
図4に示すとおり、導電性吸着材料30が回転した時、電気ブラシ330と接触する導電構造312によって電流が子電極310全体に流れ、電極構造31と電極構造32が相互に対応し、電気ブラシ330が接触する子電極310と子電極320間に対応する導電性吸着材料300エリアは、子電極310と子電極320の電位差によって導電する。
【0032】
本発明の電極構造31と電極構造32は絶縁フレーム体311と絶縁フレーム体321を備えた設計であるため、電気ブラシ330が電極構造31と電極構造32の導電構造312と導電構造322に接触すると、接触位置の導電性吸着材料300エリアのみを導電し、導電性吸着材料300の吸着材料のみに電流が通過し脱着することを確実に行う。また、通電に対応しない吸着材料は吸着動作を続け、吸着材料は同時に吸着と脱着効果を備える。
【0033】
図5Aと図5Bに示すとおり、電極構造31を導電性吸着材料30表面の抗酸化導電層314aに塗布することも可能であり、溝314bを絶縁ベルトとすることにより、電極構造31に複数個の子電極を備えさせる。
【0034】
図5Aに示すとおり、絶縁エリアは溝を用いる他、溝上に絶縁フレーム体を設置して絶縁効果を強化することも可能である。
【0035】
図5Bに示すとおり、電気的接触効果を高めるために、導電層314aが形成する各子電極のエッジ上に導電構造314cを設置してもよく、金属体、金属線、金属網などの材料とする。
【0036】
図5Aと図5Bは、電極構造31によって説明したが、電極構造32の実施方式も同様であり、図6に示すとおり、電気ブラシ330が接触する脱着構造エリアに対応する両側に、さらに再生空気路34を設置してもよい。
【0037】
再生空気路34は、独立循環流動の湿った空気90を通電対応する脱着構造エリア内に導入し、空気が通電対応する脱着構造エリアの吸着材料に通過することにより、被脱着物質を運び出し脱着速度を向上させる。空気が運ぶ物質の効率を高めるために、湿った空気90を加熱した高温度の空気としてもよく、これにより、脱着を助け、脱着速度を向上させる。
【0038】
前記実施例は、吸着材料を回転した実施例であるが、本発明の提供するもう一つの実施例においては、該吸着材料を回転して電気ブラシとの電気的接続をせずに、分電制御によって各子電極を段階的に通電する。
【0039】
図7に示すとおり、電極構造31は複数個の相互に絶縁する子電極315と315a〜315gに分配する。それはそれぞれ外金属フレーム316と内金属フレーム317を備え、外金属フレーム316と内金属フレーム317の両側には絶縁フレーム体318と絶縁フレーム体319を備える。各子電極315と315a〜315gは、独立して導電ケーブル332を引き出し、各子電極315及び315a〜315gと導電ケーブル332の電気信号接続位置は外周の外金属フレーム316であるが、内側の内金属フレーム317としてもよい。
【0040】
各子電極315と315a〜315gの導電ケーブル332は規律ある順序に基づいて電源分配ユニット331に接続する。
【0041】
電源分配ユニット331は電圧源33と電気信号による接続をし、該電源分配ユニット331は定位制御信号を受信し、適時順序に基づいて電力を特定の子電極に供給する。例えば、電力を先ず吸着材料上の子電極315に供給し、続いて子電極315aに供給し、順に315b〜315gに供電する結果は、導電性吸着材料を順に回転して再生する機能に等しい。
【0042】
各子電極間には絶縁フレーム体が存在する故に、電極通電時には吸着材料構造の特定エリアだけに導電され、導電性吸着材料に対応して子電極に通電されるエリアには脱着効果が生じ、その他の通電されない子電極エリアは吸着動作を続ける。
【0043】
電源分配ユニット331はロジック演算ユニット、タイマー部材、電力スイッチなどのユニットにより構成される。電力スイッチは機械式の継電器、配電盤、或いは半導体部材により構成される固体スイッチ等の部材である。本実施例における電源分配ユニットは、公知の通信技術に属する部材である故、ここでは説明を省略する。
【0044】
図8Aと図8Bに示すとおり、導電性吸着材料30は動かずに再生空気路35と空気収集路36が回転し、定位測定モジュールによって、再生空気路35と空気収集路36の位置を測定する。
【0045】
