説明

Fターム[3G301NA07]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 演算処理(演算) (6,740) | 論理演算(例;AND、OR) (189)

Fターム[3G301NA07]に分類される特許

61 - 80 / 189


【課題】種々の運転状況に応じて最適なアシスト再始動を図ること。
【解決手段】アシスト条件が成立した場合において、バッテリ80の状態が良好であるときは、スタータモータ36を駆動して(ステップS255)、エンジン1の再始動を開始した後にエンジン1の自動停止時に膨張行程にあった停止時膨張行程気筒に燃料を噴射して(ステップS257)、エンジン1を再始動する。他方、アシスト条件が成立した場合において、バッテリ80の状態が悪化しているときは、エンジン1の自動停止時に膨張行程にあった停止時膨張行程気筒に燃料を噴射し(ステップS2516)、エンジン1を再始動した後にスタータモータ36を駆動する(ステップS2517)。 (もっと読む)


【課題】差動機構の回転要素に動力伝達可能に連結された電動機の運転状態が制御されることにより駆動源に接続される入力軸回転速度と出力軸回転速度との差動状態が制御される電気式差動部を、備えた車両用駆動装置の制御装置において、車両走行中にニュートラル状態にされた際の前記出力軸回転速度の高回転を防止する。
【解決手段】レンジ接点信号から動力伝達遮断状態となる「N」或いは「P」ポジションへの切換えが判定されると、高回転防止手段86によって差動部11の出力軸として機能する伝達部材18の回転速度N18が抑制される。これにより、伝達部材18の高回転が防止され、差動部11や第2電動機M2などの回転要素の耐久性低下を防止することができる。 (もっと読む)


【課題】可変気筒数の内燃機関において、目標とする休止気筒数と実際の休止気筒数が不一致な場合でも、より適切に各気筒の吸気量を算出する。
【解決手段】複数の気筒のうちの一部を休止させる気筒休止を実行する気筒休止機構を備えた内燃機関の制御装置において、内燃機関への第1の吸入空気量(GAIRCYLNT)を検出する吸入空気量検出手段(8,54)と、内燃機関への吸気通路の圧力を検出する圧力検出手段(10)を備える。第2の吸入空気量(GAIRPB)は、該圧力に基づいて演算される。制御装置は、内燃機関の運転状態に応じて休止気筒数を決定する。該決定に応じて気筒休止機構を作動させ、該作動によって実際に休止した気筒数を検出する。決定された休止気筒数と、該検出された休止気筒数とが不一致の場合、第1の吸入空気量を、第2の吸入空気量を用いて制限する。該制限された吸入空気量は、他の制御量演算に用いられる。 (もっと読む)


【課題】 エンジン停止から再始動までの経過時間にかかわらず、エンジン始動時の燃料噴射量を安定させてエンジン始動の安定性および排気性能の向上を図ることができるハイブリッド車両のエンジン制御装置を提供する。
【解決手段】 統合コントローラ10は、エンジンEおよびモータジェネレータMGの発生するトルクで走行するエンジン使用走行モードからエンジンEを停止してモータジェネレータMGの発生するトルクのみで走行する電気自動車走行モードへ移行した場合、エンジンEのスロットルバルブを全開状態とする。 (もっと読む)


【課題】ハイブリッド車両において内燃機関を冷態始動させた場合、排気中に含まれるエミッションの割合が多くなってしまう傾向にある。
【解決手段】車両を走行させるための電動機13および内燃機関14が搭載された本発明によるハイブリッド車両の暖機運転制御方法は、運転者により操作されるアクセル開度に基づいて車両の要求出力トルクを算出するステップと、電動機13が出力し得る出力可能トルクを算出するステップと、算出された出力可能トルクが要求出力トルクよりも所定トルク以上大きいか否かを判定するステップと、この判定ステップにて出力可能トルクが要求出力トルクよりも所定トルク以上大きいと判定した場合、内燃機関14に燃料を供給せずに電動機13によって内燃機関14のクランキングを行うステップとを具える。 (もっと読む)


