説明

露光装置及びデバイス製造方法

【課題】ステージの位置を計測する。
【解決手段】ステージ定盤に設けられたエンコーダ72,77及びZヘッド73,78とステージRSTに設けられたグレーティングGR1,GR2とを用いて、ステージ定盤に対するステージRSTの位置を計測する第1計測システムと、ステージ定盤に設けられたエンコーダ82〜84及びZヘッド87〜89と投影光学系PLに設けられたグレーティングGR3〜GR5及び反射面RF1〜RF3を用いて、ステージ定盤に対する投影光学系PLの位置を計測する第2計測システムと、から計測システムが構成される。これを用いることにより、投影光学系PLに対するステージRSTの位置を高精度に計測することが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、露光装置及びデバイス製造方法に係り、半導体素子(集積回路等)、液晶表示素子等を製造するリソグラフィ工程で用いられる露光装置、及び該露光装置を用いるデバイス製造方法に関する。
【背景技術】
【0002】
従来、半導体素子、液晶表示素子等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、エネルギビームによりパターンが形成されたマスク又はレチクル(以下、「レチクル」と総称する)を照明しつつ、レチクルとウエハ及びガラスプレート等の物体(以下、「ウエハ」と総称する)とを所定の走査方向(スキャン方向)に同期して駆動することで、レチクルのパターンを投影光学系を介してウエハ上に転写するステップ・アンド・スキャン方式等の走査型露光装置(例えばスキャニング・ステッパなど)が使用されている。
【0003】
走査型露光装置は、レチクルが載置されたステージを駆動するステージ装置を備えている。最近では、例えば特許文献1に開示されているように、投影レンズの上方で防振部材を介して支持された定盤上で駆動するレチクルステージ装置が採用されている。このレチクルステージ装置では、定盤を基準としてステージの位置を計測する装置の他に、投影レンズに対する定盤の位置を計測する装置が用いられている。特許文献1からもわかるように、従来のレチクルステージ装置では、ステージの位置の計測は、高分解能なレーザ干渉計を用いて行われるのが、一般的である。
【0004】
しかしながら、半導体素子のその後の更なる高集積化に伴う、パターンの微細化により、より高精度なステージの位置制御が要求されるようになり、今や、レーザ干渉計のビーム路上の雰囲気の温度揺らぎに起因する計測値の短期的な変動がオーバレイバジェットとの関係で許容できなくなりつつある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−166614号公報
【発明の概要】
【課題を解決するための手段】
【0006】
本発明の第1の態様によれば、エネルギビームによりパターンが形成されたマスクを照明し、前記マスクと物体とを第1方向に同期移動して前記パターンを前記物体上に転写する露光装置であって、前記マスクを介した前記エネルギビームを前記物体に照射する光学部材と;前記マスクを保持し、少なくとも前記第1方向及びこれに直交する第2方向を含む所定平面内で移動する移動部材と;前記移動部材を移動可能に支持するベース部材と;前記移動部材と前記ベース部材との第1の位置関係を計測する第1計測系と、前記ベース部材と前記光学部材との第2の位置関係を計測する第2計測系とを有し、前記第1の位置関係と前記第2の位置関係とに基づいて、前記光学部材に対する前記移動部材の位置情報を求める位置計測系と;を備え、前記第1計測系と前記第2計測系との少なくとも一方は、エンコーダシステムを含む露光装置が、提供される。
【0007】
これによれば、位置計測系を構成する第1計測系と第2計測系との少なくとも一方は、干渉計に比べてビーム路上の空気の温度揺らぎの影響を受けにくいエンコーダシステムを含む。このため、移動部材とベース部材との第1の位置関係の計測、及びベース部材と光学部材との第2の位置関係の計測に、ともに干渉計を用いていた従来例に比べて、位置計測系により光学部材に対する移動部材の位置を精度良く計測することが可能となり、より高精度な移動部材の駆動(位置制御)が可能となる。
【0008】
本発明の第2の態様によれば、本発明の露光装置を用いて物体上に前記パターンを転写することと;前記パターンが転写された物体を現像することと;を含むデバイス製造方法が、提供される。
【図面の簡単な説明】
【0009】
【図1】一実施形態に係る露光装置を示す概略図である。
【図2】レチクルステージ装置を示す斜視図である。
【図3】図3(A)はレチクルステージの構成を一部破砕して示す平面図、図3(B)は図2のA−A線及び図3(A)のB−B線に沿って断面し一部省略したレチクルステージ装置の縦断面図である。
【図4】図4(A)及び図4(B)は、第1及び第2計測システムの構成を示す説明図である。
【図5】図1の露光装置の制御系を中心的に構成する主制御装置の入出力関係を示すブロック図である。
【図6】第1計測システムの第1の変形例を説明するための図である。
【図7】第1計測システムの第2の変形例を説明するための図である。
【発明を実施するための形態】
【0010】
以下、本発明の一実施形態を図1〜図5に基づいて説明する。
【0011】
図1には、一実施形態の露光装置100の概略的な構成が示されている。露光装置100は、ステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャニング・ステッパ(スキャナとも呼ばれる)である。後述するように本実施形態では、投影光学系PLが設けられており、以下においては、この投影光学系PLの光軸AXと平行な方向をZ軸方向、これに直交する面内でレチクルとウエハとが相対走査される方向をY軸方向、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。
【0012】
露光装置100は、照明ユニットIOP、レチクルRを保持してY軸方向(走査方向)に所定ストロークで移動すると共にXY平面内で微動するレチクルステージRSTを含むレチクルステージ装置20、投影光学系PL、ウエハWを保持してXY平面内で移動するウエハステージWST、及びこれらの制御系、並びにレチクルステージ装置20及び投影光学系PLを保持するコラム34等を備えている。
【0013】
照明ユニットIOPは、光源及び照明光学系を含み、その内部に配置された視野絞り(マスクキングブレード又はレチクルブラインドとも呼ばれる)により規定される矩形又は円弧状の照明領域に照明光(露光光)ILを照射し、回路パターンが形成されたレチクルRを均一な照度で照明する。照明ユニットIOPと同様の照明系は、例えば米国特許第5,534,970号明細書などに開示されている。ここでは、一例として照明光ILとして、ArFエキシマレーザ光(波長193nm)が用いられるものとする。
【0014】
