説明

非水電解液二次電池

【課題】レート・出力といった負荷特性の低下を抑制しつつ、長寿命な非水電解液二次電池を提供する。
【解決手段】非水電解液二次電池10では、電解液17に含まれるリチウム塩は、正極15の充電電位よりも高電圧な領域であって、電解液17の主成分の酸化電位よりも低電圧な領域で酸化する。この非水電解液二次電池10を上記の電圧領域で充電することによって電解液17に含まれるリチウム塩が酸化分解し、リチウムイオンが負極16に供給され、容量が回復する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、たとえば電気自動車および携帯用電子機器のバッテリーとして用いることのできる非水電解液二次電池に関する。
【背景技術】
【0002】
エネルギー問題および環境問題を背景に、電力をより有効に活用する技術が求められている。そのためには、多量の電気を蓄え、かつ効率的にその蓄えた電気を取り出すことができる電気貯蔵手段が必要である。こうした電気の貯蔵手段としては、大きな放電容量と高い放電電圧をもち、かつ繰り返し充放電を行うことができる二次電池が最適である。
【0003】
このような二次電池として、充電時にはリチウム(Li)イオンが正極から放出されて負極に吸蔵される充電反応が生じ、放電時には負極から放出されて正極に吸蔵される放電反応が生じるリチウムイオン二次電池がある。リチウムイオン二次電池では、そのエネルギー密度および出力密度がいずれも高く、大きな放電容量と高い放電電圧とが得られる。このようなリチウムイオン二次電池には、放充電サイクル寿命の長期化が求められる。
【0004】
特許文献1には、放充電サイクル寿命を長期化する技術が開示されている。特許文献1に記載の技術では、高容量正極(リチウム含有複合窒化物)を用いて初回充放電での不可逆容量によるエネルギー密度の低下を抑制している。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2010−102841号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
前述の特許文献1に記載の技術では、高容量正極を用いるので、Li供給材が正極中に混合していることになる。したがってLi供給材という不純物が正極に存在するので、正極のエネルギー密度が減少するという問題がある。また負極に挿入されるLiは、塩として予め電解液中に添加されるので、不要なカウンターアニオン(PF等)が電解液中に残り、導電率が低下するという問題がある。
【0007】
そこで、本発明は前述の問題点を鑑みてなされたものであり、レート・出力といった負荷特性の低下を抑制しつつ、長寿命な非水電解液二次電池を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は前述の目的を達成するために以下の技術的手段を採用する。
【0009】
請求項1に記載の発明では、リチウムイオンを吸蔵および放出する正極と、リチウムイオンを吸蔵および放出する負極と、非水溶媒に少なくとも1種のリチウム塩を溶解している電解液と、を含む非水電解液二次電池であって、電解液に溶解しているリチウム塩のうち少なくとも1種は、正極の充電電位よりも高電圧な領域であって、電解液の主成分の酸化電位よりも低電圧な領域で酸化する性質を有することを特徴とする非水電解液二次電池である。
【0010】
請求項1に記載の発明に従えば、電解液に溶解される少なくとも1種のリチウム塩は、正極の充電電位よりも高電圧な領域であって、電解液の主成分の酸化電位よりも低電圧な領域で酸化する。このような電圧領域で充電した場合、リチウム塩は、酸化分解し、一部がリチウムイオンとなって負極内に取り込まれる。したがって負極等での不可逆容量分のリチウムイオンを、電解液に含まれるリチウム塩の酸化分解によって供給することができる。また酸化分解前のリチウム塩は、電解液中にて電気伝導に寄与することができる。したがって、酸化分解前でも電解液の導電率を低下させることなく使用することができる。このような酸化分解は、正極の充電電位より高電圧であるので、通常の充電をしている場合には、リチウム塩が酸化することはないが、リチウムイオンが減少した場合には、充電電圧よりも高電圧にしてリチウム塩を酸化させることによってリチウムイオンを供給することができる。換言すると、リチウムイオンが減少した任意のタイミングで酸化することによって、リチウム塩からリチウムイオンを負極に供給することができる。またリチウム塩の酸化電位は、電解液の主成分の酸化電位よりも低電圧であるので、リチウム塩を酸化させる電位にした場合に、電解液が酸化することを防止することができる。これによって電解液を酸化させることなく、リチウム塩を酸化させてリチウムイオンを負極に供給することができる。したがって、充放電に寄与するリチウムイオンを多く含有することになるので、充放電リサイクル寿命を長期化することができる。
