説明

電極製造方法、電池製造方法、電極及び電池

【課題】製造過程を簡素化させた電極製造方法、電池製造方法、容量に寄与しない物質を削減して内部抵抗を低下させた電極、及び該電極を備えた電池を提供する。
【解決手段】活物質原料の粉末と樹脂粉末とを混合し、混合物を不活性雰囲気中で焼成する。活物質が焼結し、また樹脂が熱分解して空隙が発生することで、多孔質の活物質焼結体11が生成される。次に、溶融アルミニウムに活物質焼結体11を浸漬することにより、活物質焼結体11内に溶融アルミニウムを充填する。溶融アルミニウムを充填した活物質焼結体11を冷却する。冷却により溶融アルミニウムは固化し、活物質焼結体11と固化した金属アルミニウムが連続的に分布したアルミニウム連続体12とが一体となった正極(電極)1が製造される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電池に用いる電極の製造方法、電池製造方法、電極及び電池に関する。
【背景技術】
【0002】
近年、二酸化炭素の排出を伴わずに電力を発生させる手段として、太陽光又は風力等の自然エネルギーを利用した発電が促進されている。自然エネルギーによる発電では、発電量が気候又は天候等の自然条件に左右されることが多いのに加えて、電力需要に合わせた発電量の調整が難しいので、負荷に対する電力供給の平準化が不可欠となる。充電及び放電によって電力供給の平準化を行うためには、高エネルギー密度・高効率で大容量の蓄電池が必要とされる。
このような蓄電池として、特許文献1に開示されたナトリウム−硫黄電池が開発されている。ナトリウム−硫黄電池は、通常は280℃以上の高温で動作させる必要がある。一方、常温又は130℃以下の比較的低温で動作する蓄電池の開発が進められており、電解質には、有機電解液の他、比較的低温で融解する溶融塩を用いる試みがなされている(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007−273297号公報
【特許文献2】特開2007−273362号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
溶融塩電池は、電解質に溶融塩を用いた電池であり、溶融塩が溶融した状態で動作する。電解質の電気化学的安定性の見地からは、NaFSA(ナトリウム−ビスフルオロスルフォニムアミド)等のナトリウムイオンを電荷のキャリアとする電解質を用いることが好ましい。溶融塩電池の正極は、電解質との間で電荷を交換するNaCrO2 等の複合酸化物を活物質の主成分としている。従来の正極は、粉末として生成した活物質に有機溶剤を添加してペースト化し、ペースト化した活物質をアルミニウム等の導電材製の集電体に塗布し、乾燥させることによって製造している。活物質は粉末として生成されるので、活物質を電極の形に成形するためにはバインダを混ぜておく必要がある。また活物質自体は絶縁体であるので、正極内の導電性を確保するために導電助剤を混ぜておく必要がある。このように、正極の製造過程には工程が多く、正極の製造コストが高くなるという問題がある。
【0005】
また、正極内では粉末状の活物質と導電助剤とが混合している状態であるので、活物質と導電助剤及び集電体との接触面積が小さく、内部抵抗が大きい。このため、高速の充放電が困難になるという問題がある。また正極内に含まれる導電助剤及びバインダは電池の容量には寄与しないので、導電助剤及びバインダが混合している分だけ電池の容量が低下するという問題がある。
【0006】
本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、導電材で活物質を固めることにより、製造過程を簡素化させた電極製造方法、電池製造方法、容量に寄与しない物質を削減して内部抵抗を低下させた電極、及び該電極を備えた電池を提供することにある。
【課題を解決するための手段】
【0007】
本発明に係る電極製造方法は、電池の電極を製造する方法において、活物質が焼結した多孔質の焼結体を生成し、前記焼結体内に液状の導電材を充填し、充填した導電材を固化させることを特徴とする。
【0008】
本発明に係る電極製造方法は、活物質原料の粉末と樹脂粉末とを混合した混合物を圧縮して成型体を作製し、作製した成型体を不活性雰囲気中で焼成することにより、前記焼結体を生成することを特徴とする。
【0009】