レチクルステージ装置20は、照明ユニットIOPの下方に所定間隔を隔ててほぼ平行に配置されたレチクルステージ定盤RBS、該レチクルステージ定盤RBS上に配置されたレチクルステージRST、該レチクルステージRSTを取り囲む状態でレチクルステージ定盤RBS上に配置された枠状部材から成るカウンタマス18、及びレチクルステージRSTを駆動するレチクルステージ駆動系340(図5参照)等を備えている。
【0015】
レチクルステージ定盤RBSは、図1に示されるように、コラム34の天板部32a上に複数(例えば3つ)の防振ユニット14を介して略水平に支持されている。レチクルステージ定盤RBS上に、レチクルステージRSTが配置され、レチクルステージRST上にレチクルRが保持されている。なお、レチクルステージ装置20の具体的な構成等については後にさらに詳述する。
【0016】
投影光学系PLとしては、例えば、Z軸方向の共通の光軸を有する複数のレンズ(レンズエレメント)から成る屈折光学系が用いられている。投影光学系PLは、例えば、両側テレセントリックで所定の投影倍率(例えば1/4あるいは1/5)を有する。このため、照明ユニットIOPからの照明光ILによって照明領域が照明されると、投影光学系PLの第1面(物体面)とパターン面がほぼ一致して配置されるレチクルRを通過した照明光ILにより、投影光学系PLを介してその照明領域内のレチクルの回路パターンの縮小像(回路パターンの一部の投影像)が、投影光学系PLの第2面(像面)側に配置され、表面にレジスト(感光剤)が塗布されたウエハW上の照明領域に共役な領域(露光領域)に形成される。
【0017】
そして、レチクルステージRSTとウエハステージWSTとの同期駆動によって、照明領域(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動するとともに、露光領域(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動することで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。すなわち、本実施形態では、照明ユニットIOP及び投影光学系PLによって、ウエハW上にレチクルRのパターンが生成され、照明光ILによるウエハW上の感応層(レジスト層)の露光によってウエハW上にそのパターンが形成される。投影光学系PLの鏡筒の高さ方向のほぼ中央に、フランジFLGが設けられている。
【0018】
コラム34は、床面Fにその下端部が固定された複数(例えば3本)の脚部32b(図1における紙面奥側の脚部は不図示)と、複数の脚部32bにより床面F上方で支持された天板部32aとを含んでいる。天板部32aの中央部には、上下方向(Z軸方向)に貫通した平面視(上方から見て)矩形の開口34aが形成されている。
【0019】
天板部32aの下面側に一端が固定された3つの吊り下げ支持機構137(ただし紙面奥側の吊り下げ支持機構は不図示)の他端がフランジFLGに接続され、これにより投影光学系PLが天板部32aに吊り下げ支持されている。3つの吊り下げ支持機構137のそれぞれは、柔構造の連結部材であるコイルばね136とワイヤ135とを含む。コイルばね136は、投影光学系PLの光軸(Z軸)に垂直な方向には振り子のように振動するため、投影光学系PLの光軸に垂直な方向の除振性能(床の振動が投影光学系PLに伝達するのを防止する性能)を有している。また、光軸に平行な方向に関しても、高い除振性能を有している。
【0020】
また、コラム34の脚部32bのそれぞれのZ軸方向に関する中央部近傍には凸部134aが形成され、凸部134aのそれぞれと投影光学系PLのフランジFLGの外周部との間には、駆動機構440が設けられている。駆動機構440は、投影光学系PLを鏡筒の半径方向に駆動するボイスコイルモータと、投影光学系PLを光軸方向(Z軸方向)に駆動するボイスコイルモータとを含んでいる。駆動機構440により投影光学系PLを6自由度方向に変位させることができる。
【0021】
投影光学系PLのフランジFLGには、投影光学系PLの6自由度方向の加速度を検出するための加速度センサ234(図1では不図示、図5参照)が設けられており、加速度センサ234で検出される加速度情報に基づいて、主制御装置50(図1では不図示、図5参照)が、投影光学系PLがコラム34及び床面Fに対して静止した状態となるように駆動機構440のボイスコイルモータの駆動を制御する。
【0022】
投影光学系PLのフランジFLGの下面からは、リング状の計測マウント51が複数(ここでは例えば3本)の支持部材53(ただし、紙面奥側の支持部材は不図示)を介して吊り下げ支持されている。3本の支持部材53は、実際には、その両端部に支持部材53の長手方向以外の5自由度方向の変位が可能なフレクシャ部を有するリンク部材を含み、計測マウント51とフランジFLGとの間に応力が殆ど生じることなく計測マウント51を支持することができるようになっている。
【0023】
計測マウント51には、ウエハ干渉計58や、アライメント系ALG(図1では不図示、図5参照)、不図示の多点焦点位置検出系などが保持されている。アライメント系としては、例えば米国特許第5,721,605号明細書などに開示される画像処理方式のFIA系を用いることができる。また、多点焦点位置検出系としては、例えば米国特許第5,448,332号明細書等に開示される多点焦点位置検出系を用いることができる。
【0024】
ウエハステージWSTは、投影光学系PLの下方に水平に配置されたステージ定盤BSの上面に、その底面に設けられたエアベアリングなどを介して浮上支持されている。
【0025】
ここで、ステージ定盤BSは、直接的に床面F上に据え付けられており、その+Z側の面(上面)は、その平坦度が非常に高くなるように加工されており、ウエハステージWSTの移動基準面(ガイド面)とされている。
【0026】
ウエハステージWSTは、ウエハホルダ125を介してウエハWを真空吸着等により保持し、主制御装置50により、ウエハステージ駆動系122(図1では不図示、図5参照)を介して、ステージ定盤BSの上面に沿ってXY2次元方向に自在に駆動される。
【0027】
次に、レチクルステージ装置20及びその近傍の構成部分について詳述する。
図2にはレチクルステージ装置20が斜視図にて示されている。この図2に示されるように、レチクルステージ定盤RBSは、平面視(上方から見て)略長方形の板状部材から成り、その中央部には、照明光ILの通路となる開口RBSa(図1及び図3(B)等参照)が形成されている。開口RBSaは、前述した天板部32aの開口34aとZ軸方向に連通した状態となっている。また、レチクルステージ定盤RBSの上面の、中心から−X方向及び+X方向に等距離離れた位置には、凸状部分RBSb、RBSc(図2及び図3(B)参照)がY軸方向に沿って延設されている。凸状部分RBSb,RBScの上面(+Z側の面)は、平坦度が非常に高くなるように加工され、レチクルステージRSTの移動の際のガイド面が形成されている。
【0028】