【0011】
また請求項2に記載の発明では、性質を有するリチウム塩の酸化電圧は、リチウム基準に対して3.6V以上4.3V以下であることを特徴とする。
【0012】
請求項2に記載の発明に従えば、リチウム塩の酸化電圧は、リチウム基準に対して3.6V以上4.3V以下である。これによって充電電位よりも高く、酸化電位よりも低い電圧にて酸化するリチウム塩を実現することができる。
【0013】
さらに請求項3に記載の発明では、正極は、LiFePOであることを特徴とする。
【0014】
請求項3に記載の発明に従えば、正極は、LiFePOである。LiFePOは、リチウム塩の酸化電位を3.6Vより高電圧にすることができるので、前述の効果を有するリチウム塩を実現することができる。
【0015】
さらに請求項4に記載の発明では、電解液は、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネート、ジメチルカーボネート、およびジエチルカーボネートの少なくともいずれか1つ含むことを特徴とする。
【0016】
請求項4に記載の発明に従えば、電解液は、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネート、ジメチルカーボネート、およびジエチルカーボネートの少なくともいずれか1つ含む。このような電解液は、電解液の主成分の酸化電位を4.3Vより高くすることができるので、前述の効果を有するリチウム塩を含む電解液を実現することができる。
【0017】
さらに請求項5に記載の発明では、性質を有するリチウム塩は、ホウ素化合物であることを特徴とする。
【0018】
請求項5に記載の発明に従えば、リチウム塩は、ホウ素化合物である。ホウ素化合物は、酸化電位が低いため酸化され易く、本発明のリチウム塩として好適に用いることができる。
【0019】
さらに請求項6に記載の発明では、リチウム塩は、LiB(Cであることを特徴とする。
【0020】
請求項6に記載の発明に従えば、リチウム塩は、LiB(Cである。これによって前述の効果を有するリチウム塩を実現することができる。
【図面の簡単な説明】
【0021】
【図1】本実施形態の非水電解液二次電池10の一例を断面図である。
【図2】本実施形態の非水電解液二次電池10Aの他の例を示す断面斜視図である。
【図3】非水電解液二次電池10Aの電極部分を示す説明模式図を示す。
【図4】実施例と比較例とを比較したグラフである。
【発明を実施するための形態】
【0022】
(第1実施形態)
本発明の第1実施形態に関して、図1〜図4を用いて説明する。図1は、本実施形態の非水電解液二次電池10の一例を断面図である。図2は、本実施形態の非水電解液二次電池10Aの他の例を示す断面斜視図である。図3は、非水電解液二次電池10Aの電極部分を示す説明模式図を示す。非水電解液二次電池10は、形状は特に限定するものでなく、図1に示すようにコイン型、および図2に示す円筒型のように様々な形態によって実現することができる。先ず、図1に基づいて非水電解液二次電池10を説明し、図1の構成と同様の構成について、図2に同じ符号を付し説明を省略することがある。
【0023】
非水電解液二次電池10は、ガスケット11を介して接合された正極ケース12と負極ケース13との内部にセパレータ14を介して接合された正極15と負極16と空隙を満たす電解液17とからなる。正極15と正極ケース12とについて、そして負極16と負極ケース13とについては、それぞれ電気的に接合されている。
【0024】
先ず、電解液17に関して説明する。電解液17は、リチウム塩が含まれ、たとえば有機溶媒などの非水溶媒にリチウム塩を溶解させたもの、および自身が液体状であるイオン液体に対してリチウム塩を溶解させたものをあげることができる。
【0025】