再生空気路35と空気収集路36は相互に対応し、同時に回転運動を行い、再生空気路35には空気を進入させる外殻体350を備える。
【0046】
外殻体350は回転軸351と連結し合い、回転軸351は回転動力ユニット(例えばモーター)の回転動力を受けて、再生空気路35の外殻体350を回転させる。また、該回転軸351には、空気355を進入させるための空気通路352をさらに内設する。
【0047】
回転軸351と再生空気路35の同時回転により、導電性吸着材料30を通過する空気355は空気収集路36を通って流れるため、脱着速度を高めることができる。
【0048】
定位測定モジュールは、機械構造、光学探知、磁場探知、或いは音波探知等の位置測定機能を備えた部材とし、例えば一般に見られる微動スイッチ、フォトスイッチ、リードスイッチ、超音波感知器などの部材であるが、これらに制限されないものとする。例えば本実施例における定位測定モジュールには光送信部材354を備え、該光送信部材354は、再生空気路上に設置する。もう一つの光信号受信部材353は各子電極上に設置する。
【0049】
再生空気路35が完全に子電極を被覆した時、即時に定位制御信号を電源分配ユニットに送信し、電源分配ユニットによって再生空気路35の回転停止がコントロールされ、尚且つ、適当な時間に吸着材料上を被覆した子電極に電力を出力し、再生工程が実行される。空気収集路は前述した同時回転設計の他、図8Cに示すように、空気収集路37を回転させずに再生空気路35を回転させる方式にしてもよい。
【0050】
前述した脱着方法は、導電能力を具備或いは水分吸着後に導電能力を具備する吸着材料及び被吸着分子の組み合わせの何れにも適用可能であり、実際には、固定床型或いはタワー型の脱着に応用可能であるが、ロータリー型脱着にも応用できる。
【0051】
家庭用のロータリー式水滴型除湿機に応用した実施例において、図9さらに図13に示したものは、除湿機に使用した本発明の電極を備えた導電性吸着材料に対するテスト結果である。
【0052】
本発明の発明者が以前に提出した除湿ローターを用いた特許案件には台湾特許第097109268号、台湾特許第098100903号、台湾特許第098111986号の三件があるが、その内、台湾特許第097109268号は、5000ボルトからさらに20000ボルトの電圧で総電流(>100mA)を励起した高周波(20kHz〜50kHz)の大気圧プラズマによって、沸石除湿ローターに対して脱着再生を行うもので、中華民国特許第098100903号は、1200ボルトからさらに15000ボルトの電圧によって脱着再生を行うものである。
【0053】
しかし、本発明の発明者は多数の実験後を経て、除湿ローターが吸湿状態中に導電効果を備えるなら、低電圧で脱着効果を達成することを発見した。該電圧は500ボルト以下を可能とする。
【0054】
元来の除湿機脱着水量は約6.6リットル/日(20℃、60%RH)で、脱着は熱風加熱方式を採用し、必要消費電力量は600ワット、元来の除湿機(図1に示すとおり)の脱着水量は脱着1g毎の水量に相当し、7800Jのエネルギーを必要とする。
【0055】
よって、本発明者は特に一実験を設定し、本発明に確実な効果の向上があることを証明した。本実験で設定した条件は、除湿ローターが飽和吸湿状態中に500ボルト〜2200ボルトの電圧を2cm厚のハニカム型沸石の除湿ローターに直接加えて電流(0.1mA〜2.5A)を通電し、除湿ローターが吸収する水分含量の違いを見るもので、沸石の除湿ローターの水分含量が減少するほど導電度は下がり、完全に乾燥した沸石は前記電圧操作では導電することはない。
【0056】
上述の方法を用いて設計した除湿再生システムは、プラズマ脱着技術において、再生時に高電圧を必要とし、オゾン濃度が5PPM以上上昇する点を改善する。
【0057】
次に、4つの2cm厚のハニカム型沸石除湿ローターを用いて電流を通電し、通電後に生じる沸石上の水蒸気を脱着再生する実験結果を示す。該テストの環境条件は、空気脱着路面の速度0.1m/s、空気温度25℃、相対湿度70%、除湿ローター吸湿条件20℃、60%である。
【0058】
図9は、通電時間と除湿ローター脱着後の重量変化の結果を示す。説明に便宜を図るため、4つの除湿ローターをそれぞれ、1号除湿ローター、2号除湿ローター、3号除湿ローター、4号除湿ローターとする。
