説明

Fターム[4D076EA07]の内容

Fターム[4D076EA07]に分類される特許

1 - 10 / 10


【課題】従来の冷却塔の運転では、外気状況を把握していないので、外気状況が変化すると供給水温が変化していた。また、外気状況を見ている場合でも、外気状況に応じた省エネを考慮したものではなかった。
【解決手段】冷却器10と、冷却器との間で循環する冷却水を冷却する循環ユニット11と、外気湿球温度センサ24と、循環ユニットを制御する制御装置22を有し、前記循環ユニットは、冷却塔30と、冷却水を冷却器に送る送水パイプ32と、冷却器から冷却水を返す戻りパイプ34と、送水パイプと戻りパイプの間を連通するバイパスパイプ36と、バイパスパイプに配設されたバイパス弁37と、戻りパイプに設けられた絞り弁35と、冷却塔の出口に設けられた出口水温センサ38と、冷却器の手間に設けられた供給水温センサ39を含み、制御装置は、それぞれの球温度センサの検出値に応じて、冷却水の温度が一定になるように循環ユニットを制御する。 (もっと読む)


【課題】長時間の連続運転が可能な冷却トラップ装置及び運転方法を提供する。
【解決手段】第1トラップ槽11aの蒸気流入弁、排気弁、高圧冷媒弁及び圧縮機吸入弁を開いてガス流入弁及び液体導入導出弁を閉じ、第1トラップ槽で溶媒蒸気を冷却して捕集する蒸気捕集工程を行っているときに、第2トラップ槽11bでは、蒸気流入弁、排気弁、高圧冷媒弁及びガス流入弁を閉じて液体導入導出弁を開き、加熱槽から吸引した除霜用液体で第2トラップ槽内の霜を加熱溶解させて液化する加熱溶解段階と、ガス流入弁を開いて第2トラップ槽内にガスを導入して液体を加熱槽に戻す液体排出段階と、液体導入導出弁及びガス流入弁を閉じて排気弁及び予冷弁を開き、第1トラップ槽の蒸発器から導出したガス状冷媒を第2トラップ槽の蒸発器を通す予冷段階とを含む再生工程を行う。 (もっと読む)


【課題】運転の心臓部である真空ポンプやコンデンサを廃止して消費電力や設備費の抑制を図る。
【解決手段】内部が減圧可能なフラッシュドラム1と、該フラッシュドラムの上部に設置されると共に多数の被加熱流体通過管5を有する多管式熱交換器2又はプレート型熱交換器と、前記フラッシュドラムにおいて高粘度重合液Pから揮発分離された揮発性物質Bを導入して凝縮させるジェットコンデンサ9と、該ジェットコンデンサで凝縮された凝縮液Cを回収するポット12と、該ポット内の凝縮液を前記ジェットコンデンサに作動液として供給する凝縮液循環路31と、該凝縮液循環路に設けた循環ポンプ32と、該循環ポンプの下流側に設けた冷却器33により構成する。 (もっと読む)


冷却器(6)を有する回転式蒸発装置(1)において、冷却器(6)内への、冷却媒体の入口(14)及び出口(16)に複数の温度センサ(15,17)が配置されていて、冷却器(6)を貫流する冷却媒体の流量が決定される。複数の温度センサ(15,17)における温度差(X)の増加及び減少から、冷却器(6)内における凝縮の開始若しくは終了が導き出される。前記温度(X)差から、凝縮された留出物(10)の量が決定され、留出量の調整が行われる。ヒータ(11)の加熱出力及び/又はシステム内の圧力を調整することによって、冷却器(6)の負荷が、前記温度差(X)に関連して調整される。
(もっと読む)


【課題】内燃機関を冷却する循環冷却水の有する熱量を効率よく利用可能な造水装置を提供することを目的とする。
【解決手段】造水装置1は、内燃機関2と、前記内燃機関2を冷却するための循環冷却水を熱源として海水から淡水を製造する複数の造水器3、4と、前記内燃機関2と前記複数の造水器3、4を接続させると共に、前記循環冷却水を循環させる循環管路5と、前記循環管路5における前記内燃機関2の出口側冷却水の温度を検知する温度センサT1と、前記複数の造水器の造水量を制御する制御部7と、を備える。前記制御部7は、前記温度センサT1からの温度信号に基づいて、前記複数の造水器3、4の造水量を制御する。 (もっと読む)


