説明

Fターム[2G053AB01]の内容

磁気的手段による材料の調査、分析 (13,064) | 測定する磁気特性 (1,312) | 磁化の測定 (448)

Fターム[2G053AB01]の下位に属するFターム

Fターム[2G053AB01]に分類される特許

161 - 180 / 271


【課題】磁性体の濃度を精度良く計測し、更に流体の磁性体の微小な濃度を連続的に計測する磁性体濃度計測装置及び磁性体濃度計測方法を提供する。
【解決手段】励磁用コイル11aと、励磁用コイル11aに交流電流が流れると励磁電圧を発生する出力用コイル11bとを備える磁性体濃度計測装置であって、励磁用コイル11aの電圧と出力用コイル11bの電圧との間の位相差の変化を計測する計測手段6を有し、検査対象物と、励磁用コイル11a又は/及び出力用コイル11bとを接近させるときに発生する位相差の変化から磁性体の濃度を把握する。 (もっと読む)


【課題】検査箇所近傍に溶接余盛部やT型接合部等の構造変化部がある場合でも、ノイズや擬似信号の影響を低減することができ、傷等の位置とその大きさ及び深さを容易かつ確実に求めることができる交流電磁場測定法による探傷検査装置を提供する。
【解決手段】交流磁場発生コイル12、Bx測定コイル13、Bz測定コイル14、及び1対の磁気シールド17を有する探傷プローブ10と、探傷プローブに交流磁場を与え磁束密度BxとBzを出力する交流電磁場測定装置20と、磁束密度BxとBzをデータ解析して被検体表面に存在する傷等の位置を検出するデータ解析装置30とを備える。1対の磁気シールド17は、Bx測定コイルおよびBz測定コイルを間隔を隔てて挟持しy軸方向の磁界のみを遮蔽する。磁気シールドは、擬似信号を除去しかつx軸方向の磁束密度Bxおよびz軸方向の磁束密度Bzを検出可能な厚さを有する磁性体薄膜である。 (もっと読む)


本発明はマイクロエレクトロニクス素子に関する。より詳細には本発明は、基板(15)の反応表面(14)からある距離(d)だけ離れた試料チャンバ(5)内で延在する磁場発生装置-たとえば結合ワイヤ(16)-を有する磁気バイオセンサ(10)に関する。好適実施例では、当該素子は、前記反応表面(14)の特定結合位置(3)に結合する磁化粒子(2)を検出する磁気センサ素子-たとえばGMRセンサ(12)-を有する。しかも当該素子は、前記反応表面(14)で励起磁場(B)を発生させる集積磁気励起ワイヤ(11,13)を有して良い。当該素子の具体的応用では、磁性粒子(2)の結合のストリンジェンシーが、前記磁場発生装置(16)によって前記試料チャンバ(5)内に不均一な操作磁場(Bman)を発生させることによって検査されて良い。
(もっと読む)


磁性粒子(15)を検出する磁気センサ装置(300)。磁気センサ装置(300)は、磁性粒子(15)の別々の複数の磁気励起状態に割り当てられた別々の複数の磁界構成を発生させるよう適合された磁界発生器装置(12)と、別々の磁界構成における磁性粒子(15)によって影響を受ける複数の検出信号を検出するよう適合された検出装置(11)と、複数の信号を合成して、それにより、磁性粒子(15)の存在を示す情報を導き出すよう適合された合成装置(30)とを備える。
(もっと読む)


本発明は、(a)調査領域5において粒子2を磁化する励起磁界Bを生成する励起ワイヤ11、13と、(b)磁化粒子2により生成された反応磁界B'を検出する磁気センサ素子、例えばGMRセンサ12とを有する磁気センサ装置10に関する。励起ワイヤ11、13及びGMR素子12は、平均電力損失が一定に保たれ、信号対雑音比が最適化されるような電流パルスにより駆動される。前記パルスのサンプリング周波数は、好ましくは磁気センサ装置10の熱時定数τより大きい。
(もっと読む)


【課題】
従来の技術では、研削や切削、放電加工等の様々な加工法における金型作製時や成形加工時における不確定な要素によって生じる金型内部の残留応力やヘヤークラックを表面から深い範囲にわたって正確に見積もることはできず、そのため適切な金型補修を行うことはできなかった。
【解決手段】
本発明は、磁性体を含む材料表面を、磁束密度センサーを3次元的に移動走査させて磁場強度と磁場ベクトルを検出し、金型の加工の際に生じる残留応力の除去量の評価、表面近傍に発生した亀裂の評価およびワイヤー放電加工の評価に基づいて、金型の補修をおこなうものである。 (もっと読む)