【課題】前方車両との位置関係に基づいて駆動力の制御を行なう制駆動力制御装置であって、運転者が最適と感じる駆動力の制御を行なうことが可能な制駆動力制御装置を提供する。
【解決手段】前方車両との位置関係の目標値(402)を設定し、前記目標値に基づいて制駆動力の制御を行う制駆動力制御装置であって、前記制駆動力の制御を行わなかった場合の制駆動力に対応する第1特定値(404)と、前記制駆動力の制御を行った場合の制駆動力に対応する第2特定値(405)との差である特定偏差(407)を求める手段と、前記特定偏差に基づいて、前記目標値を変更する手段とを備えている。 (もっと読む)


【課題】モータ走行時に、適切な潤滑油供給量を確保し、エンジンのポンピングロスおよびオイルポンプの損失を低減する。
【解決手段】エンジンと、2つのモータ・ジェネレータと、遊星歯車機構によって構成された動力分配装置とを備え、動力分配装置へ潤滑油を供給するオイルポンプとエンジンとがキャリアに連結され、一方のモータ・ジェネレータがサンギヤに連結され、他方のモータ・ジェネレータがリングギヤに連結されたハイブリッド車の制御装置において、モータ走行時に、スロットルバルブ開度を制御することにより、エンジンのポンピングロスを低減させるポンピングロス低減手段(ステップS4)と、一方のモータ・ジェネレータの回転を制御してオイルポンプの吐出量を制御することにより、車速に応じて動力分配装置で最低限必要量の潤滑油を供給する必要潤滑油量確保手段(ステップS5,S7)とを備えている。 (もっと読む)


【課題】内燃機関の排気還流装置において、外部EGRガス量及び内部EGRガス量を併用して調整する場合にあっても、内部EGRガス量の調整を所定範囲内に収め、排気エミッションの悪化を抑制する技術を提供する。
【解決手段】内燃機関に供給される吸気における、外部EGRガス及び内部EGRガスからなるEGRガスの割合を示すEGR率を、目標値に追従させるようフィードバック制御するために、第1に、内部EGRガス量の調整が所定範囲内に収まるように、外部EGRガス量の調整を行い(S102〜S104)、第2に、内部EGRガス量の調整が所定範囲内となる範囲で、内部EGRガス量の調整を行う(S105〜S109)。 (もっと読む)


【課題】内燃機関の停止指令があったとき、機関停止過程で内燃機関等に振動が発生するのを抑制しつつ、吸気通路に存在し得るEGRガスを適切に排出する。
【解決手段】本発明の内燃機関の制御装置は、吸気弁よりも上流側の吸気通路16に設けられたインパルス過給のための吸気制御弁32を制御する吸気制御弁制御手段と、吸気通路16の内の吸気制御弁32よりも上流側と排気通路36とを連通するEGR通路54に設けられたEGR弁58を制御するEGR弁制御手段とを備える。そして、内燃機関10の停止指令が検出されると、吸気制御弁32は閉弁制御され、EGR弁58は開弁制御される。これにより、機関停止過程において、内燃機関に振動が発生することを防止しつつ、吸気制御弁32の上流側にある気体の排気通路への排出が図られる。 (もっと読む)


【課題】シリンダ内に供給されるEGRガスと空気との温度差の変化を緩和して燃焼悪化を抑制できる内燃機関の排気還流装置を提供する。
【解決手段】排気還流装置16は、シリンダ2に対して二つの吸気ポート8、9が設けられた内燃機関1に適用され、内燃機関1の排気通路7から取り出した排気の一部を吸気ポート9のみを経由させてシリンダ2内にEGRガスとして供給できる。EGRガスの温度を排気還流通路17に設けられた燃料添加弁20から燃料を噴射することにより調整して、吸気ポート9からシリンダ2に供給されるEGRガスの温度を、吸気ポート8からシリンダ2に供給される空気の温度に基づいて定められた目標温度になるようにする。 (もっと読む)