【0059】
図10には、1号除湿ローターのローター本体温度(Wheel T(℃))、再生出口温度(Output T(℃))、消費電力量(Power)と脱着量(Weight(g))の一特定時間(3秒以内)における変化を示した。水1グラム当たりの平均脱着消費エネルギーは2817.993J/gである。
【0060】
図11には、2号除湿ローターのローター本体温度(Wheel T(℃))、再生出口温度(Output T(℃))、消費電力量(Power)と脱着量(Weight(g))の一特定時間(6秒以内)における変化を示した。水1グラム当たりの平均脱着消費エネルギーは3216.196J/gである。
【0061】
図12には、3号除湿ローターのローター本体温度(Wheel T(℃))、再生出口温度(Output T(℃))、消費電力量(Power)と脱着量(Weight(g))の一特定時間(10秒以内)における変化を示した。水1グラム当たりの平均脱着消費エネルギーは3119.372J/gである。
【0062】
図13には、4号除湿ローターのローター本体温度(Wheel T(℃))、再生出口温度(Output T(℃))、消費電力量(Power)と脱着量(Weight(g))の一特定時間(15秒以内)における変化を示した。水1グラム当たりの平均脱着消費エネルギーは3620.685J/gである。
【0063】
上述したとおり、本発明者は、沸石導電メカニズムは主に、沸石構造中に異なるプラスイオン(Li+、Na+、k+、Ca2+、Mg2+等)が存在する可能性があり、電気双極子が極性の水分子を吸着する作用によって物理的に吸引力を持ち、水和作用を引き起こし、しかも電圧を加えることでイオン移動を行う。合成技術によって、チタン酸化物とケイ素酸化物を結晶格子組織とする主要成分を製造し、これをチタン−ケイ素沸石或いはチタン−ケイ素酸化物類と称し、結晶格子組織中のプラスイオン含有率を効果的に高めることができる。また、前記プラスイオンを増加させる構想によって、更に好ましい沸石導電性能を実現することも可能である。実験結果によって、1<Si/Ti<10が効果的に通電電圧を下げることを示され、2cm厚のハニカム型沸石の除湿ローターに対して200ボルト〜700ボルト間の電圧を実現した。また、新合成した沸石の除湿ローターは、通電脱水再生の構想において、アルミニウム−ケイ素沸石を主とする除湿ローターの電圧を低下させ、これにより、将来的に使用される家電の安全規範上の保証を高めることができ、さらに、脱着エネルギーの消耗を減少させる。参照するために添付した図15には複数組のアルミニウム−ケイ素沸石の脱着石の実験データを、図16にはチタン−ケイ素沸石の除湿ローターが示した低電圧通電脱着の実験データを、図17及び図18にはケイ素/チタンの比率が1.8(22.47/12.31)に近づいたチタン−ケイ素酸化物類の成分を、図19及び図20にはケイ素/チタンの比率が1.132(13.21/11.66)に近づいたチタン−ケイ素酸化物類の成分を、図21及び図22にはケイ素/チタンの比率が3.7(22.22/6.01)に近づいたチタン−ケイ素酸化物類の成分を示している。
【0064】
図15乃至図22を更に詳しく説明すると、図15にはテスト機器を用いて一定風速(吹出総風量301pmローター直径77mm)と一定時間(6秒)下で行った複数組のアルミニウム−ケイ素沸石の脱着石の実験データを示した。図15中の一組について説明すると、実験番号は160、管径は77mm、一定風速と一定時間を経てそれに対応する電圧/電流を通過させた後、水1g当たりの脱水に必要な発熱量を示す。例えば実験番号160の初期重量21.34グラム(g)を脱水後、実験番号160の重量は20.7グラムとなる。よって、実験番号160の水1g当たりの脱水に必要な発熱量は3582J/g(ジュール)となる。その他の実験番号はこれに基づき類推する。
【0065】
図16には、複数組のチタン−ケイ素沸石の除湿ローターに対応する電圧/電流を通過させた後の水1g当たりの脱水に必要な発熱量を示す。該一組の説明では、水1g当たりの脱水に消耗される発熱量は2555J/g、その他の各組はこれに基づき類推する。
【0066】