また、レチクルステージ定盤RBSの上面の外周部近傍には、不図示ではあるが、所定間隔で複数のエアパッドが固定されている。これらの複数のエアパッド上にカウンタマス18が配置されている。これらの複数のエアパッドの一部、例えばレチクルステージ定盤RBSの4隅にあるエアパッドは、カウンタマス18の自重をレチクルステージ定盤RBSの上面(+Z側の面)上で非接触で支持している。残りのエアパッドは、真空吸引力と吹き出し圧力とのバランスの調整が可能であり、カウンタマス18の下面とレチクルステージ定盤RBSの上面との間を所定間隔に維持している。
【0029】
レチクルステージ定盤RBSと天板部32aとの間に設けられた図1に示される複数(例えば3つ)の防振ユニット14は、それぞれがエアダンパ又は油圧式のダンパ等の機械式のダンパを含んでいる。防振ユニット14により、エアダンパ又は油圧式のダンパによって比較的高周波の振動がレチクルステージRSTへ伝達するのを回避することができる。また、レチクルステージ定盤RBSと天板部32aとの間には、レチクルステージ定盤RBSにX軸方向の駆動力を作用させるXボイスコイルモータ66X、Y軸方向の駆動力を作用させるYボイスコイルモータ66Y、及びZ軸方向の駆動力を作用させるZボイスコイルモータ66Z(いずれも、図2では不図示、図5参照)が設けられている。
【0030】
これらボイスコイルモータとしては、例えば、Xボイスコイルモータ66XとYボイスコイルモータ66Yの少なくとも一方を2つ、Zボイスコイルモータ66Zを3つ設けることとすることができる。すなわち、Xボイスコイルモータ66XとYボイスコイルモータ66Yの少なくとも一方を2つ設けることで、レチクルステージ定盤RBSをX軸方向及びY軸方向のみならず、θz方向にも微小駆動することが可能であり、また、Zボイスコイルモータ66Zを3つ設けることで、レチクルステージ定盤RBSをZ軸方向のみならず、θx方向及びθy方向にも微小移動することが可能である。従って、ボイスコイルモータ66X,66Y,66Zにより、レチクルステージ定盤RBSを6自由度方向に微小駆動することが可能である。レチクルステージ定盤RBSの位置は、後述する第2計測システム81によって投影光学系PLを基準として計測される。
【0031】
ここで、例えば3つのZボイスコイルモータ66Zは、レチクルステージ定盤RBSと天板部32aとの間の一直線上に無い3箇所に設けられている。この3つのZボイスコイルモータ66Zに加えて、レチクルステージ定盤RBSと天板部32aとの間に、変形抑制部材(例えばボイスコイルモータなど)を複数配置しても良い。このようにすると、Zボイスコイルモータ66Zのみにより、レチクルステージ定盤RBSをZ軸方向、θx方向、θy方向に移動させた場合に、Zボイスコイルモータ66Zの推力の作用点同士が離れていることに起因して撓みやねじれが発生するような場合でも、主制御装置50が、3つのZボイスコイルモータ66Zの発生推力に応じて、その複数の変形抑制部材の発生する推力を制御(推力分配)することで、レチクルステージ定盤RBSを、その変形が極力抑制された状態でZ、θx、θy方向に移動させることが可能となる。
【0032】
レチクルステージRSTは、図2に示されるように、レチクルステージ本体22と、レチクルステージ本体22のX軸方向の両端部に固定された一対の可動子30A,30Bを備えている。
【0033】
レチクルステージ本体22は、図3(A)に拡大して示されるように、平面視(上方から見て)矩形状の板状部22と、板状部22の±X端にそれぞれ固定されたY軸方向を長手方向とする直方体状のエアスライダ部22,22とを有している。ここで、板状部22のほぼ中央には、照明光ILの通路となる開口22a(図3(B)参照)が形成されている。
【0034】
板状部22上面の開口22aのX軸方向の両側の部分には、レチクルRの裏面を吸着保持する一対のバキュームチャック95,96が配置されている。
【0035】
また、板状部22上面の開口22aの−Y側の部分には、一対のストッパ(位置決め部材)93,94が、X軸方向に関して所定距離(レチクルRのX軸方向に関する幅より幾分短い距離)隔てて配置され、固定されている。これらのストッパ93,94は、レチクルRの−Y側の端面(側面)に当接してそのレチクルRを位置決めする。
【0036】
また、板状部22上面の開口22aの+Y側の部分には、一対の回動アームから成るクランパ(押圧部材)91、92が取り付けられている。クランパ91、92は、それぞれストッパ93、94と組を成し、レチクルRをY軸方向の一側と他側とから挟持するクランプ装置を、それぞれ構成する。
【0037】
一方のクランパ91は、X軸方向を長手方向とし、その−X端を支点(回転中心)として回動可能に板状部22に取り付けられている。また、クランパ91の−Y側の面の+X端部には、ストッパ93に対向してほぼ半球状の凸部が設けられている。そして、クランパ91は、その凸部がレチクルRの+Y側の端面に圧接するように、不図示のゼンマイバネなどから成る付勢部材によって時計回りに常に付勢されている。他方のクランパ92は、左右対称ではあるが、クランパ91と同様に構成されている。
【0038】
レチクルRは、開口22aを上方から塞ぐ状態で、板状部22(レチクルステージRST)上に載置されている。そして、レチクルRは、その−Y側の面がストッパ93,94に接触して位置決めされ、クランパ91,92により+Y側の面に所定の押圧力が加えられて固定される。レチクルRは、このようにしてクランパ91,92及びストッパ93,94によって固定された後、バキュームチャック95,96により、その下面のX軸方向両端部が吸着される。レチクルRをレチクルステージRST上からアンロードする場合には、吸着を解除した後、クランパ91,92を付勢力に抗して、レチクルRから離し、例えば上方から吸盤等でレチクルRの上面(パターン面と反対側の面)を吸着して持ち上げるなどすれば良い。なお、クランパ91,92を常時付勢する構成に換えて、アクチュエータ(例えばモータあるいはエアシリンダなど)により、クランパ91,92の半球状凸部が、レチクルRに当接する第1位置と、レチクルRから離間する第2位置とで切り替え可能な構成を採用しても良い。また、回動式に限らず、スライド式のクランパを用いることもできる。
【0039】
その他、板状部22上には、各種計測部材が設けられている。例えば、板状部22の開口22aの±Y側には、X軸方向を長手方向とする矩形状の開口がそれぞれ形成されている。これらの開口を上方から塞ぐ状態で、空間像計測用基準マークが形成されたレチクルフィデューシャルマーク板(以下、「レチクルマーク板」と略記する)LF1,LF2が、レチクルRと並ぶように配置され、板状部22に固定されている。このレチクルマーク板LF1,LF2は、レチクルRと同材質のガラス素材、例えば合成石英、ホタル石、フッ化リチウムその他のフッ化物結晶などから構成されている。レチクルマーク板の詳細については、例えば米国特許出願公開第2002/0041377号明細書等に開示されている。
【0040】