【課題】車軸に動力を入出力する駆動用モータを備える車両におして、制動時にバッテリが入力制限を超えた電力で充電されるのを抑制する。
【解決手段】制動時に、モータと電力のやりとりをするバッテリを充電する充電電力Pinが入力制限Win未満であるときには(ステップS160)、インテークカムシャフトを回転させるカムシャフトコントロールモータで電力を消費するようカムシャフトコントロールモータを駆動する(ステップS190)。制動時にカムシャフトコントロールモータで電力を消費するから、バッテリが入力制限を超えた電力で充電されるのを抑制することができる。 (もっと読む)


【課題】ディーゼルエンジンについて精度良く燃料の噴射量を推定する。
【解決手段】ディーゼルエンジンの制御装置100によれば、グロープラグ133が有する熱エネルギーを利用して、パイロット噴射を実行するに先立って、ディーゼルエンジンの気筒131内の温度を高めることが可能である。したがって、ディーゼルエンジンの制御装置100によれば、グロープラグ133の熱エネルギーによって気筒131内の温度が高められているため、ディーゼルエンジン1の始動時において気筒131内の温度が低い場合でも、気筒内温度が高められた状態でパイロット噴射を実行することができ、パイロット噴射によって気筒内に噴射された燃料を、気筒131内の圧力上昇に伴って安定して着火させることが可能である。 (もっと読む)


【課題】低圧EGR装置により還流されるEGRガスの量をより正確に制御することができるようにする。
【解決手段】内燃機関のEGR制御装置は、内燃機関の排気通路に設けられた排気浄化手段(22)と、該排気浄化手段の下流の排気通路から、排気を、内燃機関の吸気通路に還流する低圧EGR通路(41)と、該低圧EGR通路に設けられ、還流する排気の量を制御する低圧EGR制御弁(42)と、低圧EGR通路が接続された排気通路または低圧EGR通路が接続された吸気通路に設けられた絞り弁(43)と、絞り弁および低圧EGR制御弁の間の圧力を検出する圧力検出手段(44)と、低圧EGR制御弁の上流および下流の間に、所定範囲内の圧力差が形成されるように、前記検出された圧力に基づいて前記絞り弁を制御する制御手段(1)と、を備える。 (もっと読む)


【課題】 排気再循環回路を有する内燃機関において、NO低減と黒煙低減とエンジン出力と燃費とのバランスをとって排気の還流率を制御する。
【解決手段】 内燃機関の排気再循環制御装置において、検出手段(31)で検出した回転速度、負荷、吸気中の酸素濃度及び排気中の酸素濃度に応じて、EGR率と空燃比とが記憶手段(32)の記憶するそれぞれの目標の値となるように、排気再循環回路を開閉する第1開閉弁(15c) 及び吸気バイパス回路(12c) を開閉する第2開閉弁(12d)を制御する制御部(33)を設ける。 (もっと読む)


【課題】内燃機関の制御装置に関し、ノッキングの抑制のために点火時期を遅角する場合に、点火時期の遅角に伴うトルク変化を抑制できるようにする。
【解決手段】点火時期の遅角に合わせて吸入空気量が増加する方向に吸気弁の作動特性を変化させる。好ましくは点火時期の遅角に伴うトルク低下を補償するための必要空気量を算出し、その必要空気量に基づいて吸気弁の作動特性を変化させる。また、吸気弁のみでは必要空気量に対して吸入空気量が不足する場合は、不足吸入空気量に基づいてスロットルの開度も変化させる。 (もっと読む)