電解液17の主成分である有機溶媒としては、非水電解液17に通常用いられているものを1種又は2種以上組み合わせて用いることができるが、環状カーボネート化合物、環状エステル化合物、スルホン又はスルホキシド化合物、アマイド化合物、鎖状カーボネート化合物、鎖状又は環状エーテル化合物、および鎖状エステル化合物からなる群から選ばれる1種以上を含有することが好ましい。特に、環状カーボネート化合物および鎖状カーボネート化合物をそれぞれ1種以上含有することが好ましく、この組み合わせを用いることで、サイクル特性に優れるばかりでなく、電解液17の粘度、得られる電池の電気容量・出力等のバランスのとれた非水電解液17が提供できる。
【0026】
有機溶媒において、環状カーボネート化合物、環状エステル化合物、スルホンまたはスルホキシド化合物およびアマイド化合物は、比誘電率が高いため、電解液17の誘電率を上げる役割を果たす。環状カーボネート化合物としては、エチレンカーボネート(EC)およびプロピレンカーボネート(PC)等が挙げられる。環状エステル化合物としては、γ−ブチロラクトン、γ−バレロラクトン等が挙げられる。スルホン又はスルホキシド化合物としては、スルホラン、スルホレン、テトラメチルスルホラン、ジフェニルスルホン、ジメチルスルホン、ジメチルスルホキシド等が挙げられ、これらの中でもスルホラン類が好ましい。アマイド化合物としては、N−メチルピロリドン、ジメチルフォルムアミド、ジメチルアセトアミド等を挙げることができる。
【0027】
鎖状カーボネート化合物、鎖状又は環状エーテル化合物及び鎖状エステル化合物は、非水電解液17の粘度を低くすることができる。そのため、電解質イオンの移動性を高くすることができる等、出力密度等の電池特性を優れたものにすることができる。また、低粘度であるため、低温での非水電解液17の性能を高くすることができる。
【0028】
具体的には、鎖状カーボネート化合物としては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネート等が挙げられる。鎖状又は環状エーテル化合物としては、ジメトキシエタン(DME)、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2−ビス(メトキシカルボニルオキシ)エタン、1,2−ビス(エトキシカルボニルオキシ)エタン、1,2−ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、i−プロピレングリコール(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でもジオキソラン類が好ましい。
【0029】
また、イオン液体は、通常リチウム二次電池の電解液17に用いられるLiBETI、LiTFSIおよびLiFSIなどのイオン液体であれば特に限定されるものではなく、例えば、カチオン成分としては、導電性の高い1−メチル−3−エチルイミダゾリウムカチオン、ジメチルエチルメトキシアンモニウムカチオン等が挙げられ、アニオン成分としは、BF、LiN(SO等をあげることができる。
【0030】
電解液17に含まれるリチウム塩のうち少なくとも1種は、正極15の充電電位よりも高電圧な領域であって、電解液17の主成分の酸化電位よりも低電圧な領域で酸化する性質を有するリチウム塩が含まれる。このようなリチウム塩の酸化電圧は、リチウム基準に対して、たとえば3.6V以上4.3V以下であることが好ましい。このようなリチウム塩は、たとえばLiB(C、LiB(CH、CHCOOLi、LiB1212、LiBOB(リチウムビスオキサラトボレート:化1参照)、LiFOB(リチウムジフルオロオキサラトボレート:化2参照)、LiFSI(リチウムビストリフルオロメタンスルホニルイミド:化3参照)が用いられる。リチウム塩がホウ素化合物であると、酸化電位が低く酸化され易いため好適である。また、酸化分解して、COが発生すると負極16でリチウムを消費し、本発明の効果を低減するので、エーテル、ケトン、エステル、アクリルを使用する際には、これらのことを考慮する必要がある。またリチウム塩の添加量は、予測されるリチウムの劣化量に応じて任意に変更することが好ましい。
【化1】

【0031】
【化2】

【0032】
【化3】

【0033】
