説明

Fターム[4D020BA30]の内容

吸収による気体分離 (12,080) | 吸収剤 (2,558) | その他 (146)

Fターム[4D020BA30]に分類される特許

101 - 120 / 146


【課題】アンモニア水を用いて、排ガスに含有された二酸化炭素を回収する過程で発生する吸収熱を効果的に冷却させ、アンモニア塩の発生を最小化することで、二酸化炭素の回収率を向上させた、アンモニア水を利用する二酸化炭素回収装置及びその方法を提供する。
【解決手段】二酸化炭素が含有された排ガスから、アンモニア水でなる吸収液を利用して、二酸化炭素を吸収及び回収するための二酸化炭素回収装置であって、排ガスから二酸化炭素を吸収するときに発生する吸収熱を放出するために高温の吸収液を回収し、これを予め設定された温度に冷却して再供給する循環クーラーが連結設置された吸収塔を含む。 (もっと読む)


【目的】 あらゆる産業分野で発生する二酸化炭素を削減する。
【構成】 自然にある雪、炭、シールド土を二酸化炭素の固定に利用する。
【効果】 本発明は、地球温暖化防止の為、二酸化炭素の削減の一役を担い、環境保全及びコスト削減に効果がある。 (もっと読む)


【課題】燃焼煙道ガスから低コスト・エネルギーで二酸化炭素を低減するシステムの提供。
【解決手段】燃焼システム100は、燃焼煙道ガスを流すためのハウジングと、ハウジング内に流されるアンモニア系液体試薬と、アンモニア系液体を煙道ガスから隔離するためハウジング内に連結された膜接触器からなり、当該膜接触器が気液界面領域を画成する複数の細孔を含み、アンモニア系液体及び煙道ガスが気液界面領域で接触することで、アンモニア系液体中へのCOの化学吸収により煙道ガスから二酸化炭素を分離してCOリッチなアンモニア系液体を生成する膜接触器とを含む吸収器ユニット130、並びに吸収器ユニットに連結された脱離器ユニット150であって、COリッチなアンモニア系液体を受け入れてCOを遊離させる脱離器ユニットを含んでなる。 (もっと読む)


【課題】排ガスを処理する際において圧力損失の問題が発生することのない排ガス処理方法及び装置を提供する。
【解決手段】本発明に係る排ガス浄化装置10Aは、排ガス11を供給する浄化塔12Aと、前記浄化塔12A内部の上方から活性炭素繊維スラリー(スラリー濃度が、20g/m3〜10kg/m3)13を噴霧する噴霧装置14とを具備してなり、前記供給された排ガス11と対向流で接触し、気液接触状態で排ガス中の硫黄酸化物、窒素酸化物を除去する。 (もっと読む)


【課題】本発明は、ガス混合物に含まれる気体状COを分離する方法に関し、当該方法は、気体状COを捕獲する能力のある固体吸着剤を液相中へ懸濁させる工程、ガス混合物を液相中に分散させる工程であって、当該工程は液相の凝固温度と蒸発温度の間の温度でそれぞれの境界値を含まない温度、大気圧と10バールの間の圧力でそれぞれの境界値を含む圧力で行われることからなる。 (もっと読む)


次の工程を含む二酸化炭素隔離プロセスである。第1段階において、金属ケイ酸塩岩石のスラリーをアンモニアと混合して、アンモニア/水/金属ケイ酸塩スラリーを生成する。第2段階において、このプロセスは、二酸化炭素を含むガス流を、第1段階からの溶液を用いてスクラビングすることにより、二酸化炭素を反応性スラリー中に吸収させる工程を含む。第3段階において、二酸化炭素と金属ケイ酸塩との反応を促進して金属炭酸塩を生成するよう制御されている反応器に、第2段階からの反応性スラリーを通す。
(もっと読む)


本発明は、CO2抽出、例えば排ガス、バイオガス又は天然ガスからのCO2抽出における高温での熱安定性炭酸脱水酵素の使用に関する。本発明はまた、前記ポリヌクレオチドを含んで成る核酸コンストラクト、ベクター、及び宿主細胞に関する。
(もっと読む)