図17及び図18は、チタン−ケイ素酸化物類(Na, k)2XTixSiyO(3X+2Y) の成分について例を挙げて説明したものである。検出機器を用いてそれが備える各材料の比率と原子数を検出する。その内チタン(Ti)が備える原子数は12.31、ケイ素(Si)が備える原子数は22.47であり、よってSi/Tiは1.8に近い。
【0067】
図17及び図18の説明のとおり、図19及び図20、図21及び図22はそれぞれチタン−ケイ素酸化物類の成分である。検出後に備える各材料の比率と原子数は図19及び図20に示すとおり、ケイ素/チタンの比率は1.132(13.21/11.66)に近く、図21及び図22に示すとおり、ケイ素/チタンの原子数比率は3.7(22.22/6.01)に近い。
【0068】
参照する図23に示すとおり、サンプル(sample)1は本発明を応用した技術によって作り出された顆粒状小サンプル(ケイ素/チタンの原子数比率は1に近い)である。サンプル2は本発明を応用した技術によって作り出された顆粒状小サンプル(ケイ素/チタンの原子数比率は3に近い)であり、13Xは現有の除湿ロータリーの顆粒状小サンプル(アルミニウム−ケイ素材料)である。13X、サンプル1、サンプル2に導電性テストの比較を行ったところ、サンプル13Xは操作電圧が50の時に初めて電流が流れるのに対し、サンプル1及びサンプル2は操作電圧が2であっても電流が流れる。よって、本発明の脱着装置材料導電性能は電流の5倍拡大操作下では、10倍以上の操作電圧低下が期待される。即ち最大操作電圧2000ボルトを200ボルト以下の範囲まで低下させることができるが、現有の除湿ロータリーの材料では、電圧を更に大幅に低下させることはできない。
【0069】
図14に示すとおり、本発明がさらに提供する除湿装置には、凝縮部40、通電脱着装置、及び再生部42を含む。
【0070】
凝縮部40は凝縮盤管401及び循環管路402を含み、凝縮盤管401には入口端4010と出口端4012を備える。本実施例において、凝縮盤管401には空気通路を内設する複数個の凝縮管路4011を備え、循環空気91を流動させる。
【0071】
凝縮盤管401は、外部環境の除湿したい湿った空気90を通過させて凝縮盤管401内を流動する循環空気91と熱交換を行わせて凝縮盤管401内の循環空気91内の水蒸気を凝結して水にし、タンク46内に流すことを主な目的とするため、各凝縮管路4011間には隙間を設けて湿った空気90を通過させる。凝縮盤管401は公知技術に属する故、ここでは説明を省略する。
【0072】
通電脱着装置には、導電性吸着材料41と、電極構造421及び電極構造422と、電圧源45を備え、本実施例における通電脱着装置は、上述の通電脱着装置と同等である故、ここでは説明を省くことを特に明記する。
【0073】
再生部42は導電性吸着材料41と係合させ、再生部42には再生空気路423と空気再生機424を備える。
【0074】
電極構造421と電極構造422の接続関係は、前述の電極構造31と電極構造32の関係と同様であるため、ここでは説明を省略する。
【0075】
再生空気路423は、空気通路を形成する外殻体4230を備え、外殻体4230の一方側には、凝縮盤管401の入口端4010に接続する出口端4231を備え、出口端4231の他方側には、空気再生機424に接続する入口端4232を備える。該空気再生機424の目的は、循環空気91の圧力を増加して循環空気91の速度を加速させることにある。
【0076】
導電性吸着材料41は湿った空気90を通過させ、その内部には湿った空気90に含まれる水分を吸収するための除湿構造410を備える。本実施例において、導電性吸着材料41は一つの車輪体であり、回転運動を可能とする。当然ながら、導電性吸着材料41の構造はその他設計としてもよく、本発明の車輪体に制限されることはない。
【0077】
導電性吸着材料41が一定位置まで回転し、再生部42の子電極4210と子電極4220と電圧源45に対応すると通電され、これにより、通過する電流は子電極4210と子電極4220が対応する導電性吸着材料411の吸着物質を脱着する。
【0078】
本実施例において、再生部42の外殻体4230の内部には循環空気91が通過し、尚且つ、外殻体4230内部には導電性吸着材料41の一部を収納するため、外殻体4230内部を流動する循環空気91は導電性吸着材料41を通過して通電により脱着した物質を運ぶことができる。
