説明

Fターム[2G053BB02]の内容

磁気的手段による材料の調査、分析 (13,064) | 調査、分析対象の取扱い (914) | サンプルの調整 (74)

Fターム[2G053BB02]に分類される特許

21 - 40 / 74


本発明は、試料流体又は検体における分子の濃度を測定する方法を提供する。この方法は、流体とカートリッジ内の標識粒子とを混合するステップを有し、標識粒子は、その分子を捕捉しカートリッジのセンサ表面に結合するように適合させられている。そして、標識粒子は、センサ表面に向かって沈降させられ、センサ表面近くの標識粒子の量が測定される。その後、当該表面に結合していない標識粒子は、「洗浄」ステップにおいて除去され、最終的に、センサ表面近くの標識粒子の量は、再度測定される。
(もっと読む)


集積CMOS磁気抵抗バイオチップを自動的に試験する装置が開示されている。この装置は、カートリッジ内の流体ポンプチャンバーに物理的な圧力を直接的または間接的に印加する手段と;カートリッジ内の反応チャンバーに流体接続された入口または入口群を通じて反応チャンバーに液体を注入する液体注入器と;カートリッジ内の反応チャンバー内に位置する集積CMOS磁気抵抗バイオチップと;カートリッジ内の集積CMOS磁気抵抗バイオチップに磁場を印加する手段と;バイオチップと通信し、電力を供給し、かつ、信号を制御する電子モジュールと;上記の部品を制御して連動させるマイクロプロセッサーと;情報処理のためのユーザーインターフェースと;を含む。本発明により提供される装置は、動作の複雑さを低減し、検出感度を大幅に向上させる。
(もっと読む)


【課題】多数の試料を密集配置した場合に起こる隣接試料からの磁気信号の影響を排除し、目的試料からの磁気信号を精度良く計測することができる磁気信号計測装置および磁気信号計測方法を提供する。
【解決手段】磁気信号計測装置10は、被測定物質と結合した磁性粒子を含む試料8a〜8fを所定間隔で配置し、これらの中から選ばれた検査試料とこの検査試料に隣接した隣接試料に電磁石5a〜5cを用いて一定強度の磁界を所定方向に印加し、磁化された各試料からの磁気信号を磁気センサ6で測定する。検査試料と隣接試料に同方向の磁界を印加した後の各試料からの磁気信号を計測して第1信号波形を求め、検査試料に印加する磁界の方向のみを変えて検査試料と隣接試料に磁界を印加した後の各試料からの磁気信号を計測して第2信号波形を求め、第1信号波形と第2信号波形の差分信号波形を求めることによって検査試料に含まれる被測定物質を検出する。 (もっと読む)


【課題】ホール素子表面に固定される磁気微粒子の量を正確に検出する。
【解決手段】ホール素子1001の表面上に磁性粒子1101が固定可能な領域1009が形成されている。領域1009は、この領域1009に固定された磁性粒子1101の個数と、ホール素子1001にDC電源1003より電流を流したときに得られるホール起電力の大きさとが一対一で対応する領域である。 (もっと読む)


【課題】 標識粒子として磁性粒子を用い、磁気抵抗効果膜を用いて検出を行なう検出デバイスにおいて、磁気抵抗効果膜の電気抵抗は2つの磁性膜の磁化状態によって変化するが、磁化反転可能な磁性膜の中で磁化反転する領域が磁性膜の一部分である場合には、磁気抵抗効果は磁化反転可能な磁性膜全体が磁化反転するよりも小さくなる。つまり例えば磁性粒子の径が小さく、磁気抵抗効果膜の磁化反転領域が著しく小さい場合には、電気抵抗の変化量が小さく検出が困難となる。
【解決手段】 上記課題に鑑み本発明は、被検体溶液中の磁性粒子を検出するための検出デバイスであって、磁化方向が固定された第1の磁性膜と、前記磁性粒子を検出する際に磁化方向が変化し得る第2の磁性膜を含む磁気抵抗効果膜を有し、前記第2の磁性膜が単磁区構造であることを特徴とする。 (もっと読む)


【課題】超高感度で、迅速性・正確性を有する生化学的分析方法を提供する。
【解決手段】標的物質を含有する溶液中に磁気微粒子を添加することにより、磁気微粒子に固定化された第一の検出用物質と標的物質を結合させると共に、磁気微粒子同士を凝集させて溶液中に凝集体を形成する。次に、凝集体を構成する磁気微粒子に結合した標的物質と、磁気センサ層上の第二の検出用物質を結合させることにより磁気センサ層の表面に前記凝集体を固定化させ、この凝集体の漏れ磁界を磁気センサにより測定する。 (もっと読む)