二酸化炭素及び二酸化イオウを含有するプロセスガスを浄化するためのガス浄化システムであって、該システムは、冷却及び浄化複合システム(16)及びCO2吸収装置を含んでなる。冷却及び浄化複合システム(16)は、CO2吸収装置の上流に配置され、冷却液体によってプロセスガスを冷却し、プロセスガスの二酸化イオウを冷却液体に吸収して、硫酸イオンを含有する冷却液体を得る第1ガス‐液接触装置(50)を含んでなる。冷却及び浄化複合システム(16)は、さらに、CO2吸収装置の下流に配置され、アンモニアを含有するプロセスガスを、硫酸イオンを含有する冷却液体と接触させることによって、CO2吸収装置において処理されたプロセスガスから、アンモニアを除去する第2ガス‐液接触装置(94)を含んでなる。
(もっと読む)


金属製造での鉱石焼結工程の排ガスを浄化する方法において、焼結工程では固形燃料を用いて当該固形燃料の燃焼と燻しプロセスとを経て鉱石材料を焼結し、少なくとも汚染物質たるSOxおよび/またはHClとNOxとを減少または殆ど除去する。この目的のため、焼結排ガスは、移動床リアクタ(50)にその下端側から送り込まれ、NOxとSOxおよび/またはHClとによって既に汚染されている吸着/吸収材よりなる下側および上側の層(54B,54A)を通過する。その過程において、SOx成分および/またはHCl成分の少なくとも大部分が、焼結排ガスから、NOx付き吸着および/または吸収材の細孔システムに、吸着される。SOxおよび/またはHClの大部分が除去された焼結排ガスは、アンモニアや尿素などのアンモニウム含有化合物に完全に混ぜられた後、移動床リアクタにおける、ガスフローおよびバルク材抜出しの上側の水平なトレー(52A)にその下側から入って通過し、NOxと微量のSOxおよび/またはHClとによって既に汚染されている吸着/吸収材よりなる上段層に入る。上段層(54A)を通過するとき、NOx成分の少なくとも大部分が、焼結排ガスから吸着/吸収材(これは、NOxまたはN2と微量のSOxおよび/またはHClを伴う)の表面に吸着される。フレッシュな及び/又は再生された吸着/吸収材は、移動床リアクタの上端側にあるバルク材分配トレー(50C)を介して分配され、そして、移動床リアクタ内の上下層を、間断なく移り進む。その過程において、吸着/吸収材は、まず、その表面にてNOx、またはN2および水蒸気を吸着し、次に、その細孔システムにてSOxおよび/またはHClを吸着する。 (もっと読む)


【課題】窒素酸化物吸収能力に優れたヒメイタビを提供する。
【解決手段】下記(i)〜(iii)の工程を含む製造方法により得られるヒメイタビ変異体。(i)親株であるヒメイタビ(Ficus thunbergii)の外植片に、イオンビームを照射する工程。(ii)イオンビームを照射した上記外植片を培養して、植物体を得る工程。(iii)上記植物体の中から、上記親株より高い窒素酸化物吸収能力を有する、ヒメイタビ変異体を選抜する工程。これにより、二酸化窒素等の窒素酸化物吸収能力に優れた、屋上や壁等の壁面緑化に好適な、ヒメイタビ変異体を提供することができる。 (もっと読む)


【課題】臭気ガス中の臭気成分を効率よく吸収し、微生物の吸着・酸化能力の低下を防ぎ、構造がシンプルでコンパクトな生物脱臭システムを提供する。
【解決手段】本システムは、汚泥循環槽と、この汚泥循環槽に連通する脱臭塔からなる生物脱臭装置を備える。脱臭塔には、汚泥循環槽から供給される活性汚泥混合液を脱臭塔内に噴霧させるシャワーユニットが2段以上、シャワーユニット間には1段以上の棚が設置される。最下段の棚より低い位置の脱臭塔側壁には臭気ガスの導入口が設けられ、各シャワーユニット間における最下段の棚の下方位置の脱臭塔側壁には、オーバーフロー管が設けられる。棚には多数の孔が設けられ、孔の径、開口率は、活性汚泥混合液が棚上に滞留し、孔が閉塞しないようになされ、活性汚泥混合液の供給量の制御により、各棚上に略1cm以上の活性汚泥混合液からなるフラッティング部を形成する。 (もっと読む)