本実施形態では、図3(B)から分かるように、レチクルRは、そのパターン面(下面)がレチクルステージ本体22(レチクルステージRST)の中立面(レチクルステージ本体22の重心を通るXY平面に平行な面)に略一致する状態で支持される。
【0041】
エアスライダ部22,22は、図3(A)にエアスライダ部22について、その上面の一部を破砕して示されるように、その内部に強度を維持するための格子状のリブが設けられ、この格子状のリブによってその内部空間が区画された中空部材から成る。換言すれば、エアスライダ部22,22は、軽量化を図るべく、リブ部のみが残るように肉抜きされた直方体状の部材から成る。
【0042】
エアスライダ部22,22の底面のX軸方向の外側半部、すなわち図3(B)に示されるようにレチクルステージ定盤RBSの前述の凸状部分RBSc、RBSbに対向する部分には、表面絞り溝を有する給気溝と排気溝(いずれも不図示)とが、Y軸方向の全長に渡って形成されている。また、給気溝と排気溝とのそれぞれの少なくとも一部に対向してレチクルステージ定盤RBSの凸状部分RBSc、RBSbの上面に、給気口と排気口とがそれぞれ形成されている。このように、本実施形態では、いわゆる定盤給気タイプの差動排気型気体静圧軸受が用いられている。定盤給気タイプの差動排気型気体静圧軸受の詳細は、例えば米国特許第7,489,389号明細書などに詳細に開示されている。
【0043】
本実施形態では、給気口を介して供給され表面絞り溝から凸状部分RBSc、RBSbの上面に噴き付けられる加圧気体の静圧と、レチクルステージRST全体の自重とのバランスにより、凸状部分RBSc、RBSbの上に数ミクロン程度の隙間(ギャップ、クリアランス)を介して、レチクルステージRSTが非接触で浮上支持される。ここで、加圧気体としては、クリーンドライエア(CDA)、窒素、又はヘリウムなどの希ガスなどが用いられる。
【0044】
一対の可動子30A、30Bのそれぞれは、図2に示されるように、エアスライダ部22の+X側の面、エアスライダ部22の−X側の面に固定されている。
【0045】
可動子30A,30Bは、それぞれ所定の位置関係で配置された複数の磁石を内蔵する磁石ユニットによって構成されている。可動子30A,30Bのそれぞれは、図2に示されるように、一対の固定子40A、40Bに係合している。
【0046】
固定子40A、40Bは、図2に示されるように、カウンタマス18内部のX軸方向の一側と他側にそれぞれ配置され、カウンタマス18に固定支持されている。
【0047】
本実施形態では、固定子40Aとこれに係合する可動子30Aとにより、レチクルステージRSTをY軸方向に所定ストロークで駆動するとともに、X軸方向にも微少駆動するムービングマグネット型の第1のXY駆動リニアモータ340aが構成されている。同様に、固定子40Bとこれに係合する可動子30Bとにより、レチクルステージRSTをY軸方向に所定ストロークで駆動するとともに、X軸方向にも微少駆動するムービングマグネット型の第2のXY駆動リニアモータ340bが構成されている。そして、これら第1、第2のXY駆動リニアモータ340a、340bにより、レチクルステージRSTをY軸方向に所定ストロークで駆動するとともに、X軸方向及びθz方向にも微少駆動するレチクルステージ駆動系340(図5参照)が構成されている。また、レチクルステージ駆動系340は、レチクルステージRSTの重心を含む中立面内でレチクルステージを駆動する。レチクルステージ駆動系340を構成する各コイルに供給される電流の大きさ及び方向が、主制御装置50によって制御される。
【0048】
レチクルステージRSTの位置は、レチクル位置計測システム70(図1等では不図示、図5参照)により計測される。レチクル位置計測システム70は、レチクルステージ定盤RBSに対するレチクルステージRSTの位置を計測する第1計測システム71と、投影光学系PLに対するレチクルステージ定盤RBSの位置を計測する第2計測システム81とを有している。本実施形態では、レチクル位置計測システム70とは独立に、レチクルステージRSTの6自由度方向(X軸,Y軸,Z軸,θx,θy及びθzの各方向)の位置情報を計測するレチクル干渉計システム(不図示)が設けられている。レチクル干渉計システム(不図示)は、第1計測システム71の計測範囲外にレチクルステージRSTが移動する場合、あるいは第1計測システム71の出力異常が生じた場合などのバックアップとして、補助的に使用される。以下、レチクル位置計測システム70の構成等について説明する。
【0049】
レチクルステージRSTのエアスライダ部22,22の底面には、図3(A)に符号GR1、GR2で示される計測面GR1、GR2が、それぞれ、Y軸方向のほぼ全長に渡って延設されている。ここで、計測面は、エアスライダ部22,22の底面にあるので、実際には、図3(A)では、図面上現れないが、ここでは、図示及び説明の便宜上から、図示されている。計測面GR1,GR2には、X軸方向及びY軸方向を周期方向とする2次元グレーティングが、それぞれ形成されている。以下においては、適宜、計測面GR1,GR2のそれぞれに形成されている2次元グレーティングを、対応する計測面と同じ符号を用いて、2次元グレーティングGR1、GR2と表記する。
【0050】
レチクルステージ定盤RBSの上面の開口RBSaの±X側の近傍の位置には、図3(B)及び図4(A)に示されるように、それぞれ、2軸ヘッド72,77が設けられている。2軸ヘッド72の筐体の内部には、X軸方向を計測方向とするXヘッド72XとY軸方向を計測方向とするYヘッド72Yとが、収容されている。同様に、2軸ヘッド77の筐体の内部には、Xヘッド77XとYヘッド77Yとが収容されている。Xヘッド72X、Xヘッド77X(より正確には、Xヘッド72X,77Xが発する計測ビームの計測面(2次元グレーティング)GR1、GR2上の照射点)は、レチクルRのパターン面(下面)に照射される照明光ILの照射領域の中心、すなわち本実施形態では開口RBSaの中心及び光軸AXにほぼ一致)を通るX軸に平行な直線(基準軸)LH上に、開口RBSaの中心から等距離の位置に配置されている。また、Yヘッド72Y,77Y(より正確には、Yヘッド72Y,77Yが発する計測ビームの計測面(2次元グレーティング)GR1、GR2上の照射点)は、それぞれ、対応するXヘッド72X,77Xによる計測ビームの照射点から−Y側に所定距離(同一距離)離れた位置に配置されている。
【0051】
ここで、Xヘッド72X,77X、及びYヘッド72Y,77Yのそれぞれとして、一例として、米国特許出願公開第2008/0088843号明細書などに開示されている回折干渉型のエンコーダヘッドが用いられている。この種のエンコーダヘッドでは、2つ(一対)の計測ビームを対応する2次元グレーティングGR1又はGR2に照射し、それぞれの計測ビームの2次元グレーティングGR1又はGR2からの戻り光(回折光)を1つの干渉光に合成して光検出器を用いて受光し、その干渉光の強度度変化より、2次元グレーティングGR1又はGR2、すなわちエアスライダ部22又は22の計測方向(2次元グレーティング(回折格子)の周期方向)への変位を計測する。この場合、Xヘッド72X、Yヘッド72Yは、それぞれ、対向するグレーティングGR1(エアスライダ部22)のX軸方向、Y軸方向の変位をレチクルステージ定盤RBSを基準として計測する。また、この場合、Xヘッド77X、Yヘッド77Yは、それぞれ、対向するグレーティングGR1(エアスライダ部22)のX軸方向、Y軸方向の変位をレチクルステージ定盤RBSを基準として計測する。