本発明は、小型電子センサ装置に関し、特に、励磁配線(11、13)とGMRセンサ(12)とを有する磁気センサユニットを備えるバイオセンサに関する。当該装置は、さらに、洗浄ユニット(20)を有し、この洗浄ユニットは、駆動ユニット(22)に結合された一連の作動配線(21)で構成される。駆動ユニット(22)は、作動配線を選択的に活性化させることができ、活性化された配線に、磁気洗浄粒子(2)が付着する。活性化パターン(R、S、T)をシフトさせると、結果的に、洗浄粒子(2)に対応する移動が生じ、サンプル流体の流れが生じる。この流れにより、結合の弱いおよび/または未結合の対象物質(3)が、センサユニットのセンサ領域(10)から洗浄除去される。

(もっと読む)


ボアを規定するセル本体と、ボア内に取り付けられ、軸線方向で互いに向かい合った第1および第2の力伝達面をそれぞれ有する第1および第2の力伝達要素と、力伝達要素の間で少なくとも部分的に前記ボア内に位置付けられ、それぞれの側面の間を軸線方向に延びるとともにそれぞれの力伝達面に向かって開いたスルーホールを規定する壁を有する封止部材とを備え、加圧下で試料を特性決定するための小型高圧セルであって、封止された試料容積が予め定められた係止力によって加圧されたまま保持されるように力伝達要素を予め定められた係止力で保持する力係止装置をさらに備え、セル本体がねじ部分を含み、力係止装置がセル本体のねじ部分と協働するように構成されたねじ部分を有する少なくとも1つの係止部材を備え、ねじ部分がボアの軸線と同軸であるとともに封止部材から軸線方向に離れている、小型高圧セルが提供される。
(もっと読む)


【課題】簡易かつ迅速に、ヘモグロビンAに対するヘモグロビンA1cの比率を高い精度で測定することが可能なヘモグロビンA1cの測定方法及びヘモグロビンA1c測定用キットを提供する。
【解決手段】測定試料を吸着又は結合させた固定相に、捕捉物質が結合した標識物質を有する検出試薬を含む移動相を展開させることにより、測定試料中のヘモグロビンAに対するヘモグロビンA1cの比率を測定するヘモグロビンA1cの測定方法であって、前記標識物質として磁性体含有粒子を用い、前記磁性体含有粒子の磁性量を測定することにより、ヘモグロビンAに対するヘモグロビンA1cの比率を算出するヘモグロビンA1cの測定方法。 (もっと読む)


本発明は、交番励起磁界(B)の生成のための励起線、及び励起磁界に応じて磁性粒子(2)により生成される反応磁界(B)を検知するGMRセンサー(12)を有する磁気センサー装置に関する。更に、磁気センサー装置は、磁気センサー素子(12)の感知方向にある全ての磁界(B、B)の所定のスペクトル成分を適応して打ち消す補償磁界(B)を生成する補償器(15)を有する。GMRセンサー(12)の測定は、前記センサーの利得変動に対し強靱にする。
(もっと読む)


磁性粒子(15)を検知する磁気センサ装置(300)であって、磁場を発生させるように適合された磁場発生ユニット(12)と、磁場発生ユニット(12)に静電気的な励起信号を供給するように適合された励起信号源(302)と、励起信号源(302)を磁場発生ユニット(12)に電気的に結合させる異なるモード間で切り換えるように適合された励起スイッチユニット(303)と、発生された磁場において磁性粒子(15)の存在を表す信号を検知するように適合された検知ユニット(11)と、を有する磁気センサ装置(300)。

(もっと読む)


本発明は、検査領域内に励磁場Bを生成するための磁場発生器11、13と、当該検査領域内の結合部位3に結合されている、磁化した粒子2によって生成された磁気反応場B'を測定するための磁気センサ12とを有する、磁気センサ装置10に関する。磁場発生器11、13及び磁気センサ素子12の両方が電力で駆動され、これら部品で消費される電力の比は、事前に決められた範囲内に保たれる。磁場発生器は、励磁ワイヤ11、13によって好ましくは実現され、前記センサ素子12は、例えばGMR素子である磁気抵抗素子によって実現される。この場合、大体等しい量のパワーが、励磁ワイヤ11、13とGMR素子とで消費されることが好ましい。
(もっと読む)


本出願は標的を含んでいる疑いのある試料中での前記標的の検出方法に関する。当該方法は、前記試料及び磁性粒子に付着する第1結合分子を固体支持体に付着する第2結合分子と接触させる手順を有する。前記第1結合分子は前記第2結合分子と結合する能力を有し、前記標的はこの結合を妨害する能力を有する。磁力が印加されることで、前記磁性粒子は前記固体支持体付近へ移動する。前記固体支持体と結合する磁性粒子数が検出される。
(もっと読む)