【課題】処理効率を向上させる。
【解決手段】アルミニウム成形体の表面処理時に発生したフッ素含有廃スラッジ(1)を加熱処理して固体成分としてのフッ化アルミニウム(2)、および気体成分としてのフッ化アンモニウム(3)に分解する加熱炉11と、フッ化アンモニウム(3)とフッ化水素(4)とを反応させてフッ化水素アンモニウム(5)を生成する反応槽12と、が備えられたフッ素含有廃スラッジの処理装置10であって、フッ化アンモニウム(3)を吸収液(9)中に吸収させる吸収部35が備えられ、この吸収部35は、フッ化アンモニウム(3)を含むガスを吸収液(9)に接触させることにより、この吸収液(9)中にフッ化アンモニウム(3)を吸収させるとともに、吸収液(9)を加熱し、反応槽12は、吸収部35から移送された吸収液(9)中のフッ化アンモニウム(3)とフッ化水素(4)とを反応させてフッ化水素アンモニウム(5)を生成する。 (もっと読む)


【課題】脱S剤の使用量を低減すると共に、酸性ガスの除去効率及びS成分の除去効率の向上したガス浄化装置及び方法、並びにそれを用いたガス化システム、ガス化発電システムを提供する。
【解決手段】改質炉15で改質された高温の改質ガス14を減温すると共に、液状のアルカリ剤16を供給して、改質ガス14中の酸性ガスを中和する減温塔17と、減温された冷却ガス18を供給する煙道21中に、前記硫化水素を除去する粉状の脱S剤22を対供給する脱S剤供給装置32と、前記供給された脱S剤22及びアルカリ剤16の堆積層を形成する濾過膜20aを備えてなる集塵装置20と、冷却ガス18中の酸性ガス成分及びS成分を除去した浄化ガス24を減湿する減湿装置25と、減湿された減湿浄化ガス26を貯留するガスホルダ27と、該ガスホルダ27で貯留された貯留ガス28を用いて発電に供給するガスエンジン(G/E)等29とを具備する。 (もっと読む)


【課題】脱S剤の使用量を低減すると共に、酸性ガスの除去効率及びS成分の除去効率の向上したガス浄化装置及び方法、並びにそれを用いたガス化システム、ガス化発電システムを提供する。
【解決手段】改質炉15で改質された高温の改質ガス14を減温すると共に、液状のアルカリ剤16を供給して、改質ガス14中の酸性ガスを中和する減温塔17と、減温された冷却ガス18中の煤塵を集塵する第1の集塵装置20と、前記第1の集塵装置20の後流側の酸性ガスが除去された冷却ガス18を供給する煙道21中に脱S剤22を供給してなり、供給された脱S剤22の堆積層を形成する第2の集塵装置23と、ガス中の酸性ガス成分及びS成分を除去した浄化ガス24を減湿する減湿装置25と、減湿された減湿浄化ガス26を貯留するガスホルダ27と、該ガスホルダ27で貯留された貯留ガス28を用いて発電に供給するガスエンジン等29とを具備する。 (もっと読む)


二酸化炭素を捕捉するためのプロセスを記載する。該二酸化炭素は、大気から、および/または二酸化炭素の点源(例えば、発電所、化学プラント、天然ガス田、油田、工場用地等)の廃棄物の流れから、捕捉され得る。該プロセスは、アルカリ性溶液(例えば、NaOH)を使用して、二酸化炭素を捕捉するステップを伴うことが可能である。いくつかのプロセスでは、該二酸化炭素は、生成物(例えば、NaHCO)を形成するために、該アルカリ性溶液と反応し得る。該アルカリ性溶液は、多数の異なる方法で製造され得る。該プロセスのいくつかでは、処理中に産生される生成物は、二酸化炭素捕捉以上の付加価値を付けるために使用され得る。
(もっと読む)


