説明

Fターム[4C096DC33]の内容

磁気共鳴イメージング装置 (34,967) | 画像処理 (5,620) | 複数画像に対する処理 (845) | 複数画像間の処理 (700)

Fターム[4C096DC33]に分類される特許

681 - 700 / 700


手術中のターゲットフィーチャの2次元(2D)医学画像を手術前のターゲットフィーチャの3次元(3D)医学画像と重ね合わせるためのシステムおよび方法が開示される。ターゲットフィーチャの3D画像は第1スケルトングラフに変換される。ターゲットフィーチャの2D画像は第2スケルトングラフに変換される。第1スケルトングラフと第2スケルトングラフのグラフマッチングがグラフの荒いアライメントを得るために実行され、第1スケルトングラフト第2スケルトングラフが重ね合わされる。
(もっと読む)


診断イメージング装置(10)は確率論的モデルに基づいて被検体の診断画像の区分化を行う。複数の断層画像の束(22)が、各々の束が遅れずに置換されるようにして生成される。断層画像の束から器官形状の複数解が複数の形状サンプル(26)の形態で計算される。画像を仮定した下での形状の条件付き分布を記述するベイズモデルに従ってサンプル群(24)が生成され、サンプル群の各々について、少なくとも1つの機能パラメータ(32)が導出される。各パラメータについて確率値(30)が導出され、表示(36、38)される。

(もっと読む)


本発明は、3次元生体構造オブジェクトのコンピュータ支援による視覚化のための方法に関する。そこでは、まずそのオブジェクトについての2つ又はそれ以上の診断画像データレコード(1、3、4、5)が記録される。その後、その画像データ(1、3、4、5)を2次元のディスプレイ平面(8)上に画像化するための画像化仕様が規定される。そこでは、画像化仕様を規定するために、少なくとも1つの画像データレコード(1)においてそのオブジェクトの生体構造特徴(2)が特定される。最後に、2つ又はそれ以上の画像データレコード(1、3、4、5)を、以前に規定された画像化仕様に基づき、共通のディスプレイ平面(8)上へ画像化することにより結合された2次元表現が計算される。
(もっと読む)


画像位置合わせは、従来、非常にしばしば手動で実行する必要のある面倒な仕事であった。本発明のある例示的な実施形態によれば、目印と類似性値との組み合わせに基づく逐次精製プロセスによる非剛体的な画像位置合わせが提案される。有利なことに、非常に高速かつ堅牢な方法が提供されうる。
(もっと読む)


所望の領域の輪郭やこの輪郭によって特定される層状領域などの特定領域の抽出を簡単な操作で短時間で行えるようにする。そのために、(a)前記画像を表示するステップ、(b)前記画像内の所望の領域を選択するステップ、(c)前記所望の領域内の部分領域の少なくとも一部の輪郭に対応する要素図形を選択するステップ、(d)前記部分領域の少なくとも一部の輪郭に、前記要素図形の少なくとも一部の輪郭を近似させるステップ、(e)前記ステップ(c)〜(d)を2回以上繰り返すステップ、(f)前記近似後の各要素図形の少なくとも一部の輪郭を組み合わせた輪郭を第1の輪郭とするステップ、からなる方法で所望の領域の輪郭を抽出する。そして、更に(j)前記第1の輪郭に基づいて第2の輪郭を求めるステップ、(k)少なくとも前記第1の輪郭と前記第2の輪郭とに挟まれる層状領域を含む領域を抽出するステップ、から成る方法で特定領域の抽出を行う。 (もっと読む)


本発明は、オブジェクトの管状構造を、このオブジェクト3D画像データセットを使用することにより視覚化する方法及び対応する装置に関する。より効果的且つ実例的な視覚化を提供するために、前記管状構造の象徴的な経路ビュー(B)からCPRビュー(C)を生成及び視覚化するステップであり、前記象徴的な経路ビュー(B)は前記管状構造を示し、前記象徴的な経路の経路ポイントは3D空間位置データを割り当てられるステップ、及び前記CPRビュー(C)又は前記象徴的な経路ビュー(B)において選択された前記管状構造のビューイングポイント(V)を介して、前記オブジェクト(1)の少なくとも1つの平面ビュー(O)を生成及び視覚化するステップを有する方法が提案されている。
(もっと読む)


コンピュータ化されたモデルが、ヒト脊髄をシミュレーションし、将来の損傷の確率または過去に起こった特定の損傷が起きる見込みについての推測を引き出すことを可能にする。脊髄は、多数の有限要素から形成される複数の2次元グラフによってモデル化される。2次元グラフは、患者の様々な脊椎レベルで、測定された脊髄の位置に対応する位置に積み重ねられる。積み重ねられたグラフは、他の患者から取得した同様のデータと比較することのできる3次元モデルを生成する。モデルは脊髄の全部または一部に加えられる応力のシミュレーションを含むことができ、それによって摂動された3次元モデルが生成され、それを既知の損傷を有する患者から取得した同様のデータと再度比較することができる。したがって、本発明を使用して、特に車両またはスポーツ事故の結果として起こる脊髄損傷の主張を検証することができる。
(もっと読む)