本発明は試料流体中の標的粒子(2)の濃度を決定する方法及び磁気センサデバイスに関する。感受性領域(14)での標的粒子の量は、付属するセンサユニット(10a-10d)によるサンプリング測定信号によって観測される。標的粒子(2)は感受性領域内の結合位置と任意で結合して良い。たとえばラングミュア等温線のようなパラメータにより表される結合曲線は、サンプリングされた測定信号に対してフィッティングされることで、試料中での所望の粒子濃度を決定することができる。しかもサンプリングレートや感受性領域(14)の大きさといったパラメータは、信号対雑音比を向上させるため、現在進行中のサンプリングプロセス中に動的にフィッティングされて良い。本発明の他の実施例では、感受性領域へ入り込む標的粒子の運動、感受性領域を飛び出す標的粒子の運動、又は感受性領域内での標的粒子の運動に対応する単一の事象が検出され、かつ数えられる。
(もっと読む)


【課題】結晶粒及び結晶方位を考慮した磁場解析を行い、多結晶磁性体の磁気特性を得ることができる磁場解析方法を提供する。
【解決手段】結晶粒の形状D10、結晶方位D20、単結晶の磁気特性D30、励磁条件D40のデータを入力し、まず結晶粒の形状に沿って多結晶体を空間メッシュに分割する(S100)。次いで、結晶粒の結晶方位に基づいて座標変換を行って、単結晶の磁気特性を個々の結晶粒に入力可能にして、結晶粒ごとに磁場解析計算を実行する(S200)。すべての結晶粒に対して計算が終了すると、磁束密度分布(S300)と鉄損分布(S400)とを取得する。その後平均化処理を行なって、結晶体としての磁束密度や鉄損分布を取得する。 (もっと読む)


本発明は、特に、バイオセンサとともに使用される磁気システムに関する。本発明の目的は、センサ表面近傍において、引力と斥力の間を切り替えることが可能なバイオセンサ用の磁気システムを提供することである。この配置は、バイオセンサ用の磁気システムを有し、少なくとも一つの磁性源と、センサまたはセンサ表面とを有し、後者は、磁性源が不均一な磁場線を形成するように、磁場と対応し、この結果、磁気システムの方に向かう磁力が生じ、その後またはこれに隣接して、磁気システムから遠ざかる向きに磁力が生じる。全ての磁力は、磁気的手段の同一のソース源から生じる。

(もっと読む)


従来の磁気抵抗検出器の感度は定数ではなく、例えば、製造誤差、時効効果及び温度のような制御できない変数に依存する。従って、磁気抵抗検出器が実行する測定の実効利得も、これらの制御できない変数に左右される。公知の手法による問題解決では、必要なハードウェアの複雑度が増し、安定度が落ちる。
本願発明の目的は、良好な電気出力信号特性を有する磁気抵抗検出器装置、かかる磁気抵抗検出器を少なくとも1つ含む生体素子、及び磁気抵抗検出器の電気出力信号を安定化する方法を提供することである。この目的を本願発明による方法及び装置により達成する。

(もっと読む)


本発明は、磁気抵抗要素を有するセンサの表面の方からの及びその表面の方への粒子の磁気作動のシステム及び方法に関する。磁場の方向及びセンサに対する磁場発生手段の配置は、作動後、磁気抵抗要素の感度を保つ又は回復する。
(もっと読む)


【課題】複数の鉄筋または配管が平行に配置された場合や格子状に配置された場合にも、それらの深さ、腐食状況、破断状況を評価する。
【解決手段】本発明は、非磁性材構造物の内部に複数本配置された棒状或いは管状の磁性材の位置或いは腐食状態を非破壊的に解析する。目標磁性材に対向する位置で構造物外部から着磁して、複数本の磁性材の総合した磁束密度を構造物外部で計測する。計測した総合磁束密度から、目標磁性材以外に少なくとも1つ存在する他の磁性材に相当する磁性材について予め求めておいた磁束密度を差し引いて、目標磁性材のみによる磁束密度を求めることにより、目標磁性材の位置を特定し、或いは該磁性材の腐食状態を解析する。 (もっと読む)


【課題】非常に小型であり、高感度かつプルーブ形状の影響のない高精度の磁性粒子濃度検出が行える磁気センサ及び磁気センサの製造方法を提供する、小型かつ高い強度を有する磁気センサを容易に製造できる磁気センサの製造方法を提供する。
【解決手段】針状検出部を有する磁気センサであって、針状検出部が、針形状に切断加工された基板と、基板上に形成された少なくとも1つのMR素子と、基板上に形成されており一端が少なくとも1つのMR素子に電気的に接続された少なくとも2つのリード導体と、少なくとも1つのMR素子及び少なくとも2つのリード導体を覆う保護膜とを備えている。 (もっと読む)


161 - 180 / 271