またリチウム塩は、たとえばホウ素リチウム化合物(ホウ素化合物)、およびカルボン酸塩が用いられる。ホウ素リチウム化合物は、たとえば、ボリルリチウム(化4参照)、テトラメチルホウ素リチウム、テトラエチルホウ素リチウム、テトラプロピルホウ素リチウム、テトラブチルホウ素リチウム、トリメチルエチルホウ素リチウム、トリメチルベンジルホウ素リチウム、トリメチルフェニルホウ素リチウム、トリエチルメチルホウ素リチウム、トリエチルベンジルホウ素リチウム、トリエチルフェニルホウ素リチウム、トリブチルメンジルホウ素リチウム、トリブチルフェニルホウ素リチウム、テトラフェニルホウ素リチウム、ベンジルトリフェニルホウ素リチウム、メチルトリフェニルホウ素リチウム、ブチルトリフェニルホウ素リチウム、およびテトラメチルホウ素リチウムが用いられる。
【化4】

【0034】
カルボン酸塩は、たとえば、蟻酸リチウム、酢酸リチウム、プロピオン酸リチウム、酪酸リチウム、イソ酪酸リチウム、吉草酸リチウム、イソ吉草酸リチウム、コハク酸リチウム、カプロン酸リチウム、ヘプタン酸リチウム、オクタン酸リチウム、エナント酸リチウム、パルミチン酸リチウム、ステアリン酸リチウム、乳酸リチウム、安息香酸リチウム、サリチル酸リチウム、ピルビン酸リチウム、ジシランカルボン酸リチウム、シュウ酸リチウム、酒石酸リチウム、マロン酸リチウム、マレイン酸リチウム、およびフマル酸リチウムが用いられる。
【0035】
その他のリチウム塩として、たとえばLiClO、LiAlCl、LiAsF、LiBF、LiPF、LiSbF、LiB1010、LiCFSO、LiCFCO、LiCl、LBr、LiI、低級脂肪族カルボン酸リチウム、およびクロロボランリチウムを用いることができる。
【0036】
またさらに他のリチウム塩として、たとえば(2,4−ペンタンジオナト)リチウム、1,1,2,2,3,3−ヘキサフルオロプロパン−1,3−ジスルホンイミドリチウム、アセト酢酸リチウム、ビス(トリフルオロメタンスルホニル)イミドリチウム、炭酸リチウム、リチウムジイソプロピルアミド、2−ヒドロキシ酪酸リチウム、ヘキサメチルジシラザンリチウム、2−ヒドロキシプロピオン酸リチウム、リチウムテトラキス(ペンタフルオロフェニル)ボラート、トリフルオロメタンスルホン酸リチウム、メチルリチウム、フェニルリチウム、フタロシアニン二リチウム、tert−ブチルリチウム、およびLiNHSOを用いることができる。
【0037】
これらのリチウム塩は1種のみを使用してもよいし、2種以上の組合せでもよい。またリチウム塩の他に、酸化することによってリチウムを供給する化合物を、リチウム塩と共に溶解させていてもよい。リチウム供給化合物として、たとえばビスエチレンジチオテトラチアフルバレン(化5参照)、ベンゾキノン、ベンゾトリアゾール、ナフトキノン、フルオレン、ポリアニリン、ポリピロール、PEDOT、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン、4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾールおよびアミノキノリン等を用いることができる。
【化5】

【0038】
また電解液17に替えて固体電解質を用いてもよい。固体電解質として、たとえばLiSiO、LiPO、LiTiO、LiZrO、LiAlO、LiZrO、LiGeO、LiGeO、LiS−SiS−LiSiO、LiO−Nb、LiO−B−LiCl、LiS−Pを用いることができる。
【0039】
次に、正極15に関して説明する。正極15については、リチウムイオンを充電時には放出し、かつ放電時には吸蔵することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。特に、正極活物質、導電材および結着材を混合して得られた合剤が集電体に塗布されてなるものを用いることが好ましい。また正極15表面には、酸化分解を推進する触媒や高比表面積な活性炭などを用いることができる。
【0040】
正極活物質には、その活物質の種類で特に限定されるものではなく、公知の活物質を用いることができる。たとえば、LiFePO、TiS、TiS、MoS、FeS、Li(1−X)MnO、Li(1−X)Mn、Li(1−X)CoO、Li(1−X)NiO、V等が挙げられる。なお、該正極活物質の例示におけるXは0〜1の数を示す。
【0041】
そのなかでも、LiCoOや、LiNiO、LiMnなどのリチウムおよび遷移金属の複合酸化物は、電子とリチウムイオンの拡散性能に優れるなど活物質の性能に優れる。そのため、このようなリチウムおよび遷移金属の複合酸化物を正極活物質に用いれば、高い充放電効率と良好なサイクル特性とが得られる。特に、LiMnを用いれば、そのマンガンの資源が豊富であることから低コスト化を図ることができる。