【課題】既存の脱塩ユニットの「ブライン再循環流」したがってMSF性能が増大するように改善することおよびフラッシュチャンバの熱交換チューブ内のブラインの速度増大を防止することにある。
【解決手段】ブライン再循環回路を改善することにより脱塩プラントの生成量を増大させるたの、新規な方法および新規なプラントを開示する。少なくともブラインヒータ(1)と、多段フラッシュ(MSF)蒸留ユニット(2)の脱塩ゾーンと、オプショナルな別体の脱気器(5)とを有し、海水が脱気されかつ再循環ブラインとして熱回収セクション内にポンプ圧送され、ブラインが凝縮されかつ留出物が獲得される構成の塩水脱塩方法およびプラントにおいて、少なくとも1つのバイパスライン(22)を設けることにより、再循環ブラインが、熱回収セクションの少なくとも一部を迂回することを特徴とする。 (もっと読む)


本発明は、薬剤の溶液から乾燥したまたは本質的に無溶媒の粒子の組成物を提供する噴霧乾燥システムおよびその作動のための方法に関する。このシステムは、上昇ガス流に対して前記反応器の頂部から下降する溶液のエアロゾル小滴が供給されるプロセス流れから溶媒の向流除去ができるように配置される概ね垂直の管式反応器を備える。この反応器は、エアロゾル発生デバイスの出口から乾燥粒子捕集デバイスまでプロセス流れを移送するための多孔プロセス・チューブを含む。膜スリーブは、前記プロセス・チューブの周囲領域を本質的に取り囲み、上昇ガス・ストリームから下降するプロセス・ストリームを分離する。気化した溶媒は、プロセス・ストリームから上昇ガス・ストリームへと移送される。反応器ハウジングは、前記プロセス・チューブおよび膜スリーブを密封的に覆い、プロセス流体を導入および/または除去するための手段が設けられる。
(もっと読む)


【課題】溶剤を含有する溶剤含有ガスから溶剤を効率よく回収する。
【解決手段】溶剤含有ガスを、冷却器5に冷媒が供給されていない側の第一熱交換器1に供給した後、冷却器6に冷媒が供給されている側の第二熱交換器2に供給することを交互に繰返すようにして、第二熱交換器2内では、ガス中に含まれる溶剤を凝縮させて回収する一方、第一熱交換器1内では、前回凍結した水分を供給される溶剤含有ガスで昇温させて解凍し、取り込んでいる溶剤と共に回収すると共に、該供給された溶剤含有ガスを予備冷却されることになる。 (もっと読む)


【解決手段】
本発明は、クメンヒドロペルオキシド(CHP)の分解によるフェノール及びアセトンを生産する工程の濃縮されたCHPの処理過程における取り扱い方法と装置を提供するものである。本発明の方法は、蒸留装置から濃縮されたCHPの実用量を蓄積するための管として、チューブ及びシェル型熱交換器を利用する。濃縮されたCHPは、その後前記蓄積された実用量から分解装置に注入される。チューブ及びシェル型熱交換器の使用は、非修飾タンク又はドラムを利用した設計よりも安全性を改善する。 (もっと読む)


凍結乾燥プロセスから廃液を再生するためのシステムは、凍結乾燥される材料から廃液を収集するために凍結乾燥サイクル中に使用される少なくとも1つの凝縮装置、および凝縮装置から材料を収集するために設置された1つの回収容器を有する。システムは、廃液から形成された氷晶が、凍結乾燥サイクル後に凝縮装置から除去され、再使用されるように回収容器へ入れられることを特徴とする。製品システムは、凍結乾燥された材料と凍結乾燥中に収集された廃液との両方を含む。
(もっと読む)


1 - 10 / 10