【0052】
レチクルステージ定盤RBS上には、図3(B)及び図4(A)に示されるように、2次元グレーティングGR1、GR2にそれぞれ対向して、Z位置計測センサのヘッド(以下、「Zヘッド」と称する)73、78が設けられている。ここで、Zヘッド73、78としては、例えば、CDドライブ装置などで用いられる光ピックアップと同様の光学式変位センサのヘッドが用いられる。Zヘッド73、78は、2次元グレーティングGR1,GR2ウエハテーブルWTBに対し鉛直下方から計測ビームを照射し、その反射光を受光して、照射点における計測面GR1,GR2の面位置を計測する。なお、本実施形態では、Zヘッドの計測ビームは、前述の2次元グレーティングGR1,GR2(反射型回折格子)によって反射される構成を採用している。
【0053】
また、Zヘッド73,78(より正確には、Zヘッド73,78が発する計測ビームの計測面(2次元グレーティング)GR1、GR2上の照射点)は、それぞれ、対応するXヘッド72X,77Xによる計測ビームの照射点から+Y側に所定距離(同一距離)離れた位置に配置されている。この場合、Zヘッド73とXヘッド72Xとは、計測面(2次元グレーティング)GR1、GR2上で、基準軸LHに対して対称の位置にそれぞれの計測ビームを照射し、Zヘッド78とXヘッド77Xとは、計測面(2次元グレーティング)GR1、GR2上で、基準軸LHに対して対称の位置にそれぞれの計測ビームを照射する。
【0054】
計測面(2次元グレーティング)GR1、GR2のそれぞれに対向する2軸ヘッド72(Xヘッド72X及びYヘッド72Y)、2軸ヘッド77(Xヘッド77X及びYヘッド77Y)、並びにZヘッド73,78を含んで第1計測システム71(図5参照)が構成され、その計測情報は主制御装置50(図5参照)に送られる。主制御装置50は、第1計測システム71からの計測情報に基づいて、レチクルステージ定盤RBSに対するレチクルステージRSTの5自由度方向(X軸,Y軸,Z軸,θy,θzの各方向)の位置を求める。なお、レチクルR上での照明光ILの照射領域のY軸方向の幅が狭いので、ピッチング(θx方向の位置)については、第1計測システム71によっては計測されていないが、必要に応じ、不図示の干渉計システムの計測情報が用いられる。
【0055】
レチクルステージ定盤RBSの下面には、図3(B)に示されるように、投影光学系PLの後述する上面部材60の上端部が収容された凹部RBSaが形成されている。凹部RBSaの内部底面の開口RBSaの外側かつ近傍の位置には、図3(B)及び図4(B)に示されるように、Xヘッド83及びYヘッド82,84が設けられている。ここで、Xヘッド83は、開口RBSaの−X側に配置されている。また、Yヘッド82,84は、それぞれ開口RBSaの+Y端近傍の±X側に配置されている。
【0056】
一方、投影光学系PLの最上面には、図4(B)に示されるように、中央に矩形の開口PLaが形成された平面視八角形の上面部材60が固定されている。開口PLaは、レチクルRのパターン面を透過し、レチクルステージ定盤RBSの開口RBSaを透過した照明光ILの光路(通路)となる。上面部材60上面には、Xヘッド83、Yヘッド82及びYヘッド84のそれぞれに対向する位置に、スケール部材GR4、GR3及びGR5が配置されている。スケール部材GR4の表面には、X軸方向を周期方向とする1次元グレーティングが形成されている。スケール部材GR3,GR5のそれぞれの表面には、Y軸方向を周期方向とする1次元グレーティングが形成されている。以下においては、適宜、スケール部材GR4,GR3及びGR5のそれぞれに形成されている1次元グレーティングを、対応するスケール部材と同じ符号を用いて、グレーティングGR4、GR3及びGR5と表記する。
【0057】
Xヘッド83、Yヘッド82及びYヘッド84のそれぞれとして、前述のXヘッド72X,77X及びYヘッド72Y,77Yと同様の回折干渉型のエンコーダヘッドが用いられている。Yヘッド82,84は、それぞれ対向するグレーティングGR3,GR5に計測ビームを照射し、それぞれのグレーティングGR3,GR5からの戻り光(干渉光)の強度変化よりグレーティングGR3,GR5、すなわち投影光学系PLとレチクルステージ定盤RBSとのY軸方向の相対変位を計測する。同様に、Xヘッド83は、対向するグレーティングGR4、すなわち投影光学系PLとレチクルステージ定盤RBSとのX軸方向の相対変位を計測する。ここで、前述したように、投影光学系PLは、コラム34及び床面Fに対して静止した状態となるように、主制御装置50により、加速度センサ234で検出される加速度情報に基づいて、駆動機構440のボイスコイルモータの駆動が制御されている。従って、投影光学系PLは、実質的に固定であると考えて差し支えない。この結果、Yヘッド82,84、及びXヘッド83は、投影光学系PLに対するレチクルステージ定盤RBSのそれぞれの計測方向の変位を計測することとなる。
【0058】
ここで、Xヘッド83(より正確には、Xヘッド83が発する計測ビームの計測面(スケール部材)GR4上の照射点)は、XY平面内で見て、開口RBSaの中心(本実施形態では光軸AXにほぼ一致)を通る前述した基準軸LH上に配置されている。また、Yヘッド82,84(より正確には、Yヘッド82,84が発する計測ビームの計測面(スケール部材)GR3、GR5上の照射点)は、それぞれ、XY平面内で見て、基準軸LHから+Y側に所定距離(同一距離)離れた位置に配置されている。
【0059】
レチクルステージ定盤RBSの下面(最下面)の凹部RBSaの周囲には、図3(B)及び図4(B)に示されるように、Zヘッド87,88,89が設けられている。一方、投影光学系PLの上面には、図4(B)に示されるように、Zヘッド87,88,89とそれぞれ対向する反射面RF1,RF2,RF3が配置されている。反射面RF1,RF2,RF3は、ほぼ同一平面上にある。
【0060】
Zヘッド87,88,89として、Zヘッド73,78と同様に、光学式変位センサのヘッドが用いられる。すなわち、Zヘッド87,88,89は、それぞれ反射面RF1,RF2,RF3に計測ビームを照射し、その反射光を受光して、照射点における反射面RF1,RF2,RF3の面位置、すなわち投影光学系PLの上面のZ位置を計測する。
【0061】
ここで、Zヘッド87,88,89それぞれの計測ビームの反射面RF1,RF2,RF3上の照射点の位置は、同一直線上にない位置関係、例えば、その重心が、開口RBSaの中心(本実施形態では光軸AXにほぼ一致)に一致する正三角形の各頂点の位置に配置されている。
