説明

株式会社豊田中央研究所により出願された特許

951 - 960 / 4,200


【課題】電源電圧の変動に抗して真の信号電圧を適切に取り出すことができるセンサ電圧処理回路を提供する。
【解決手段】燃焼圧センサ20のピエゾ抵抗素子23は、定電流源22を介して電源に接続されている。センサ電圧処理回路30では、接地されている第1コンデンサ32と、定電圧源34を介して電源に接続されている第2コンデンサ33とが、電圧保存配線37によって接続されている。第1コンデンサ32と第2コンデンサ33との容量比は、保存電圧Vkの想定される変動範囲のほぼ中間値である基準保存電圧と、電源の定格電圧から基準保存電圧を減算した電圧との比となるように設定されている。 (もっと読む)


【課題】エンジンの運転状態に応じてタービン動翼の回転速度を任意に選択することができる過給装置を提供する。
【解決手段】変速機構10においては、ピニオンギア13を介してサイドギア11,12間で回転が伝達され、さらに、ピニオンギア13を回転自在に支持する回転ケース14の回転によりピニオンギア13がサイドギア11の回転中心軸まわりに周回することで、サイドギア11,12と回転ケース14との間で回転が伝達される。回転ケース14に接続されたモータ50の回転速度に応じて、サイドギア11に接続されたタービンインペラ41とサイドギア12に接続されたコンプレッサインペラ31との回転速度比が変化する。 (もっと読む)


【課題】高周波増幅回路において、LC共振を用いずにピーキングをかけること。
【解決手段】高周波増幅回路は、1段目にトランジスタTr1を用いたエミッタ接地増幅回路、2段目にダーリントン接続のトランジスタTr2、Tr3を用いたエミッタ接地回路の2段増幅の構成となっている。トランジスタTr1のエミッタとトランジスタTr2のコレクタとの間には容量素子が挿入されている。容量素子は、ダイオード接続のトランジスタTr4であり、トランジスタTr4のエミッタはトランジスタTr2のコレクタに、トランジスタTr4のベースおよびコレクタはトランジスタTr1のエミッタに接続されている。ダイオード接続のトランジスタTr4によって位相をずらしてフィードバックすることにより、高域での利得を向上させることができる。 (もっと読む)


【課題】基板の放熱性が高くて基板に形成される窒化物半導体層の結晶欠陥が少ない窒化物半導体装置及びその製造方法を提供する。
【解決手段】
HEMT10の製造方法は、サファイア基板11の表面にGaNの薄膜12を形成する成膜工程と、薄膜12の上端からサファイア基板11の内部に達する深さの溝を形成する溝形成工程と、溝形成工程の後に、薄膜12を種結晶としてGaN層13を成長させる成長工程と、成長工程の前又は後に、サファイアよりも熱伝導性が高い高熱伝導性材料としてのAuを溝17に充填する充填工程とを備えている。 (もっと読む)


【課題】ジュール熱の発生を抑制した状態での電位差計測法による計測を実現する。
【解決手段】被測定物200に対して電流を印加した通電状態における電位差端子22間の通電状態電圧値と、被測定物200に対して電流を印加していない非通電状態における電位差端子22間の非通電状態電圧値とを計測し、通電状態電圧値と非通電状態電圧値との電位差を求める電位差計測システム100とする。 (もっと読む)


【課題】低オゾン濃度且つ高湿度の雰囲気下においても効率よくオゾンを分解除去することができ、さらに、熱交換性能(例えば放熱性能)などを維持するために触媒成分の担持量を少なくしても優れた触媒活性を示すオゾン分解除去用触媒を提供すること。
【解決手段】支持体と、Co、Ni、Cu、Fe、Sn、Rh、Ir、Pd、Pt、Ag、Au、RuおよびOsからなる群から選択される少なくとも1種の金属、該金属の合金ならびに該金属と他の金属との合金からなる群から選択される少なくとも1種であり、前記支持体の表面に無電解メッキによりコーティングされた第一の触媒成分と、前記第一の触媒成分との標準電極電位の差が0.3V以上貴である金属、該金属の合金ならびに該金属と他の金属からなる群から選択される少なくとも1種であり、前記第一の触媒成分の表面に無電解メッキにより担持された第二の触媒成分を備えることを特徴とするオゾン分解除去用触媒。 (もっと読む)


【課題】高速に起動・シャットダウンが可能な高周波増幅回路を実現すること。
【解決手段】バイアス電圧Va、Vbの供給が停止されると、高周波信号を増幅するトランジスタTr1〜Tr3はオフとなる。また、同時にトランジスタTr4、Tr5がオフとなり、キャパシタC1、C2の放電は遮断される。そのため、キャパシタC1、C2には一定の電荷が保持される。その結果、高周波増幅回路1は高速にシャットダウンされる。また、バイアス電圧Va、Vbが供給されると、キャパシタC1、C2には一定の電荷が保持されるため、キャパシタC1、C2が充電されるまでの時間は非常に短くなる。そのため、高高周波増幅回路1は高速に起動される。 (もっと読む)


【課題】 HEMTにおいて、2次元電子ガス層の電気抵抗の増加が抑制された正孔排出用電極を提供すること。
【解決手段】 HEMT10は、ゲート電極34とドレイン電極32の間のヘテロ接合層27に接触する正孔選択通過膜43と、その正孔選択通過膜43に接触する正孔排出用電極46を備えている。正孔選択通過膜43は、へテロ接合層27に接触する第1部分領域42と正孔排出用電極46に接触する第2部分領域44を有している。第2部分領域42のp型不純物の濃度は、第1部分領域44のp型不純物濃度よりも濃い。 (もっと読む)


【課題】従来のリチウム複合酸化物よりも低い温度つまり低いエネルギーで一旦吸収したCO2を離脱させる。
【解決手段】Li6.75La3Zr1.75Nb0.2512 の粉末を用いて、TG測定を行った。TG測定は、大気雰囲気、昇温レート:5℃/min,測定温度域:室温から800℃という条件で行い、大気中のCO2(濃度:約300ppm)の吸収量とCO2の離脱温度を測定した。その結果、室温から360℃までの昇温過程でLi6.75La3Zr1.75Nb0.2512 はCO2の吸収にともなう重量増加を示した。一方、温度が400℃以上の温度域では、温度が高くなるにつれてCO2が脱離してその吸収量が減少していき、約660℃で初期値に戻った。 (もっと読む)


【課題】計算コストを削減して対象物を早期に検出する。
【解決手段】障害物推定部22で、レーザレーダ12の観測データ、及び車両センサ14の検出値に基づいて、障害物を検出すると共に、障害物の種類を推定し、死角領域推定部24で、障害物により形成される死角領域の位置、大きさ、及び死角領域境界線の長さを推定する。対象物推定部26で、死角領域推定部24の推定結果に基づいて、死角領域から出現する可能性のある対象物の種類を推定し、探索範囲設定部28で、死角領域の位置に基づいて、対象物の探索範囲を設定する。優先度設定部30では、探索範囲に優先度を設定する。探索条件設定部32で、死角領域推定部24の推定結果、及び自車両から探索範囲までの距離に基づいて、探索条件を設定し、対象物識別部36で、識別モデル記憶部34から対象物の種類に応じた識別モデルを読み出し、撮影画像の探索範囲から抽出されたウインドウ画像と照合する。 (もっと読む)


951 - 960 / 4,200