【0042】
結着剤としては、たとえばポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム、およびポリアクリル酸等が挙げられる。結着剤の使用量は、正極活物質に対して、通常0.1〜20質量%程度、好ましくは0.5〜10質量%である。
【0043】
導電材としては、たとえば黒鉛の微粒子、アセチレンブラック、ケッチェンブラック等のカーボンブラック、ニードルコークス等の無定形炭素の微粒子等、カーボンナノファイバー等が挙げられる。上記導電材の使用量は、正極活物質に対して、通常5〜60質量%程度、好ましくは10〜50質量%である。
【0044】
スラリー化する溶媒としては、結着剤を溶解する有機溶媒若しくは水が使用される。該有機溶剤としては、たとえばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等が挙げられる。溶媒の使用量は、正極活物質に対して、通常25〜400質量%程度、好ましくは50〜200質量%である。
【0045】
正極15の集電体15aには、通常、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等が使用される。
【0046】
次に、負極16に関して説明する。負極16としては、通常、負極活物質と結着剤とを有機溶媒または水でスラリー化したものを集電体に塗布し、乾燥してシート状にしたものが使用される。また負極16として、合金など接触している電解液17およびセパレータ14を還元するものえあれば本発明の効果を有する。
【0047】
負極活物質としては、たとえばリチウム、リチウム合金、スズ・ケイ素化合物等の無機化合物、チタン酸化物、炭素質材料、および導電性ポリマー等が挙げられる。特に、安全性の高いリチウムイオンを吸蔵および放出できる炭素質材料が好ましい。炭素質材料としては、特に限定されないが、天然黒鉛、人造、フラーレン、黒鉛繊維チョップ、カーボンナノチューブ、黒鉛ウイスカー、高配向性熱分解黒鉛、キッシュ黒鉛等の結晶性炭素、および石油系コークス、石炭系コークス、石油系ピッチの炭化物、石炭系ピッチの炭化物、フェノール樹脂・結晶セルロース等樹脂の炭化物等、およびこれらを一部炭化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維、PAN系炭素繊維等が挙げられる。
【0048】
結着剤およびスラリー化する溶媒としては、正極15と同様のものが挙げられる。結着剤の使用量は、負極活物質に対して、通常0.1〜20質量%程度、好ましくは0.5〜10質量%程度である。また上記溶媒の使用量は、負極活物質に対して、通常50〜200質量%程度、好ましくは60〜150質量%である。
【0049】
負極16の集電体16aには、通常、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルモニウム等が使用される。
【0050】
正極ケース12、および負極ケース13は、特に限定されるものではなく、公知の材料、形態で作成することができる。
【0051】
セパレータ14は、正極15および負極16を電気的に絶縁し、電解液17を保持する役割を果たすものである。たとえば、ポリエチレン等の微多孔質膜を用いればよい。なおセパレータ14は、正極15と負極16との絶縁を担保するため、正極15および負極16よりもさらに大きいものとするのが好ましい。
【0052】
ガスケット11は、各ケース12,13の間の電気的な絶縁と、ケース12,13内の密閉性とを担保するものである。たとえば、ポリプロピレン等の電解液17に対して、化学的および電気的に安定な高分子等から構成できる。
【0053】
また図2に示す円筒型の非水電解液二次電池10Aでは、正極15の集合体15aは正極端子20に接続され、負極16の集合体16aは負極端子21に接続される。具体的には、円筒型の非水電解液二次電池10Aでは、図3に示すように、負極16と正極15とが相対するように配置され、その間に電解液17とセパレータ14が介在して巻き回して巻回体とし、絶縁板22を介して図2に示す電池缶(ケース)23の中に収納されて構成される。
【0054】