【0062】
Xヘッド83,Yヘッド82,84、及びZヘッド87,88,89を含んで第2計測システム81(図5参照)が構成され、その計測情報は主制御装置50(図5参照)に送られる。主制御装置50は、第2計測システム81からの計測情報に基づいて、投影光学系PLに対するレチクルステージ定盤RBSの6自由度方向(X軸,Y軸,Z軸,θx,θy,θzの各方向)の位置を求める。
【0063】
主制御装置50は、第1及び第2計測システム71,81からの計測情報に基づいて、投影光学系PLに対するレチクルステージRSTの5自由度方向(X軸,Y軸,Z軸,θy,θzの各方向)の位置を求める。主制御装置50は、その結果に基づいて、レチクルステージ駆動系340を介して、レチクルステージRSTを駆動(位置制御)する。
【0064】
図5には、本実施形態の露光装置100の制御系を中心的に構成する主制御装置50の入出力関係が、ブロック図にて示されている。主制御装置50は、CPU(中央演算処理装置)、ROM(リード・オンリ・メモリ)、RAM(ランダム・アクセス・メモリ)等から成るいわゆるマイクロコンピュータ(又はワークステーション)を含み、装置全体を統括して制御する。
【0065】
上述のようにして構成された露光装置100による露光動作の流れについて簡単に説明する。
【0066】
まず、主制御装置50の管理の下、不図示のレチクルローダによって、レチクルステージRST上へのレチクルRのロード、及び不図示のウエハローダによって、ウエハステージWST上へのウエハWのロードが行なわれ、また、アライメント系ALG(図5参照)
及びレチクルアライメント系(不図示)等を用いて、例えば米国特許第5,646,413号明細書などに開示される所定の手順に従ってレチクルアライメント、アライメント系ALGのベースライン計測等の準備作業が行なわれる。なお、レチクルアライメント系に代えて、ウエハステージWST上に設けられた不図示の空間像計測器を用いてレチクルアライメントを行っても良い。
【0067】
その後、主制御装置50により、アライメント系ALGを用いて例えば米国特許第4,780,617号明細書などに開示されているEGA(エンハンスト・グローバル・アライメント)等のウエハアライメントが実行され、ウエハアライメントの終了後、ステップ・アンド・スキャン方式の露光動作が行なわれる。この露光動作は従来から行われているステップ・アンド・スキャン方式と同様であるのでその説明は省略する。
【0068】
この露光動作にあたって、主制御装置50の管理の下、ウエハステージWSTとレチクルステージRSTとがY軸方向に相対駆動されるが、その際には、主制御装置50は、レチクル位置計測システム70の計測結果に基づいて、レチクルステージ駆動系340を制御し、レチクルステージRSTを駆動する。また、主制御装置50は、レチクルステージ定盤RBSが所定の状態を維持するように、第2計測システム81の計測結果に基づいて上述したXボイスコイルモータ66X,Yボイスコイルモータ66Y,及びZボイスコイルモータ66Zを制御してレチクルステージ定盤RBSのZ軸方向及びθx、θy方向に関する位置を調整することにより、間接的にレチクルRのZ軸方向及びθx、θy方向に関する位置を調整する。
【0069】
以上説明したように、本実施形態の露光装置100によると、レチクルステージRSTの位置情報を計測するレチクル位置計測システム70は、レチクルステージRSTとレチクルステージ定盤RBSとの第1の位置関係を計測する第1計測システム71と、レチクルステージ定盤RBSと投影光学系PLとの第2の位置関係を計測する第2計測システム81とを有している。そして、第1計測システム71は、レチクルステージRST上の計測面(2次元グレーティング)GR1,GR2にそれぞれ計測ビームを照射する、レチクルステージ定盤RBSに設けられた2軸ヘッド72,77(Xヘッド72X,77X及びYヘッド72Y,77Y)を含むエンコーダシステム、及びZヘッド73,78を含む面位置計測システムを含んでいる。また、第2計測システム81は、投影光学系PLに設けられたスケール部材GR3〜GR5又は反射面RF1〜RF3に計測ビームを照射する、レチクルステージ定盤RBSに設けられたXヘッド83及びYヘッド82、84を含むエンコーダシステム、並びにZヘッド87〜89を含む面位置計測システムを含んでいる。エンコーダシステム及び面位置計測システムは、干渉計に比べてビーム路上の空気の温度揺らぎの影響を受けにくい。このため、本実施形態の露光装置100によると、レチクルステージRSTとレチクルステージ定盤RBSとの第1の位置関係の計測、及びレチクルステージ定盤RBSと投影光学系PLとの第2の位置関係の計測に、ともに干渉計を用いていた従来例に比べて、第1の位置関係及び第2の位置関係、ひいてはこれらから求まる投影光学系PLに対するレチクルステージRSTの位置を精度良く計測することが可能となり、より高精度な移動部材の駆動(位置制御)が可能となる。
【0070】
また、本実施形態の露光装置100によると、第1計測システム71のXヘッド72X、77Xから2次元グレーティング(計測面)GR1、GR2に計測ビームが照射されるが、その計測ビームの照射点は、その計測面上で、照明光ILの照射中心(露光中心)を通るX軸方向の直線(基準軸)LH上に位置している。このため、Xヘッド72X、77XによりレチクルステージRSTのX軸方向の位置をアッベ誤差なく計測可能である。これにより、露光時におけるレチクルステージRSTのX軸方向の位置制御性の向上が可能となる。また、レチクルステージRSTのY位置は、露光中心(本実施形態では光軸AXに一致)に対して対称に配置され、それぞれ対向する2次元グレーティング(計測面)GR1、GR2の上面(計測面)上の点に計測ビームを照射する一対のYヘッド72Y,77Yの計測値の平均に基づいて計測される。従って、Y軸方向に関する実質的な計測軸は、露光中心上にあるため、レチクルステージRSTのY軸方向の位置についてもアッベ誤差なく高精度に計測することができ、ひいては高精度な位置制御が可能である。また、第2計測システム81においても、レチクルステージ定盤RBSのX、Y位置(及びZ位置)を、投影光学系PLを基準として、アッベ誤差なく高精度に計測することができる。
【0071】
従って、走査露光中のレチクルステージRSTの位置情報を、主制御装置50は、レチクル位置計測システム70を用いて高精度に計測し、その計測結果に基づいて、パターンをウエハW上の所定の位置に正確に転写するためのレチクルステージRSTの高精度な駆動(位置制御)が可能となる。
【0072】
なお、上記実施形態では、第1、第2計測システム71、81の両者をエンコーダシステムと面位置計測システムとの組み合わせにより構成するものとしたが、一方を干渉計システムによって構成しても良い。
【0073】