本発明に係る電極製造方法は、液状の導電材として溶融金属を用い、前記焼結体を溶融金属に浸漬することにより、前記焼結体内に溶融金属を充填し、溶融金属を充填した前記焼結体を固化させるべく冷却することを特徴とする。
【0010】
本発明に係る電極製造方法は、前記溶融金属は溶融した金属アルミニウムであることを特徴とする。
【0011】
本発明に係る電極製造方法は、前記活物質は亜クロム酸ナトリウムであることを特徴とする。
【0012】
本発明に係る電池製造方法は、本発明に係る電極製造方法で製造した電極を一方の電極として電池を組み立てることを特徴とする。
【0013】
本発明に係る電極は、電池の電極において、活物質が焼結した多孔質の焼結体内に導電材を充填してなり、導電材は前記焼結体内で連続的に分布した連続体を形成してあることを特徴とする。
【0014】
本発明に係る電池は、本発明に係る電極を備えることを特徴とする。
【0015】
本発明に係る電池は、溶融塩を電解質としたことを特徴とする。
【0016】
本発明においては、活物質が焼結した多孔質の活物質焼結体内に液状の導電材を充填し、導電材を固化させることにより、活物質焼結体内と導電材が固化した連続体とが一体となった電極が製造される。活物質焼結体内と導電材の連続体とが一体となることにより、バインダ無しで電極が成形される。
【0017】
また本発明においては、活物質原料の粉末と樹脂粉末とを混合して成型し、成型体を不活性雰囲気中で焼成することにより、活物質が焼結し、また樹脂が熱分解して空隙が発生することで、多孔質の活物質焼結体が生成される。
【0018】
また本発明においては、溶融金属に活物質焼結体を浸漬することによって活物質焼結体内に溶融金属を充填し、活物質焼結体を冷却することにより、溶融金属は固化し、活物質焼結体と一体となった金属の連続体が生成される。
【0019】
また本発明においては、溶融金属として金属アルミニウムを用い、比較的低い温度で電極が製造される。
【0020】
また本発明においては、電極の活物質として、耐還元性の高い亜クロム酸ナトリウムを用いる。
【発明の効果】
【0021】
本発明にあっては、電極にバインダが不要であり、また電極の製造工程が簡略化されるので、電極及び電池の製造コストが低下する。また従来に比べて電極内で活物質と導電材との接触面積が大きくなるので、従来に比べて高速での充放電が可能となる。また電極にバインダが含まれる従来の電池に比べて、体積エネルギー密度が向上し、電池の容量が向上する等、本発明は優れた効果を奏する。
【図面の簡単な説明】
【0022】
【図1】本発明の電池の一例である溶融塩電池の構成例を示す模式的断面図である。
【図2】正極の製造方法を説明する説明図である。
【図3】活物質焼結体の模式的断面図である。
【図4】正極の模式的断面図である。
【発明を実施するための形態】
【0023】
以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
図1は、本発明の電池の一例である溶融塩電池の構成例を示す模式的断面図である。図1には、溶融塩電池を縦に切断した模式的断面図を示している。溶融塩電池は、上面が開口した直方体の箱状の電池容器51内に、矩形板状の正極1、シート状のセパレータ3及び矩形板状の負極2を並べて配置し、電池容器51に蓋部52を冠着して構成されている。電池容器51及び蓋部52はアルミニウムで形成されている。正極1及び負極2は矩形平板状に形成されており、セパレータ3はシート状に形成されている。セパレータ3は正極1及び負極2の間に介装されている。正極1、セパレータ3及び負極2は、重ねられ、電池容器51の底面に対して縦に配置されている。
【0024】
負極2と電池容器51の内側壁との間には、波板状の金属からなるバネ41が配されている。バネ41は、アルミニウム合金からなり非可撓性を有する平板状の押え板42を付勢して負極2をセパレータ3及び正極1側へ押圧させる。正極1は、バネ41の反作用により、バネ41とは逆側の内側壁からセパレータ3及び負極2側へ押圧される。バネ41は、金属製のスプリング等に限定されず、例えばゴム等の弾性体であってもよい。充放電により正極1又は負極2が膨脹又は収縮した場合は、バネ41の伸縮によって正極1又は負極2の体積変化が吸収される。
【0025】