【課題】脱臭液を含浸して空気が通過する時に泡を発生させるための空隙物からなる起泡フィルターを備え、起泡フィルターの下側に起泡フィルターから落下した脱臭液を受けて貯留するタンクを設ける必要のない泡脱臭装置を提供する。
【解決手段】汚染物質を含有する空気が流れる空気流路1内に脱臭液Lの泡Bを発生させて該泡Bに前記汚染物質を吸着させて分解処理する泡洗浄脱臭装置であって、脱臭液Lを供給するための脱臭液供給手段3と、前記脱臭液供給手段3より供給される脱臭液Lを含浸して下方に落下しないように保持すると共に空気が通過する時に泡を発生させるための空隙物からなる起泡フィルター21と、を備えている。 (もっと読む)


吸収ステーションにおいて、COはガス流から好適な溶媒中に吸収され、よって溶媒をCO富化された溶媒へと変換し、この媒体は、通常は吸収ステーションより太陽エネルギーフィールドに近い脱離ステーションへ輸送される。日射によって太陽エネルギーフィールドにおいて加熱された作用流体は、CO富化された媒体からのCOの脱離を生じるために使用され、よって分離されたCO及び再生された溶媒流れを生成する。再生された溶媒流れは、吸収ステーションへと還流する。CO富化された媒体及び/又は再生された溶媒流れは選択的に蓄積することができ、よってそれぞれ、COの吸収及び脱離のタイミング及び速度を最適化し、及び/又は太陽エネルギーの貯蔵を提供する。
(もっと読む)


本発明は、二酸化炭素を含む産業廃出流体流に存在する二酸化炭素の隔離および/または削減方法およびシステムを提供する。第1成分、第2成分(第1成分とは異なる)、および好ましくは水を含むスクラビング材が、廃出流体流と接触する。第1成分は、酸化カルシウム源およびアルカリ金属イオン源を含む。第2成分は、1つ以上の反応性ケイ酸塩化合物を有するスラグを含む。燃焼源、石灰および/またはセメント窯、鉄および/または鋼鉄炉などによって生じる排ガスからの二酸化炭素削減方法が提供される。二酸化炭素放出軽減システムもまた開示される。産業副産物のリサイクル方法がさらに提供される。 (もっと読む)


【課題】内燃機関の排気ガスの有害成分、即ちHC、CO、NOx、およびPMが低減で
き、その上CO2をも削減できる、簡便で安価な排気ガス後処理浄化装置を提供する。
【解決手段】樹木精油成分の湿式反応とデュアルタイプのサイクロンを利用する排気ガス
浄化システムに於いて、吸着剤粉末を循環使用することにより、有害成分除去率およびC
O2削減率を大幅に向上させる。 (もっと読む)


【課題】比較的少ないエネルギでかつ比較的簡単なプロセスで、混合ガスから酸性ガスを液体状態で分離回収し、この分離回収された酸性ガスを効率良く貯蔵し或いは輸送する。
【解決手段】所定の圧力及び温度に維持した吸収塔13の上部に、吸収液を供給し、吸収塔13の下部に、酸性ガス及び非酸性ガスを含む混合ガスを供給して、吸収液に混合ガスを接触させる。これにより酸性ガスを吸収液に吸収させて、非酸性ガスを酸性ガスから分離して吸収塔13から回収する。吸収塔13内の温度より高い温度に維持した再生手段17の上部に、酸性ガスを吸収した吸収液を供給する。これにより吸収液から酸性ガスの大部分を放出させて回収し、吸収液を再生する。再生された吸収液を減圧して吸収液に残存する酸性ガスを放出させることにより、吸収液から酸性ガスを放出させて回収し、この吸収液を吸収塔13の上部に供給する。 (もっと読む)


101 - 120 / 146