D次元空間内の複数の点から成るドメインに対応する複数の輝度から成るディジタル画像中の管状構造を配向する方法を提供する。この方法は画像ドメイン内の1つの点を選択し(101)、選択された点の近傍において画像の勾配を計算し(102)、選択された点における基本構造を計算し(102)、選択された点の構造テンソルを求め(103)、構造テンソルの固有値を見つける(104)ステップを含む。最小固有値(105)に対応する固有ベクトルは管状構造と整列する。管状構造と整列する固有ベクトルによって画定される軸を中心とするカートホイール投影を計算(106)すればよい。
(もっと読む)


本発明は、MR装置の検査ボリューム内で、マイクロコイルが取り付けられた医療機器の位置を突きとめるためのMRプロセスに関する。マイクロコイルは、MR装置の共鳴周波数に整合される外部制御をもたない共鳴回路の一部である。本発明によれば、検査ボリューム内で、少なくとも2つの時間的に連続する高周波パルス(RF)が生成され、高周波パルス(RF)の各パルスの後に、検査ボリュームから周波数符号化されたMR信号(S,S)が記録される。医療機器の位置は、これらの記録されたMR信号(S,S)間の差分を解析することによって決定される。
(もっと読む)


本発明は、特特徴部位視覚化のための器官画像展開処理システム(100)と方法(200)に関している。前記システム(100)は、プロセッサ(102)と、器官の走査データを受信するためにプロセッサと信号通信している結像アダプタ(130)と、走査データにモデルを適合化させるためにプロセッサと信号通信しているモデリングユニット(170)と、三次元モデル走査データを展開処理するためにプロセッサと信号通信している展開処理ユニット(180)を含み、これに対応している前記方法(200)は、器官の外表面をセグメント化するステップと、器官の三次元モデルをパラメータ化するステップと、器官中心から三次元モデル表面への射線キャスティングステップと、前記射線キャスティングに対応して器官の三次元モデルを展開処理するステップを含んでいる。
(もっと読む)


発明者は対象の空間的位置に基づく複数の異なる分類子を使用することを提案する。このアプローチの背景には、複数の分類子の方が特徴空間全体をカバーする“ユニバーサル”分類子よりも正確に局所コンセプトを学習できるのではないか、という直感的なアイデアがある。局所分類子を採用すれば、特定の類に属する複数の対象がこの特定類中において互いに高度の類似性を有することになる。局所分類子の採用は、特に分類子がカーネル方式である場合、メモリー、ストレージ及び性能全般の向上にもつながる。ここで使用する語“カーネル方式分類子”とは元の訓練データを、分類タスクを容易にする、より高い次元の空間にマップするためにマッピング機能(即ち、カーネル)が使用されている分類子を意味する。
(もっと読む)


放射線治療を計画するためにMR画像を使用する新しいMR方法及びシステムが記述されている。画像は、磁気中心(アイソセンタ)を有する磁界を生成するスキャナによって得られる。まず、少なくとも1つの基準のマーカ(4;5)が、アイソセンタから予め決められた距離離れた患者の身体(1)に適用される。患者は、解剖学的なターゲット(2)が前記アイソセンタの近くに位置するように、前記スキャナの範囲内で配置しなおされる。前記ターゲット(2)の第1の画像が得られ、そののち、患者(1)は、基準マーカ(4;5)がアイソセンタの近くにくるようにシフトされる。第2の画像が、基準マーカが前記第1の画像にマージされる正確な幾何学的位置を有するシフトされた位置において得られる。
(もっと読む)


本発明は、例えばMRI画像撮影といったような画像処理のための方法および装置を開示するものである。本発明による方法および装置を使用すれば、撮影対象をなす容積(例えば、傷害部位)内における選択されたポイントのコントラスト変化/輝度変化が、対象物の移動の影響であるかどうかを、決定することができる。本発明においては、撮影対象容積の位置合わせ品質(時系列をなす複数の画像に関しての位置合わせ品質)を高速で視覚的に評価し得るような方法および装置が提供される。また、本発明においては、この方法の効果的な使用を可能とし得るよう、対話型のディスプレイツールが提供される。
(もっと読む)