正極1は、NaCrO2 (亜クロム酸ナトリウム)を成分とする正極活物質が焼結した活物質焼結体11と金属アルミニウムが連続的に分布したアルミニウム連続体12とが一体となって構成されている。正極1は本発明の電極である。正極1の詳細な製造方法は後述する。負極2は、アルミニウムからなる矩形板状の負極集電体21上に、錫等の負極活物質を含む負極材22をメッキによって形成してある。負極集電体21上に負極材22をメッキする際には、ジンケート処理として下地に亜鉛をメッキした後に錫メッキを施すようにしてある。負極活物質は錫に限定されず、例えば、錫を金属ナトリウム、炭素、珪素又はインジウムに置き換えてもよい。負極材22は、例えば負極活物質の粉末に結着剤を含ませて負極集電体21上に塗布することによって形成してもよい。セパレータ3は、ケイ酸ガラス又は樹脂等の絶縁性の材料で、内部に電解質を保持でき、またナトリウムイオンが通過できるような形状に形成されている。セパレータ3は、例えばガラスクロス又は多孔質の形状に形成された樹脂である。
【0026】
電池容器51内では、正極1と負極材22とを向かい合わせにし、正極1と負極2との間にセパレータ3を介装してある。正極1、負極2及びセパレータ3には、溶融塩からなる電解質を含浸させてある。電池容器51の内面は、正極1と負極2との短絡を防止するために、絶縁性の樹脂で被覆する等の方法により絶縁性の構造となっている。蓋部52の外側には、外部に接続するための正極端子53及び負極端子54が設けられている。正極端子53と負極端子54との間は絶縁されており、また蓋部52の電池容器51内に対向する部分も絶縁皮膜等によって絶縁されている。正極1の一端部は、正極端子53にリード線55で接続され、負極集電体21の一端部は、負極端子54にリード線56で接続される。リード線55及び56は、蓋部52から絶縁してある。蓋部52は、溶接によって電池容器51に冠着されている。
【0027】
電解質は、溶融状態で導電性液体となる溶融塩である。溶融塩の融点以上の温度で、溶融塩は溶融して電解液となり、溶融塩電池は二次電池として動作する。融点を低下させるために、電解質は、複数種類の溶融塩が混合していることが望ましい。例えば、電解質は、ナトリウムイオンをカチオンとしFSA(ビスフルオロスルフォニルアミド)をアニオンとしたNaFSAと、カリウムイオンをカチオンとしFSAをアニオンとしたKFSAとの混合塩である。なお、電解質である溶融塩は、TFSA(ビストリフルオロメチルスルフォニルアミド)又はFTA(フルオロトリフルオロメチルスルフォニルアミド)等の他のアニオンを含んでいてもよく、有機イオン等の他のカチオンを含んでいてもよい。この形態では、電解質中でナトリウムイオンが電荷のキャリアとなる。また、図1に示した溶融塩電池の構成は模式的な構成であり、溶融塩電池内には、内部を加熱するヒータ、又は温度センサ等、図示しないその他の構成物が含まれていてもよい。また、図1には正極1及び負極2を一対備える形態を示したが、本発明の溶融塩電池は、セパレータ3を間に介して複数の正極1及び負極2を交互に重ねてある形態であってもよい。
【0028】
図2は、正極1の製造方法を説明する説明図である。正極活物質の原料であるCr23 (III)及びNa2 CO3 の粉末、並びにエチルセルロース等の樹脂の粉末を混合し、混合物を圧縮成型することにより矩形板状に成型する。この段階では、正極活物質の原料粉末と樹脂粉末との混合物の成型体が作製されている。正極活物質の原料粉末と樹脂粉末との混合物の成型体をアルゴン雰囲気中で850℃以上の温度で焼成する。焼成により、Cr23 (III)とNa2 CO3 とが反応し、発生したCO2 が離脱し、NaCrO2 が生成する。またこのとき、NaCrO2 が生成する化学反応と並行してNaCrO2 の粉末が焼結する反応焼結が起こる。更に、成型体中に含まれる樹脂の粉末は熱分解する。成型体中のCr23 (III)及びNa2 CO3 の部分はNaCrO2 の焼結体となり、樹脂の部分は熱分解して空洞となるので、結果として、NaCrO2 を成分とする正極活物質が焼結してあり、内部に空隙を有する多孔質の活物質焼結体11が生成される。
【0029】
図3は、活物質焼結体11の模式的断面図である。Cr23 (III)とNa2 CO3 とが反応してNaCrO2 の粒子が生成し、NaCrO2 の粒子同士が焼結して焼結体が形成されている。NaCrO2 粒子の粒径は0.5μm程度である。樹脂が熱分解した空洞に対応して、活物質焼結体11の内部には空隙が存在し、活物質焼結体11の表面には多数の空孔が存在する。
【0030】