【0079】
除湿待ちの湿った空気90の流速を高め、除湿効果をコントロールするために、本実施例では、空気除湿機44を設置して、導電性吸着材料41を通過する乾燥した空気92を除湿装置4外に排出する。また、除湿装置4にはさらに加熱ユニット43を設置してもよく、その位置は要求に応じて増設するかどうかを選択する。本実施例での加熱ユニット43は再生部42の入口端4232と空気再生機424の間に設置する。加熱ユニット43は熱量を循環空気91に提供し、循環空気91の温度を上昇させ、脱着する水分の凝縮効果を高める。
【0080】
前述した具体的な実施例は、単に本発明の特徴と効果を説明するための用例であり、本発明の実施範囲を限定するものではない。よって、本発明に叙述した精神と技術範囲を逸脱せずに本発明の開示内容を応用して完成させた同等効果の変化や修飾は全て、下述する特許登録請求の範囲に含まれることをここに明記する。
【符号の説明】
【0081】
1 除湿機
10 熱交換器
11 吸着材料
12 空気除湿機
13 電熱器
3 通電脱着装置
30 導電性吸着材料
300 導電性吸着材料
31 電極構造
32 電極構造
310 子電極
311 絶縁フレーム体
312 導電構造
322 導電構造
313 金属網構造
314 導電層
315 子電極
316 外金属フレーム
317 内金属フレーム
318 絶縁フレーム体
319 絶縁フレーム体
320 子電極
321 絶縁フレーム体
33 電圧源
330 電気ブラシ
331 電源分配ユニット
332 導電ケーブル
34 再生空気路
35 再生空気路
350 外殻体
351 回転軸
352 空気通路
353 光信号受信部材
354 光送信部材
355 空気
36 空気収集路
37 空気収集路
4 除湿装置
40 凝縮部
401 凝縮盤管
4010入口端
4011凝縮管路
4012出口端
402 循環管路
41 導電性吸着材料
410 除湿構造
411 導電性吸着材料
42 再生部
421 電極構造
422 電極構造
4210子電極
4220子電極
423 再生空気路
4230外殻体
4231出口端
4232入口端
424 空気再生機
43 加熱ユニット
44 空気除湿機
45 電圧源
46 タンク
90 湿った空気
91 循環空気
92 乾燥した空気
93 液体水

【特許請求の範囲】
【請求項1】
チタン−ケイ素酸化物類を含む導電性吸着材料と、
金属成分を含むか石墨と混合し尚且つ吸着材料の両側端面を被覆する導電層と、
吸着材料の両側にそれぞれ係合し、各々が複数個の絶縁し合う子電極を備える一対の電極構造と、
電極構造と係合する電圧源と、を含むことを特徴とする通電脱着装置。
【請求項2】
前記導電性吸着材料のチタン−ケイ素酸化物類のケイ素−チタン原子の比率は
【化1】

とすることを特徴とする請求項1に記載の通電脱着装置。
【請求項3】
前記導電性吸着材料は、チタン−ケイ素酸化物類とアルミニウム−ケイ素酸化物類の混合材質であり、該導電性吸着材料が含むチタン−ケイ素酸化物の含量範囲は1%〜99.99%、或いは導電性吸着材料が含むアルミニウム−ケイ素酸化物の含量範囲は0.01%〜95%とすることを特徴とする請求項2に記載の通電脱着装置。
【請求項4】
前記通電脱着装置は、空気を通過させるための再生空気路をさらに備えることを特徴とする請求項1に記載の通電脱着装置。
【請求項5】
前記各電極構造上の各子電極には導電ケーブルを備え、該導電ケーブルは電源分配ユニットと係合することを特徴とする請求項4に記載の通電脱着装置。
【請求項6】
前記各電極構造はさらに電気ブラシと係合することを特徴とする請求項4に記載の通電脱着装置。
【請求項7】
前記空気は加熱した空気であることを特徴とする請求項4に記載の通電脱着装置。
【請求項8】
前記電圧源は、電極構造に電圧を提供し、該電圧は交流電圧或いは直流電圧であることを特徴とする請求項1に記載の通電脱着装置。
【請求項9】
前記導電層の材料は、純金属材料、合金材料、石墨と混合した導電層か導電性金属酸化物、導電性非金属酸化物成分の導電層、以上の各種成分の混合よりなる導電層のいずれかであることを特徴とする請求項1に記載の通電脱着装置。
【請求項10】
前記各電極構造には、
吸着材料と係合する導電構造と、