【課題】検査対象物質による磁界の検出強度を向上させた磁気検出素子を提供する。
【解決手段】交流磁界が印加される磁性体と、磁性体が受ける磁界を検出する検出コイルとを有する。そして、検出コイルにおける磁性体の表面を検出コイルの長手方向に第1の領域及び第2の領域に二分し、検出対象物質の親和性が第1の領域の少なくとも一部において第2の領域と異なる。 (もっと読む)


【課題】 アルミ蒸着フィルム等の包装材を使用する製品とそうでない製品が混流する製造ラインで、製品への混入異物を確実に検出する。
【解決手段】 金属検出機と、その下流側に設けられ、物品に照射されたX線を受光してX線画像を生成し、該X線画像の構成画素の濃度分布を解析して、異物を検出するX線異物検出機と、を備え、金属検出機による検出結果に応じて、濃度分布の解析を行う濃度領域を自動的に設定することを特徴とする。 (もっと読む)


本明細書において開示されるものは、対象物の特性を感知するための装置である。好ましい実施形態においては、この装置は、アレイを備え、アレイは、摂動に反応して電圧を生成するようにそれぞれが構成され、対象物に近接する複数のナノスケールハイブリッド半導体/金属デバイスを含み、生成される電圧が対象物の特性を示す。様々なナノスケールEXXセンサの任意のものを、アレイにおけるハイブリッド半導体/金属デバイスとして選択することが可能である。このようなアレイを用いることにより、生体細胞などの対象物のナノスコピック分解能の超高分解能画像を生成することが可能であり、画像は、様々な細胞生物学的プロセスを示す。
(もっと読む)


【課題】磁性粒子を高感度で検出できる磁性粒子検出方法を得る。
【解決手段】 室温よりも低い温度環境下で磁気粒子を検出する。具体的には、第1の温度(室温)において、ターゲットである微小構造体の結合部位に磁性ビーズ1を付着させ、第1の温度よりも低い第2の温度において、磁性ビーズ1を磁化させる。これによりMRセンサ6からの検出信号に、検出可能な変化を起こさせ、磁性ビーズ1およびターゲットの存在を検出する。磁性粒子からの磁気モーメントが増加するため、室温下で同様に検出を行った場合と比べて、MRセンサ6による検出感度が著しく向上する。特に、磁気粒子のサイズを30nm以下にし、粒子サイズ分布の中央値からのばらつきを小さくすれば、さらなる向上が可能である。磁気粒子の形態は、非磁性媒体中に超常磁性粒子を分散させたものが望ましい。 (もっと読む)


【課題】検出効率に優れ、高感度な標的物質検出方法及び標的物質検出キットを提供すること。
【解決手段】第一の標的物質捕捉体を表面に有する検出部と、非検出部とからなる検出素子を用い、検出部に存在する磁性標識を検出する標的物質検出方法において、検体液中における磁性標識の表面電位がψ1、検出部の表面電位がψ2、非検出部の表面電位がψ3であり、これらが以下のi)〜iv)のいずれかの関係にある状態で、検出部が有する第一の標的物質捕捉体に磁性標識が有する標的物質を捕捉させる、もしくは磁性標識が有する第二の標的物質捕捉体に検出部が有する第一の標的物質捕捉体が捕捉した標的物質を捕捉させる。
i)ψ1ψ3>0かつψ2=0
ii)ψ1ψ2<0かつψ3=0
iii)ψ1ψ2<0かつψ2ψ3>0かつ|ψ2|>|ψ3
iv)ψ1ψ2<0かつψ2ψ3<0 (もっと読む)


【課題】測定対象物質の数や量を高感度に検出する。
【解決手段】少なくとも、磁気センサ素子と、該磁気センサ素子の出力する信号を取得する手段と、該磁気センサ素子に磁界を印加する手段を有する物質検出装置において、
前記磁気センサ素子は磁性膜を構成要素とし、該磁界印加手段は磁界を該磁気センサの磁化困難方向に印加する手段であって、前記印加磁界の有無、大きさ及び向きの1以上を変化させた際に生じる前記磁気センサ素子の出力する信号の変化を示す情報を取得する手段とを有する。 (もっと読む)


試料内の標的分子、従って対応する分析物を検出するための検出システム(100)及びセンサチップ(1)が記述されている。一般的に、検出システム(100)はセンサチップ(1)を含む。センサチップ(1)は、その検出表面(33)上に溶解可能な試薬層(5)を含む。溶解可能な試薬層(5)が試料流体に接触されると、ラベルと標的分子との相互作用に寄与する自由な試薬が生じ、従って、ラベルベースの検出を可能にする。前記試料は、その結果、一気に可動性の試薬に曝露される。前記試薬層は、酵素アッセイを可能にする酵素を含有することができる。
(もっと読む)