次に、金属アルミニウムを溶融させた溶融アルミニウムに、減圧下で活物質焼結体11を液状の溶融アルミニウムに浸漬することにより、活物質焼結体11内に溶融アルミニウムを充填させる。溶融アルミニウムに浸漬された活物質焼結体11内に溶融アルミニウムが浸入し、活物質焼結体11内の空隙に溶融アルミニウムが充填される。次に、活物質焼結体11を溶融アルミニウムから取り出し、金属アルミニウムの融点よりも低い温度に冷却する。冷却によって溶融アルミニウムは凝固するので、活物質焼結体11内の溶融アルミニウムは固化し、活物質焼結体11と溶融アルミニウムが固化したアルミニウム連続体12とが一体となる。次に、活物質焼結体11とアルミニウム連続体12との一体物を切削等の整形方法で整形することにより、正極1が製造される。
【0031】
図4は、正極1の模式的断面図である。正極1は、NaCrO2 を成分とする活物質焼結体11と金属アルミニウムが連続的に分布したアルミニウム連続体12とが一体になって構成されている。活物質焼結体11内にはアルミニウム連続体12が充填されており、アルミニウム連続体12は活物質焼結体11内で連続的につながっている。活物質焼結体11を構成するNaCrO2 粒子の間にアルミニウム連続体12が埋まっており、NaCrO2 粒子同士はアルミニウム連続体12を介して互いに連結されている。活物質焼結体11とアルミニウム連続体12とが一体になっていることにより、バインダ無しで正極1の形状が維持されている。金属アルミニウムは導電材であり、正極1内の導電性はアルミニウム連続体12によって確保される。正極活物質であるNaCrO2 粒子間ではアルミニウム連続体12を通して導電が行われる。
【0032】
次に、製造した正極1を用いて溶融塩電池を製造する方法を説明する。製造した正極1とセパレータ3と負極2とを図1に示すように重ねて電池容器51内に配置し、正極1、負極2及びセパレータ3に、溶融塩電池の電解質として用いる溶融塩を含浸させる。含浸の工程は、正極1、負極2及びセパレータ3に含浸させる溶融塩の融点以上の温度で行う。次に、必要な他の構成要素を加えて溶融塩電池を組み立てることにより、溶融塩電池を製造する。
【0033】
以上詳述したように、本実施の形態に係る正極1の製造方法では、粉末として生成した活物質をペースト化する工程と、ペースト化した活物質を集電体に塗布する工程と、乾燥させる工程とが不要となっている。このため、正極1を製造する方法及び溶融塩電池を製造する方法が簡略化され、正極1及び溶融塩電池の製造コストが低下する。また本実施の形態で製造した正極1は、活物質焼結体11及びアルミニウム連続体12で構成されており、バインダ及び集電体を必要としていない。このため、正極1の材料のコストを低下させることができるので、正極1及び溶融塩電池の製造コストがより低下する。また活物質焼結体11内に充填されたアルミニウム連続体12は、溶融アルミニウムが固化したものであるので、粉末状の活物質と導電助剤とが混合している従来の電極に比べて、正極活物質と導電材との接触面積が大きくなる。このため、正極1の内部抵抗が低下し、従来に比べて高速での充放電が可能となる。更に、電池の容量に寄与しないバインダが正極1に含まれていないので、本実施の形態に係る溶融塩電池は、電極にバインダが含まれる従来の電池に比べて、体積エネルギー密度が向上し、容量が向上する。
【0034】
なお、本発明は、正極活物質のNaCrO2 を予め作成し、作成したNaCrO2 の粉末を焼結させることにより活物質焼結体11を製造する形態であってもよい。また本発明では、電池に利用できる導電材であれば、他の金属、合金又は導電性樹脂等の金属アルミニウム以外の導電材を用いてもよい。但し、本実施の形態のように、活物質の原料を焼成することで活物質焼結体11を製造する方法を用いるのが好ましく、導電材として金属アルミニウムを用いるのが好ましい。正極活物質の粉末から活物質焼結体11を製造する方法を用いた場合は、活物質焼結体11内の空隙を導電材が完全に充填し、正極1内に電解質が含浸される空間が無くなり、正極活物質と電解質との間でイオンの伝達が困難になる虞がある。また溶融した導電材と正極活物質とが反応し、正極活物質の電池動作時の特性が劣化する虞がある。本実施の形態では、活物質原料のCr23 (III)及びNa2 CO3 を焼成することにより、正極活物質のNaCrO2 の生成と焼結とを同時に実施するので、反応時に発生したCO2 によって活物質焼結体11内に微細な空孔が発生する。このため、活物質焼結体11内に導電材に充填され難い空隙が発生し、正極1内に電解質が含浸される空間が確保される。また、本実施の形態では、正極活物質の原料粉末に樹脂の粉末を混合した上で焼成するので、導電材が充填すべき空隙が樹脂の熱分解により生成されると共に、樹脂の一部が炭化して正極活物質の表面に残留する。正極活物質の表面に残留した炭化した樹脂は、正極活物質と溶融した導電材との反応を抑制し、正極活物質の特性の劣化が抑制される。また、金属アルミニウムは、融点が660℃であって銅又はニッケル等の他の金属に比べて融点が低い。このため、本実施の形態では、銅又はニッケル等の金属アルミニウムよりも融点の高い導電材を用いる場合に比べて、正極活物質と溶融した導電材との反応がより抑制される。