さらに具体的には、負極端子21には負極リード24が溶接され、負極端子21が絶縁板22を介して電池缶23に溶接される。一方、正極端子20には、正極リード25が溶接され、絶縁板22を介して電池蓋として固定される。その結果、電池缶23の底部が負極端子21となり、電池缶23の蓋部分が正極端子20となる。電池缶23に収納された巻回体には、非水電解液17が注入されガスケット11で密封され安全弁26を配備される。これによって、たとえば大きさが直径18mm、高さ65mmの円筒型非水電解液二次電池10Aが形成できる。
【実施例】
【0055】
以下に、実施例および比較例により本発明を更に詳細に説明する。但し、以下の実施例等により本発明はなんら制限されるものではない。
【0056】
図4は、電解液17にリチウム塩が含まれる本発明の実施例と、リチウム塩を含まない比較例とを比較したグラフである。図4では、グラフの縦軸は容量維持率を示し、グラフの横軸はサイクル数を示す。
【0057】
また正極15は、実施例および比較例ともに、
LiFePO/AB/PVDF=80/10/10 であり、
また負極16は、実施例および比較例ともに、
グラファイト/CMC/SBR=98/1/1 であり、
また電解液17のリチウム塩を除く主成分は、実施例および比較例ともに、
EC/DMC/EMC=30/30/40 である。
【0058】
また、実施例の電解液17に含まれるリチウム塩は、
LiPF:1.0mol/L
LiB(CH:0.3mol/L であり、
充電条件は、
CV電位:4.2V
CV時間:2時間 である。
【0059】
図4に示すように、電池を長期に使用(充放電の繰返し)、または長期に保存すると、炭素負極の副反応により、リチウムが消費(失活)され電池容量が低下する。図4に示す例では、実施例および比較例ともに、電圧範囲2.0〜3.6Vにて充放電を10回繰返したときに電池容量が80%まで低下している。このような場合に、充電方法(パターン)を変えることにより、電池の容量低下を回復(復元)することができる。具体的には、充電電圧を通常の設定値よりも高く、リチウム塩が酸化する電圧で充電する。すると、リチウム塩が酸化することによって、リチウムイオンが負極16中に取り込まれ、容量維持率が図4に示すように実施例では約80%から約85%まで上昇する。しかし比較例では、容量維持率の変化は見られない。したがって電解液17にリチウム塩を含む実施例では、容量維持率を回復する効果を有することが明らかである。換言すると、容量が低下した場合、たとえば4.2VのCV(定電圧)充電で総電流量を制御することで任意の量の回復が可能となる。ここで、
充電容量=劣化電池容量+期待回復容量(酸化分解) となる。
【0060】
またこのような高電圧充電は、非水電解液二次電池10を製造段階にて、行ってもよい。すなわち、非水電解液二次電池10の使用する前である初期に高電圧充電を行う非水電解液二次電池10の製造方法によって、高容量な非水電解液二次電池10を製造することができる。
【0061】
次に、表1を用いて、実施例と比較例との容量回復率の違いに関して説明する。表1に示すデータは、負極16および電解液17の主成分は、前述の図4に示した条件と同一である。
【表1】

【0062】
表1に示すように、実施例および比較例には、電解液17に含まれるリチウム塩として、第1リチウム塩と第2リチウム塩とがあり、実施例および比較例には第1リチウム塩として共通してLiPFが含まれる。また第2リチウム塩として、6種類のリチウム塩が用いられている。
【0063】
容量回復率が100%を越えるサンプルは、効果を有する実施例となる。したがって第2リチウム塩が含まれる場合であっても、CV電位およびCV時間によっては、100%を越えない場合がある比較例もある(たとえばサンプルナンバー13)。
【0064】
表1に示すように、サンプルナンバー4の実施例が、容量回復率が最も高く、リチウム塩としてLiB(CHが有効なことがわかる。また、この効果は正極材料が異なっても同様に確認できる。
【0065】