なお、本実施形態の露光装置100における第1、第2計測システム71、81のいずれにおいても、各ヘッドと各ヘッドからの計測ビームが照射される計測部材(スケール部材、グレーティング、又は反射面)との配置を入れ替えても良い。
【0074】
なお、上記実施形態の第1計測システム71では、X軸方向、Y軸方向及びZ軸方向をそれぞれ計測方向とする3種の1次元ヘッド、すなわちXヘッド、Yヘッド、及びZヘッドを組み合わせて使用する場合について説明した。しかし、これら3種の1次元ヘッドに代えて、例えば、X軸方向、Y軸方向、及びZ軸方向の全てを計測方向とする3次元ヘッドを用いても良い。この場合、図6に示されるように、上述したXヘッド72X,77Xに代えてこの3次元ヘッド172、177(計測ビームの照射点)を基準軸LH上に配置すれば良い。この場合、Yヘッドは不要であるが、Zヘッド73、78は、上記実施形態と同じ配置にする。これにより、レチクルステージ定盤RBSに対するレチクルステージRSTのθx方向の位置も計測することが可能となる。
【0075】
また、上記実施形態で説明したXヘッドとYヘッドとを1つの筐体に収容した2Dヘッドに代えて、同一の照射点にX方向計測用とY方向計測用の計測ビームを照射し、X軸方向及びY軸方向を計測方向とする2次元ヘッドを用いることもできる。この種の2Dヘッドとしては、例えば米国特許出願公開第2009/0268578号明細書などに開示されている3格子回折干渉型の2Dヘッドを用いることができる。上述したXヘッド72X,77Xに代えてこの2Dヘッドを基準軸LH上に配置すれば良い。
【0076】
また、上記実施形態におけるXヘッドとZヘッドとに代えて、X軸方向及びZ軸方向を計測方向とする2次元ヘッドを用いても良い。この種の2次元ヘッドとしては、例えば米国特許第7,561,280号明細書に開示される変位計測センサヘッドを用いることができる。上述したXヘッド72X,77Xに代えてこの2次元ヘッドを基準軸LH上に配置すれば良い。この場合において、Yヘッドのみならず、Zヘッド73,78をも上記実施形態と同様の配置で残す場合には、レチクルステージ定盤RBSに対するレチクルステージRSTのθx方向の位置も計測することが可能となる。
【0077】
また、上記実施形態において、図7に示されるように、Zヘッド75,75を加えることも可能である。Zヘッド75,75は、それぞれ、レチクルステージ定盤RBS上の開口RBSaの−Y側及び+Y側に配置されている。これに対応して、レチクルステージRSTの板状部22の−Y部及び+Y部のそれぞれに突出部22,22が設けられ、それぞれの下面に反射面RFa,RFaが設けられている。この場合、レチクルステージRSTのY位置に拠らず、Zヘッド75,75の少なくとも一方が対応する反射面RFa,RFaに対向する。これにより、レチクルステージ定盤RBSに対するレチクルステージRSTのθx位置も計測することが可能となる。なお、レチクルステージRSTのY軸方向の移動範囲の設定によっては、Zヘッド75,75の一方のみを設けても良い。
【0078】
なお、上述の実施形態では、露光装置が、液体(水)を介さずにウエハWの露光を行うドライタイプの露光装置である場合について説明したが、これに限らず、例えば欧州特許出願公開第1,420,298号明細書、米国特許第6,952,253号明細書、あるいは米国特許出願公開第2008/0088843号明細書などに開示されているように、投影光学系とウエハとの間に照明光の光路を含む液浸空間を形成し、投影光学系及び液浸空間の液体を介して照明光でウエハを露光する露光装置にも上記実施形態を適用することができる。
【0079】
また、上記実施形態では、露光装置が、ステップ・アンド・スキャン方式の走査型露光装置である場合について説明したが、これに限らず、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置、プロキシミティー方式の露光装置、又はミラープロジェクション・アライナーなどにも上記実施形態を適用することができる。さらに、例えば米国特許第6,590,634号明細書、米国特許第5,969,441号明細書、米国特許第6,208,407号明細書などに開示されているように、複数のウエハステージを備えたマルチステージ型の露光装置にも上記実施形態を適用できる。また、例えば国際公開第2005/074014号などに開示されているように、ウエハステージとは別に、計測部材(例えば、基準マーク、及び/又はセンサなど)を含む計測ステージを備える露光装置にも上記実施形態は適用が可能である。
【0080】
また、上記実施形態の露光装置における投影光学系は縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系PLは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。また、前述の照明領域及び露光領域はその形状が矩形であるものとしたが、これに限らず、例えば円弧、台形、あるいは平行四辺形などでも良い。
【0081】
なお、上記実施形態の露光装置の光源は、ArFエキシマレーザに限らず、KrFエキシマレーザ(出力波長248nm)、F2レーザ(出力波長157nm)、Ar2レーザ(出力波長126nm)、Kr2レーザ(出力波長146nm)などのパルスレーザ光源、g線(波長436nm)、i線(波長365nm)などの輝線を発する超高圧水銀ランプなどを用いることも可能である。また、YAGレーザの高調波発生装置などを用いることもできる。この他、例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。
【0082】
また、上記実施形態では、露光装置の照明光ILとしては波長100nm以上の光に限らず、波長100nm未満の光を用いても良いことはいうまでもない。例えば、SORやプラズマレーザを光源として、軟X線領域(例えば5〜15nmの波長域)のEUV(Extreme Ultraviolet)光を発生させる光源を用いたEUV露光装置にも上記実施形態を好適に適用することができる。この他、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、上記実施形態は適用できる。
【0083】
また、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。
【0084】
また、例えば国際公開第2001/035168号に開示されるように、干渉縞をウエハ上に形成することによって、ウエハ上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも上記実施形態を適用することができる。
【0085】
さらに、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも上記実施形態を適用することができる。
【0086】
なお、上記実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものではなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど、他の物体でも良い。
