説明

Fターム[4G048AE03]の内容

重金属無機化合物 (15,216) | 原料 (2,871) | 鉱石 (28)

Fターム[4G048AE03]に分類される特許

1 - 20 / 28


【課題】 ニッケル酸化鉱石の湿式精錬プラントにおいて、原料となるニッケル酸化鉱石を処理して得られる鉱石スラリーから、クロマイトを効率的に回収する方法を提供する。
【解決手段】 ニッケル酸化鉱石からニッケル及びコバルトを回収する際に、ニッケル酸化鉱石から得られた鉱石スラリーからクロマイトを分離回収するクロマイトの回収方法であって、供給される鉱石スラリー中に含有される粒子の粒径差によって、所定の分級点に基づき鉱石スラリーを分離する粒径分離工程と、粒径分離工程において分離されたオーバーサイズの鉱石スラリーを、目標とする分級点に基づいて沈降濃縮し、クロマイトを回収する沈降分離工程とを有し、粒径分離工程において分離されるオーバーサイズの鉱石スラリー中の粗粒子含有率を30〜50%に調整する。 (もっと読む)


【課題】ヒ素と銅との分離性において、当該ヒ素浸出液中の銅濃度が<0.1g/Lと殆ど含まれない状態にまで分離可能であり、さらに薬剤コストが低廉で銅の早期回収を可能とする、非鉄製錬中間産物からの銅とヒ素との分離方法を提供する。
【解決手段】銅とヒ素とを含む非鉄製錬中間産物と元素状硫黄とを混合したスラリーへ、浸出操作を施して銅を含む浸出残渣とヒ素を含む浸出液とを得る、銅とヒ素との分離方法であって、浸出操作は、前期浸出と後期浸出とを逐次的に行うものであり、前期浸出は、上記スラリーへ酸素または酸素含有ガスを吹き込みながら行う酸化浸出であり、後期浸出は、上記スラリーへSOガスまたはSO含有ガスを吹き込みながら行う還元浸出する。 (もっと読む)


【課題】カソード還元法により良好な電流応答が得られるとともに、安価なステンレス板を使用することができる、電荷貯蔵材料、触媒、吸着材、イオン交換体として有用な高い結晶性を有する層状マンガン酸化物の製造方法を提供する。
【解決手段】アルカリ金属イオン共存下で過マンガン酸イオン(MnO)を電気化学的に還元することを特徴とするマンガン酸化物の製造方法である。添加するアルカリ金属イオンの過マンガン酸イオンに対する濃度比は10〜100の範囲にする。また、電極に印加する電位は+0.17〜−0.04V(対銀/塩化銀電極)の範囲にする。また、電極基板としてステンレス鋼やステンレス鋼よりも貴な金属からなる電極基板、酸化インジウムスズ(ITO)被覆ガラス電極および炭素電極の群から選ばれる少なくとも1種の電極基板を使用することができる。 (もっと読む)


本発明は、硫酸マンガン溶液に等モル量のBaS溶液又はSrS溶液を添加して十分に反応させて、固液分離し、固相を洗浄する工程1)と、工程1)での固液分離により得られた固相と脱イオン水とを混合し、スラリを作り、得られたスラリを濃硫酸で溶解させ、固液分離することで、MnSO溶液を得る工程2)と、得られたMnSO溶液に過酸化水素を適量で添加し、沸騰までに昇温し、溶液のpH値を5〜6に調節し、精密ろ過を行い、溶液を蒸発させ、結晶後乾燥させることで、MnSO・HO製品を得る工程3)と、を備える、硫酸マンガン一水和物の製造方法に関する。この方法は収率が高く且つコストが低く硫酸マンガン一水和物を製造することができる。 (もっと読む)


【課題】 硫酸マンガン溶液を製造する際に、マンガンの希硫酸溶解率が極めて高く、鉱滓量を極めて少なくできるマンガン鉱石還元物、また、このようなマンガン還元物を、容易にかつ経済的に製造できる方法を提供する。
【解決手段】 希硫酸へのマンガン溶解率が98.0%以上であり、かつ希硫酸への鉄溶解率が70%以上であることを特徴とするマンガン鉱石還元物及びその製造方法を用いる。 (もっと読む)


【課題】 硫酸マンガン製造に用いられるマンガン鉱石処理物であって、硫酸に溶解させたときのマンガン溶解率が高く、かつ、カリウム含量の低い、マンガン鉱石処理物を提供すること、さらに、このようなマンガン鉱石処理物を容易にかつ経済的に製造できるマンガン鉱石処理物の製造方法を提供する。
【解決手段】 硫酸マンガン製造用のマンガン鉱石処理物であって、硫酸へ溶解させたときのマンガン溶解率が98.0%以上であるマンガン鉱石処理物及びその製造方法を用いる。 (もっと読む)