以上説明したように本実施形態の非水電解液二次電池10では、電解液17に含まれるリチウム塩は、正極15の充電電位よりも高電圧な領域であって、電解液17の主成分の酸化電位よりも低電圧な領域で酸化する。このような領域で充電した場合、リチウム塩は、酸化分解し、リチウムイオンが負極16に取り込まれる。したがって負極16での不可逆容量分のリチウムイオンを、電解液17に含まれるリチウム塩の酸化分解によって供給することができる。また酸化分解前のリチウム塩は、電解液17中にて電気伝導に寄与することができる。したがってリチウム塩を電解液17に供給することによって、電解液17の導電率が低下することを抑制することができる。このような酸化分解電圧は、正極15の充電電位より高電圧であるので、通常の充電をしている場合には、リチウム塩が酸化することはないが、容量に寄与するリチウムイオンが減少した場合には、充電電圧よりもの高電圧にしてリチウム塩を酸化させることによってリチウムイオンを供給することができる。換言すると、リチウムイオンが減少したタイミングで酸化することによって、リチウム塩からリチウムイオンを負極16に供給することができる。またリチウム塩の酸化電位は、電解液17の主成分の酸化電位よりも低電圧であるので、リチウム塩を酸化させる電位にした場合に、電解液17が酸化することを防止することができる。これによって電解液17を酸化させることなく、リチウム塩を酸化させてリチウムイオンを電解液17に供給することができる。したがって、容量に寄与するリチウムイオンを多く含有することになるので、充放電リサイクル寿命を長期化することができる。
【0066】
また本実施形態では、リチウム塩の酸化電圧は、リチウム基準に対して3.6V以上4.3V以下である。これによって充電電位よりも高く、酸化電位よりも低い電圧にて酸化するリチウム塩を実現することができる。
【0067】
さらに本実施形態では、正極15は、LiFePOである。LiFePOは、酸化電位を3.6Vより高電圧にすることができるので、前述の効果を有するリチウム塩を実現することができる。
【0068】
また本実施形態では、電解液17は、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネート、ジメチルカーボネート、およびジエチルカーボネートの少なくともいずれか1つ含む。このような電解液17は、電解液17の主成分の酸化電位を4.3Vより高くすることができるので、前述の効果を有するリチウム塩を含む電解液17を実現することができる。
【0069】
さらに本実施形態では、リチウム塩は、ホウ素化合物である。ホウ素化合物は、酸化電位が低く、酸化され易いので本発明のリチウム塩として好適に用いることができる。
【符号の説明】
【0070】
10,10A…非水電解液二次電池
11…ガスケット
12…正極ケース
13…負極ケース
14…セパレータ
15…正極
15a…正極集合体
16…負極
16a…負極集合体
17…電解液
20…正極端子
21…負極端子
22…絶縁板
23…電池缶
24…負極リード
25…正極リード
26…安全弁

【特許請求の範囲】
【請求項1】
リチウムイオンを吸蔵および放出する正極と、
前記リチウムイオンを吸蔵および放出する負極と、
非水溶媒に少なくとも1種のリチウム塩を溶解している電解液と、を含む非水電解液二次電池であって、
前記電解液に溶解している前記リチウム塩のうち少なくとも1種は、前記正極の充電電位よりも高電圧な領域であって、前記電解液の主成分の酸化電位よりも低電圧な領域で酸化する性質を有することを特徴とする非水電解液二次電池。
【請求項2】
前記性質を有する前記リチウム塩の酸化電圧は、リチウム基準に対して3.6V以上4.3V以下であることを特徴とする請求項1に記載の非水電解液二次電池。
【請求項3】
前記正極は、LiFePOであることを特徴とする請求項1または2に記載の非水電解液二次電池。
【請求項4】
前記電解液は、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネート、ジメチルカーボネート、およびジエチルカーボネートの少なくともいずれか1つ含むことを特徴とする請求項1〜3のいずれか1つに記載の非水電解液二次電池。
【請求項5】
前記性質を有するリチウム塩は、ホウ素化合物であることを特徴とする請求項1〜4のいずれか1つに記載の非水電解液二次電池。
【請求項6】
前記リチウム塩は、LiB(Cであることを特徴とする請求項5に記載の非水電解液二次電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−174465(P2012−174465A)
【公開日】平成24年9月10日(2012.9.10)
【国際特許分類】
【出願番号】特願2011−34855(P2011−34855)
【出願日】平成23年2月21日(2011.2.21)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】