【課題】第2電動機或いは変速部の所定回転要素の不要な回転増加を抑制して、第2電動機或いは変速部の耐久性を向上することができる車両用駆動装置の制御装置を提供する。
【解決手段】エンジン上限回転速度NELIMを超えないようにエンジン回転速度NE が制限されるものであり、そのエンジン上限回転速度NELIMが第2電動機回転速度NM2に応じて変更されるので、現在の第2電動機回転速度NM2に基づいてエンジン上限回転速度NELIMの影響を受ける第2電動機上昇可能回転速度NM2max を変更することが可能となり、例えば第2電動機回転速度NM2が比較的高いときにはエンジン上限回転速度NELIMを低くして第2電動機上昇可能回転速度NM2max を低く変更することが可能となり、第2電動機M2の回転増加を抑制して第2電動機M2の耐久性を向上することができる。 (もっと読む)


【課題】EGRクーラの劣化に起因する燃焼音を低減する。
【解決手段】内燃機関は、内燃機関(2)の気筒内に直接燃料を噴射する燃料噴射装置(1,8)と、内燃機関の排気の一部を吸気に還流する排気還流通路(31)と、該排気還流通路に設けられ、還流する排気を冷却するEGRクーラ(36)と、を有する。制御装置は、該EGRクーラの性能を検出し(1、61、ステップS2、S13)、該検出されたEGRクーラの性能に応じて燃料噴射の圧力および燃料噴射時期のうちの少なくとも一方を補正する(1、62、63、ステップS3、S4、S14、S17)。この補正により、燃焼音を低減させることができる。 (もっと読む)


【課題】全ての部分システムから操作できエンジンのトルクに関する情報を交換できるエンジン制御システムへのインターフェースを提供する。
【解決手段】エンジンの出力パラメータ、即ち空気量106、噴射量102、点火時期104を調節することにより変化させることができるエンジントルクの設定値110、110aがトラクションコントロール等の部分システムからエンジン制御システムに伝達されて、それぞれ出力パラメータの少なくとも一つを調節することにより調達される。そのためのエンジン制御システムへのインターフェースは、エンジンにより発生されるトルクに基づいて動作し、部分システムはそのインターフェースを介してトルクに関する情報148、156を交換し車両を制御する。 (もっと読む)


【課題】本発明は、気筒内へ所定量以上のEGRガス量を導入することにより予混合燃焼運転を行う圧縮着火式内燃機関の制御システムにおいて、内燃機関をフューエルカット運転状態から予混合燃焼運転状態へ速やかに移行可能な技術の提供を課題とする。
【解決手段】本発明は、所定量以上のEGRガスを気筒内へ導入することにより予混合燃焼運転を行う圧縮着火式内燃機関の制御システムにおいて、前記内燃機関の吸気弁より上流の吸気通路に第1開閉弁を配置し、前記内燃機関がフューエルカット運転状態から予混合燃焼運転状態へ移行する時に前記第1開閉弁をパルス過給動作させることにより、EGRガスの輸送遅れを短縮するようにした。 (もっと読む)


【課題】高圧EGR手段と低圧EGR手段とを使い分けてEGRを行う内燃機関の排気再循環装置を対象とする。内燃機関の運転状態が加速要求によってフューエルカット状態から他の運転状態に移行する際に、EGRガスの量の不足を抑制し、過渡状態におけるNOx発生を抑制できる技術を提供する。
【解決手段】内燃機関1の運転状態がHPL領域に属する場合には、高圧EGRのみを用いてEGRを行い、LPL領域に属する場合には低圧EGRのみを用いてEGRを行い、MPL領域に属する場合には高圧EGRと低圧EGRを併用してEGRを行う内燃機関の排気再循環装置であって、内燃機関1の運転状態が加速要求によってフューエルカット状態からHPL領域またはMPL領域に移行する際は、低圧EGR弁5の開度を、移行先の運転状態においてNOx低減のために要求される開度より、さらに開弁側に制御する。 (もっと読む)


61 - 80 / 189