ウラン濃縮方法の副生成物を、産業規模において効率的および費用効果的にフッ素を製造するためのフッ素源として用いる方法の提供。ウランフッ化物(Uxy、式中xおよびyは整数である)および酸化剤を含む混合物を反応容器中に装填する工程であって、反応容器は、閉じた底部セクションと、該底部セクションと離隔した開口部とを有する工程と;反応容器中で、ウランフッ化物および酸化剤を含む混合物を加熱して、少なくとも1種のウラン酸化物と非放射性気体生成物とを形成する工程と、反応容器内の混合物の深さを制御して、非放射性気体生成物の所望される反応収率および/または反応速度を実現する工程とを含むフッ素抽出方法。
(もっと読む)


【課題】ニッケル及びコバルトと鉄、アルミニウム及びマンガンその他の不純物元素とを含有する硫酸酸性水溶液から、鉄、アルミニウム及びマンガンその他の不純物元素と効率的に分離することにより、ニッケル工業材料の原料として効果的に利用することができる形態でニッケルを回収する硫酸酸性水溶液からのニッケルの回収方法を提供する。
【解決手段】下記の工程(1)〜(5)を含むことを特徴とする。
工程(1):前記硫酸酸性水溶液を酸化中和処理に付す。
工程(2):次いで、中和処理に付し、ニッケル及びコバルトを含有する混合水酸化物を分離回収する。
工程(3):前記混合水酸化物を、濃度50質量%以上の硫酸溶液中で溶解処理に付す。
工程(4):前記濃縮液を、燐酸エステル系酸性抽出剤を用いて溶媒抽出処理に付す。
工程(5):得られた抽出残液に、中和剤を添加して中和処理に付し、生成された水酸化ニッケルを分離回収する。 (もっと読む)


【課題】ニッケル及びコバルトを含有する硫酸水溶液に、硫化剤を添加して加圧下にニッケル及びコバルトを含む硫化物を製造する方法において、硫化物としてニッケル及びコバルトを高収率で回収するとともに、硫化水素ガスの利用効率を向上させることができるニッケル及びコバルトを含む硫化物の製造方法を提供する。
【解決手段】ニッケル及びコバルトを含有する硫酸水溶液に、加圧下に硫化剤を添加してニッケル及びコバルトを含む硫化物を製造する方法において、前記硫化剤は、主たる硫化剤として硫化水素ガスを反応容器内の気相中に供給するとともに、前記硫化物を製造する際に反応容器内から排出された未反応の硫化水素ガスを水酸化ナトリウム水溶液で吸収させて回収した水硫化ナトリウムを含む水溶液を液相中に供給することを特徴とする。 (もっと読む)


【課題】製造行程数を簡素化する四三酸化金属の製造方法を提供することを課題とする。
【解決手段】中和・酸化反応によって、酸化コバルト塩水溶液から酸化金属分散液を生成する第1工程と、前記第1工程で得られた酸化コバルト分散液を濾過及び洗浄する第2工程と、前記第2工程で濾過及び洗浄された酸化コバルト分散液を、四三酸化コバルトに転化させる温度領域の高温空気中に、分散し乾燥させる第3工程と、を有する。 (もっと読む)


【課題】高圧酸浸出法を用いたニッケル酸化鉱石の湿式製錬方法において、浸出工程以外の他工程のトラブルに際し、浸出工程が運転停止に追い込まれることを防止して、プロセス全体としての高い操業効率を維持することができるニッケル酸化鉱石の湿式製錬方法を提供する。
【解決手段】浸出工程以外の他工程のトラブルに際し、浸出工程において、鉱石スラリー7の受け入れと硫酸の添加とを停止するとともに、高圧酸浸出設備を構成する(c)の手段から排出された浸出スラリー8は、前記高圧酸浸出設備を構成する(a)の手段に移送することにより、該高圧酸浸出設備内で自己循環させることを特徴とする。(a)鉱石スラリー7を予備的に昇温昇圧する。(b)予備的に昇温昇圧された鉱石スラリーに硫酸を添加し、かつ高圧水蒸気と高圧空気とを吹込みながら浸出し、浸出スラリー8を形成する。(c)形成された浸出スラリーの加圧状態を解消する。 (もっと読む)


【課題】ニッケル酸化鉱石を高温加圧酸浸出し粗硫酸水溶液を得る工程(1)、脱亜鉛終液を得る工程(2)、製錬廃液を得る工程(3)、及び排ガス中の硫化水素ガスを除害処理する工程(4)を含む湿式製錬方法で、高ニッケル回収率を維持しながら、硫化水素ガスの利用効率を向上させる湿式製錬方法を提供する。
【解決手段】下記の(a)〜(d)の少なくとも1種の操作を採用することを特徴とする。(a)工程(3)の硫化反応槽の全容量(m)を、導入するニッケルの投入質量(kg/h)に対し、0.2〜0.9の比率に調整する。(b)工程(3)のスラリーを負圧下に曝気し回収した硫化水素ガスを工程(3)に添加する。(c)工程(3)の硫化反応槽から排ガスを抜き出し、工程(2)に添加する。(d)工程(3)の製錬廃液と工程(4)の排ガスを、向流接触させた後、排ガスを再び除害塔へ導入し、除害塔廃液を工程(3)の硫化反応槽に装入する。 (もっと読む)