【0087】
露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置、有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシン及びDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、及び電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも上記実施形態を適用できる。
【0088】
半導体素子などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態の露光装置(パターン形成装置)によりマスク(レチクル)のパターンをウエハに転写するリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ウエハ上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
【産業上の利用可能性】
【0089】
本発明の露光装置は、半導体素子(集積回路等)、液晶表示素子等のマイクロデバイスを製造するリソグラフィ工程において基板上にパターンを形成するのに適している。また、本発明のデバイス製造方法は、マイクロデバイスの製造に適している。
【符号の説明】
【0090】
10…露光装置、20…レチクルステージ装置、50…主制御装置、70…レチクル位置計測システム、71…第1計測システム、81…第2計測システム、72,77…2軸エンコーダ、83…Xヘッド、82,84…Yヘッド、73,78,87,88,89…Zヘッド、R…レチクル、RBS…レチクルステージ定盤、GR1〜GR5…グレーティング、RF1〜RF3…反射面、RST…レチクルステージ。

【特許請求の範囲】
【請求項1】
エネルギビームによりパターンが形成されたマスクを照明し、前記マスクと物体とを第1方向に同期移動して前記パターンを前記物体上に転写する露光装置であって、
前記マスクを介した前記エネルギビームを前記物体に照射する光学部材と;
前記マスクを保持し、少なくとも前記第1方向及びこれに直交する第2方向を含む所定平面内で移動する移動部材と;
前記移動部材を移動可能に支持するベース部材と;
前記移動部材と前記ベース部材との第1の位置関係を計測する第1計測系と、前記ベース部材と前記光学部材との第2の位置関係を計測する第2計測系とを有し、前記第1の位置関係と前記第2の位置関係とに基づいて、前記光学部材に対する前記移動部材の位置情報を求める位置計測系と;を備え、
前記第1計測系と前記第2計測系との少なくとも一方は、エンコーダシステムを含む露光装置。
【請求項2】
前記第1計測系は、前記移動部材と前記ベース部材との一方の部材に設けられた第1計測面に対向して前記移動部材と前記ベース部材との他方の部材に設けられた複数の第1ヘッドを含み、前記第1計測面には、第1グレーティングが形成され、
前記位置計測系は、前記複数の第1ヘッドの出力に基づいて、前記ベースに対する前記移動部材の位置情報を計測する請求項1に記載の露光装置。
【請求項3】
前記一方の部材には、前記第1計測面が前記第2方向に離れて一対配置され、
前記一対の第1計測面のそれぞれには、前記第1方向及び前記第2方向を周期方向とする2次元グレーティングが形成され、
前記複数の第1ヘッドは、
前記一対の第1計測面のそれぞれに対応して少なくとも各1つ設けられ、対応する前記第1計測面上の第1照射点に計測ビームを照射しその計測ビームの前記第1計測面からの戻り光を受光する、少なくとも前記第2方向を計測方向とする複数の第1エンコーダヘッドを含み、前記第1照射点は、前記マスクに照射される前記エネルギビームの照射中心を通る前記第2軸に平行な直線上に位置する請求項2に記載の露光装置。
【請求項4】
前記複数の第1ヘッドは、
前記一対の第1計測面のそれぞれの上の前記第1照射点から前記第1方向の一側に所定距離離間した第2照射点に計測ビームを照射しその計測ビームの前記第1計測面からの戻り光を受光する複数の第2エンコーダヘッドをさらに含み、該複数の第2エンコーダヘッドのそれぞれは、少なくとも前記第1方向を計測方向とする請求項3に記載の露光装置。
【請求項5】
前記複数の第1エンコーダヘッドのそれぞれは、前記第2方向及び前記所定平面に直交する方向を計測方向とする請求項3に記載の露光装置。
【請求項6】
前記複数の第1エンコーダヘッドのぞれぞれは、前記第1方向、第2方向及び前記所定平面に直交する方向を計測方向とする請求項3に記載の露光装置。
【請求項7】
前記複数の第1ヘッドは、
前記一対の第1計測面のそれぞれの上の前記第1照射点から前記第1方向の他側に所定距離離間した第3照射点に計測ビームを照射しその計測ビームの前記第1計測面からの戻り光を受光する前記所定平面に直交する方向を計測方向とする複数のセンサヘッドをさらに含む請求項3〜6のいずれか一項に記載の露光装置。
【請求項8】
前記第2計測系は、前記ベース部材と前記光学部材との一方の部材に設けられた第2計測面に対向して前記ベース部材と前記光学部材との他方の部材に設けられた複数の第2ヘッドを含み、前記第2計測面には、第2グレーティングが形成され、
前記位置計測系は、前記複数の第2ヘッドの出力に基づいて、前記光学部材に対する前記ベース部材の位置情報を計測する請求項1〜7のいずれか一項に記載の露光装置。
【請求項9】
前記第2グレーティングは、互いに直交する2軸のそれぞれに平行な方向を周期方向とする2次元グレーティングであり、
前記複数の第2ヘッドは、前記2軸のうちの一軸に平行な方向、及び前記2軸のうちの残りの軸に平行な方向を、少なくともそれぞれの計測方向とする2種類のエンコーダヘッドを含む請求項8に記載の露光装置。
【請求項10】
前記複数の第2ヘッドは、前記第2計測面の異なる照射点に計測ビームを照射しその計測ビームの前記計測面からの戻り光を受光する前記所定平面に直交する方向を計測方向とする3つのセンサヘッドをさらに含む請求項9に記載の露光装置。
【請求項11】
前記3つのセンサヘッドは、前記ベース部材と前記光学部材との前記他方の部材上の同一直線上にない3点に配置されている請求項10に記載の露光装置。
【請求項12】
請求項1〜11のいずれか一項に記載の露光装置を用いて物体上に前記パターンを転写することと;
前記パターンが転写された物体を現像することと;を含むデバイス製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−89768(P2012−89768A)
【公開日】平成24年5月10日(2012.5.10)
【国際特許分類】
【出願番号】特願2010−236968(P2010−236968)
【出願日】平成22年10月22日(2010.10.22)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】