【課題】亀裂発生前の疲労損傷の発生箇所を特定することのできるオーステナイト系ステンレス鋼の非破壊検査方法及び装置を提供する。
【解決手段】この装置のパーソナルコンピュータ7は、所定の応力が繰り返し与えられるSUS304鋼製の測定対象物の表面からの漏洩磁場を測定するMIセンサ4と、この磁場測定値に基づいて測定対象物の疲労による損傷の有無を判定する判定部72とを備え、この判定部72は、測定対象物の測定領域内における磁場測定値の極小点又は極大点が繰り返し数の増加につれて減少し始めたときに、損傷が開始したものと判定するように構成されている。 (もっと読む)


本発明はマイクロエレクトロニクス素子に関する。より詳細には本発明は、基板(15)の反応表面(14)からある距離(d)だけ離れた試料チャンバ(5)内で延在する磁場発生装置-たとえば結合ワイヤ(16)-を有する磁気バイオセンサ(10)に関する。好適実施例では、当該素子は、前記反応表面(14)の特定結合位置(3)に結合する磁化粒子(2)を検出する磁気センサ素子-たとえばGMRセンサ(12)-を有する。しかも当該素子は、前記反応表面(14)で励起磁場(B)を発生させる集積磁気励起ワイヤ(11,13)を有して良い。当該素子の具体的応用では、磁性粒子(2)の結合のストリンジェンシーが、前記磁場発生装置(16)によって前記試料チャンバ(5)内に不均一な操作磁場(Bman)を発生させることによって検査されて良い。
(もっと読む)


本発明は、二次ナノ粒子標識、一般には磁気標識を使用することによって、アッセイの一次ナノ粒子標識から生成される信号を増幅する装置及び方法に関する。二次標識を一次標識に結合する結果として、標識から生成される信号が増幅される。
(もっと読む)


【課題】簡易かつ迅速に、ヘモグロビンAに対するヘモグロビンA1cの比率を高い精度で測定することが可能なヘモグロビンA1cの測定方法及びヘモグロビンA1c測定用キットを提供する。
【解決手段】測定試料を吸着又は結合させた固定相に、捕捉物質が結合した標識物質を有する検出試薬を含む移動相を展開させることにより、測定試料中のヘモグロビンAに対するヘモグロビンA1cの比率を測定するヘモグロビンA1cの測定方法であって、前記標識物質として磁性体含有粒子を用い、前記磁性体含有粒子の磁性量を測定することにより、ヘモグロビンAに対するヘモグロビンA1cの比率を算出するヘモグロビンA1cの測定方法。 (もっと読む)


【課題】直接検出のできない物質の数や濃度を比較的正確に検出することが可能であり、かつ種々の標的物質の検出に用いることが可能なセンサを提供すること。
【解決手段】検出領域内で、検体中に含まれる標的物質に該標的物質よりも大きい標識物質を結合させ、該標識物質を検出することによって、前記標的物質を間接的に検出する磁気センサであって、前記検出領域を構成する部材の表面に前記標的物質を相対的に捕捉しやすい捕捉領域と、前記標的物質を相対的に捕捉しにくい非捕捉領域とを有し、前記捕捉領域が前記非捕捉領域で囲まれている磁気センサ。 (もっと読む)


【課題】銅製錬を行なう際に発生するスラグの3価鉄含有量を、短時間で精度良く分析する方法を提供する。
【解決手段】銅製錬を行なう際に発生するスラグのマグネタイト含有量の分析方法において、予め磁気強度と3価鉄含有量との関係を示す検量線を求めておき、スラグの磁気強度を測定して得られた測定値から検量線に基づいて3価鉄含有量を求め、次いで3価鉄含有量に基づいてマグネタイト含有量を求める。 (もっと読む)


【課題】洗いの作業を行うことなく、試料溶液中の標的化合物を簡便に且つ迅速に検出する検出方法を提供する。
【解決手段】平均粒子サイズ50nm以下の磁性体ナノ粒子コロイド溶液中に、標的化合物を含む被検液を注入し、該被検液中の標的化合物と前記磁性体ナノ粒子とを結合させて100nm以上のサイズを有する磁性体ナノ粒子結合体を形成させ、この磁性体ナノ粒子結合体を含む分散液を、少なくとも磁気抵抗(MR)素子及び永久磁石からなる磁気センサーに近接させて磁気抵抗の変化を測定することにより、前記磁性体ナノ粒子結合体のみを検出し、間接的に前記標的化合物を検出することを特徴とする標的化合物の検出方法である。 (もっと読む)


21 - 40 / 74