【0035】
また、本発明は、NaCrO2 以外の物質を正極活物質とした形態であってもよい。例えば、本発明は、正極活物質の成分をLiCoO2 とした形態であってもよい。Co23 及びLi2 CO3 の粉末を混合して反応焼結を行うことにより、同様に、LiCoO2 を成分とした活物質焼結体を製造することができる。また例えば、本発明は、正極活物質の成分をLiMn24 とした形態であってもよい。MnO2 及びLi2 CO3 の粉末を混合して反応焼結を行うことにより、同様に、LiMn24 を成分とした活物質焼結体を製造することができる。但し、正極活物質の成分がNaCrO2 である場合は、正極活物質と溶融した導電材との反応が比較的抑制されるので、本実施の形態のように正極活物質の成分をNaCrO2 とすることが好ましい。この効果は、遷移金属元素の内でクロム元素の有する比較的高い耐還元性に起因する。
【0036】
また本実施の形態においては、本発明の電池が溶融塩電池である形態を示したが、本発明の電池は、これに限るものではなく、その他の電池であってもよい。例えば、本発明の電池は、正極活物質の成分をNaCrO2 としたリチウムイオン電池であってもよい。また、本発明に係る電池の形状は、直方体の形状に限るものではなく、円柱状等、その他の形状であってもよい。また、以上の実施の形態においては、本発明の電極が正極1である形態を示したが、本発明の電池は、本発明の電極を負極として用いた電池であってもよい。今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
【符号の説明】
【0037】
1 正極
11 活物質焼結体
12 アルミニウム連続体
2 負極
21 負極集電体
22 負極材
3 セパレータ

【特許請求の範囲】
【請求項1】
電池の電極を製造する方法において、
活物質が焼結した多孔質の焼結体を生成し、
前記焼結体内に液状の導電材を充填し、充填した導電材を固化させること
を特徴とする電極製造方法。
【請求項2】
活物質原料の粉末と樹脂粉末とを混合した混合物を圧縮して成型体を作製し、
作製した成型体を不活性雰囲気中で焼成することにより、前記焼結体を生成すること
を特徴とする請求項1に記載の電極製造方法。
【請求項3】
液状の導電材として溶融金属を用い、
前記焼結体を溶融金属に浸漬することにより、前記焼結体内に溶融金属を充填し、
溶融金属を充填した前記焼結体を固化させるべく冷却すること
を特徴とする請求項1又は2に記載の電極製造方法。
【請求項4】
前記溶融金属は溶融した金属アルミニウムであることを特徴とする請求項3に記載の電極製造方法。
【請求項5】
前記活物質は亜クロム酸ナトリウムであることを特徴とする請求項1乃至4の何れか一つに記載の電極製造方法。
【請求項6】
請求項1乃至5の何れか一つに記載の電極製造方法で製造した電極を一方の電極として電池を組み立てることを特徴とする電池製造方法。
【請求項7】
電池の電極において、
活物質が焼結した多孔質の焼結体内に導電材を充填してなり、
導電材は前記焼結体内で連続的に分布した連続体を形成してあること
を特徴とする電極。
【請求項8】
請求項7に記載の電極を備えることを特徴とする電池。
【請求項9】
溶融塩を電解質としたことを特徴とする請求項8に記載の電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−248320(P2012−248320A)
【公開日】平成24年12月13日(2012.12.13)
【国際特許分類】
【出願番号】特願2011−117151(P2011−117151)
【出願日】平成23年5月25日(2011.5.25)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】