導電構造に設置し、導電構造を分けて絶縁し合う複数個の子電極を形成する複数個の絶縁フレーム体をさらに備えることを特徴とする請求項1に記載の通電脱着装置。
【請求項11】
前記導電構造は、金属網、金属体、金属ワイヤーから選択することを特徴とする請求項10に記載の通電脱着装置。
【請求項12】
前記通電脱着装置には空気収集路をさらに備え、該空気収集路は相互に再生空気路に対応することを特徴とする請求項4に記載の通電脱着装置。
【請求項13】
前記通電脱着装置には定位測定モジュールをさらに備えて、再生空気路と空気収集路の位置を測定することを特徴とする請求項12に記載の通電脱着装置。
【請求項14】
前記定位測定モジュールには光送信部材と光信号受信部材を備え、該光送信部材は、再生空気路上に設置し、該光信号受信部材は各子電極上に設置することを特徴とする請求項13に記載の通電脱着装置。
【請求項15】
前記電圧源は電源分配ユニットをさらに備え、複数個の子電極にそれぞれ電気的に接続することを特徴とする請求項1に記載の通電脱着装置。
【請求項16】
前記電圧源は500ボルト以下であることを特徴とする請求項1に記載の通電脱着装置。
【請求項17】
除湿装置は、
凝縮部と、
チタン−ケイ素酸化物類を含む導電性吸着材料と、金属成分を含むか石墨と混合し尚且つ吸着材料の両側端面を被覆する導電層と、各々が絶縁し合う複数個の子電極を備える一対の電極構造と、電極構造と係合する電圧源とを含む通電脱着装置と、
凝縮部及び通電脱着装置とにそれぞれ係合し尚且つ導電性吸着材料とさらに係合する再生部とを含み、
電極構造は選択性で該導電性吸着材料の両側に係合させることを特徴とする除湿装置。
【請求項18】
前記再生部は再生空気路をさらに備えることを特徴とする請求項17に記載の除湿装置。
【請求項19】
前記再生部には加熱ユニットをさらに備えることを特徴とする請求項17に記載の除湿装置。
【請求項20】
前記電圧源は、電極構造に電圧を提供し、該電圧は交流電圧或いは直流電圧であることを特徴とする請求項17に記載の除湿装置。
【請求項21】
前記導電層の材料は、純金属材料、合金材料、金属酸化物、非金属酸化物の何れかとすることを特徴とする請求項17に記載の除湿装置。
【請求項22】
前記各電極構造には、
吸着材料と係合する導電構造と、
導電構造に設置し、導電構造を分けて絶縁し合う複数個の子電極を形成する複数個の絶縁フレーム体をさらに備えることを特徴とする請求項17に記載の除湿装置。
【請求項23】
前記導電構造は、金属網、金属体、金属ワイヤーから選択することを特徴とする請求項22に記載の除湿装置。
【請求項24】
前記電圧源には電源分配ユニットをさらに備え、複数個の子電極にそれぞれ電気的に接続することを特徴とする請求項17に記載の除湿装置。
【請求項25】
前記凝縮部は複数個の凝縮管によって構成される凝縮盤管を含むことを特徴とする請求項17に記載の除湿装置。
【請求項26】
前記導電性吸着材料のチタン−ケイ素酸化物類のケイ素−チタン原子の比率は
【化2】

とすることを特徴とする請求項17に記載の除湿装置。
【請求項27】
前記導電性吸着材料は、チタン−ケイ素酸化物類とアルミニウム−ケイ素酸化物類の混合材質であり、該導電性吸着材料が含むチタン−ケイ素酸化物の含量範囲は1%〜99.99%、或いは導電性吸着材料が含むアルミニウム−ケイ素酸化物の含量範囲は0.01%〜95%とすることを特徴とする請求項26に記載の除湿装置。
【請求項28】
前記導電性吸着材料は回転運動することを特徴とする請求項17に記載の除湿装置。
【請求項29】
前記電圧源は500ボルト以下であることを特徴とする請求項17に記載の除湿装置。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2013−94776(P2013−94776A)
【公開日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2012−94034(P2012−94034)
【出願日】平成24年4月17日(2012.4.17)
【出願人】(390023582)財團法人工業技術研究院 (524)
【住所又は居所原語表記】195 Chung Hsing Rd.,Sec.4,Chutung,Hsin−Chu,Taiwan R.O.C
【Fターム(参考)】