冠状動脈ツリーは、脈管の中心線(38)との最善フィットがみられる基準球体(32)によって近似される。基準表面(32)をグリッド化して画素(52)の範囲を定める。基準球体(32)は、真の形態の表面(56)が判定されるように中心線(38)にフィットさせるようマッピングされる。真の形態の表面(56)までの、壁の厚さは、好ましくは、ユーザによって規定される。各画素の法線が、ボクセルのグレイスケール値についてサーチされる。各画素(52)は、相当する法線が交差する、規定される、壁の厚さ内のボクセルのグレイスケール値の最大値が割り当てられる。結果として生じる、真の形態の表面は、脈管にわたって描かれる真の表面上に延びる動脈ツリーをそのコンテキストにおいて明らかにする、歪みのない視覚化モードである。割り当てグレイスケール値を基準表面(32)上にマッピングすることによって、球体として、回転できるように検査し得る球体表面(84)上に動脈ツリーが視覚化される。割り当てグレイスケール値を平坦な表面にマッピングすることによって、2次元マップ上に動脈ツリーが視覚化される。

(もっと読む)


患者の共通領域の現行診断画像及びアーカイブ診断画像が第1メモリ(14)及び第2メモリ(18)にロードされる。診断画像は、特徴画像(24)に変換され、スケーリングされ(40)、正規化される(42)。アフィン変換判定プロセッサ(50)は、現行画像とアーカイブ画像との間の誤差を表すアフィン変換を生成する。変換処理手段(90)は、アフィン変換によって診断画像のうちの一方を処理して、2つの画像を登録させる。ディスプレイ・プロセッサ(104)は、登録された第1画像及び第2画像の断面の相当する対をモニタ(22)上に表示する。ステップ・プロセッサ(102)は、登録画像の表示断面対を、連係して一緒に進めさせる。
(もっと読む)


物質体積を検査してその型、特に組織を癌性または非癌性として特徴付けるために検査するのに有用な型を特徴付ける方法及び装置であって、検査対象の物質体積に偏向磁界を局所的に印加すること、前記検査対象の物質体積の電気インピーダンス(EI)に対応する電気応答信号と、前記検査対象の物質体積の磁気共鳴(MR)特性に対応するMR応答信号とを引き起こすように、前記検査対象の物質体積にRFパルスを局所的に印加すること、前記EIおよびMR応答信号を局所的に検出すること、および前記検査対象の物質体積中の物質の型を特徴付けるために、前記検出された応答信号を利用すること、を含む。 (もっと読む)


本発明は、内視鏡的パスプランニングのための方法及びシステムに関している。この方法は、肺の末梢気道内に位置している肺内のターゲットが特定されるステップ(310)と、末梢気道に対する代替として末梢動脈を用いてターゲットまでの内視鏡的パスが作成されるステップ(320〜360)と、内視鏡的パスを呈示するステップ(370)を含んでいる。
(もっと読む)


周期成分及び周期成分よりも周波数が低い非周期成分を含む複合運動に従って動くオブジェクトを描出した画像シリーズ内の周期運動を定量化する方法及びシステム。複合運動が計算される。非周期成分が、一運動周期に渡る運動の積分として計算される。非周期成分が複合運動から減算されて周期成分が取得される。
(もっと読む)


【課題】手術部位内のナビゲーションのシステム及び方法を提供する。
【解決手段】本発明に係わる実施形態では、トラッキング装置でトラックされる、携帯のナビゲーションのプローブに、マイクロカメラを設けている。これにより、プローブ内に設けたマイクロカメラの視点からのリアルタイム画像を見ながら、手術場面内でナビゲーションが可能となる。手術場面には、術前の走査から生成された対象構造のコンピュータ3次元画像が、重ね合わされている。カメラ画像および重ね合わせ3次元画像の透明性の調整で、深さの認識を強めることができる。プローブ先端と重ね合わせの3次元構造との距離、すなわちプローブから延びた仮想の放射線に沿った距離が、組合せた画像に動的に表示される。本発明の実施形態では、仮想インターフェイスが、組合された画像に隣接してシステムの表示装置に表示される。これによりナビゲーションに関わる機能が促進される。
(もっと読む)


【課題】EPIシーケンスにおける傾斜誘起された交差項磁場の測定および補正
【解決手段】磁気共鳴イメージング(MRI)システムにおける傾斜誘起された交差項磁場を決定するための方法であって、被検体(対象)を静磁場内に配置する工程と、前記被検体のスライスを空間的に選択するラジオ周波数(RF)励起パルスを印加する工程と、前記スライスの位相に平行な位相エンコード傾斜磁場方向に沿ってインクリメントされる位相エンコード傾斜磁場を印加する工程と、前記スライスにおけるライン(線状部位)を選択するための選択RFリフォーカスパルスを印加する工程と、交差項磁場を引き起こす、スイッチされた読み出し磁場勾配を印加する工程と、前記選択されたラインに沿う位相エンコード勾配および対応するサンプルデータ点のデータアレイを生成することと、前記選択されたラインについて傾斜誘起された交差項磁場を示す中心周波数分布(CF)を決定することを含む方法が開示される。 (もっと読む)


681 - 700 / 700