【課題】塩化炉への圧力の印加および調整を効率的に行うことができ、かつ製造コストの低減を図ることができる金属塩化物の製造装置および製造方法を提供する。
【解決手段】金属含有原料を塩素ガスで塩素化することにより金属塩化物を生成する塩化炉と、金属塩化物を含むガスを塩化炉から排出するためのガス排出流路とを備えた金属塩化物の製造装置において、ガス排出流路に、塩化炉内を加圧する複数の狭窄部を直列に設ける。狭窄部は、塩化炉内で生成した金属不純物塩化物の凝縮物や鉱石あるいはコークスの付着物で構成されている。狭窄部の内径は、狭窄部に併設した口径維持手段を適宜稼働させることにより適切な範囲に維持できる。前記した複数の狭窄部を設けることにより、塩化炉内の圧力を0.1MPa以上の高圧域に保持することができる。 (もっと読む)


周期表中の第4〜6族、第8〜12族および第14族からの回収可能な金属を含有する鉱石、スラグ、ミルスケール、スクラップ、粉塵および他の資源を塩素化する方法。その方法は、a)塩化アルミニウムと、アルカリ金属塩化物およびアルカリ土類金属塩化物のうちから選択される少なくとも1種の他の金属塩化物とから本質的に成る液体溶融塩溶融物を形成する工程と、前記液体塩溶融物中の塩化アルミニウム含有量は10重量%を超過することと、b)前記液体塩溶融物中に前記回収可能な金属資源を導入する工程と、c)前記塩化アルミニウムを塩素供与体として前記回収可能な金属資源と反応させて金属塩化物を形成する工程と、前記金属塩化物は前記塩溶融物中に溶解されることと、d)生成した金属塩化物を前記塩溶融物から回収する工程とを含む。 (もっと読む)


【課題】加圧された反応容器内に、ニッケル及びコバルトを含む硫酸水溶液を導入し、かつ気相中に硫化水素を含む硫化用ガスを供給することにより、反応容器内に供給する硫化ガス中の硫化水素ガス濃度が、操業の定常状態に用いられる95〜100容量%からそれ未満の濃度に低下した際に、ニッケル及びコバルトの高収率を維持する事ができる硫化物の製造方法を提供する。
【解決手段】下記(1)又は(2)の操作を採用する。(1)硫化水素ガス濃度が85〜90容量%の場合において、反応容器内に導入するニッケル及びコバルト投入量を、定常状態のときの投入量に対し質量割合で30〜35%に減少させる。(2)硫化水素ガス濃度が90容量%を超える場合において、反応容器内に導入するニッケル及びコバルト投入量を、定常状態のときの投入量に対し質量割合で55〜60%の割合に減少させる。 (もっと読む)


【課題】ウラン資源を有効活用でき、腐食性廃棄物を発生せず、製造工程から排出される廃棄物量が少なく、少ない数の工程で、フッ化ウラニル(UO)を製造する方法を提供すること。
【解決手段】ウラン化合物を溶解する第1の工程と、前記ウラン化合物を溶解した溶液に沈殿剤を添加して(NHUOの沈殿物を得る第2の工程と、前記第2の工程で得た沈殿物を分離回収して乾燥する第3の工程と、前記第3の工程で乾燥されたウラン沈殿物を加熱して熱分解によりフッ化ウラニルに変換する第4の工程を含むフッ化ウラニル(UO)の製造方法。 (もっと読む)


【課題】非鉄製錬中間産物等に含まれる砒素を結晶質のスコロダイトへ、80℃以下の反応温度で効率よく変換する砒素の処理方法を提供する。
【解決手段】5価の砒素溶液に2価の鉄塩を共存させ、そこへ酸化剤を加えてスコロダイトを生成させる際、前記5価の砒素溶液に、予め種晶を添加しておく。 (もっと読む)


【課題】非鉄製錬中間産物からスコロダイトの結晶を生成させる砒素の処理方法において、生成するスコロダイトの結晶の濾過性、安定性を損なうことなく、結晶化工程の所要時間の短縮を可能とする方法を提供する。
【解決手段】非鉄製錬中間産物から砒素を浸出し浸出液を得る浸出工程と、当該浸出液に含まれる3価砒素を5価砒素へ酸化し、調整液を得る液調整工程と、当該調整液へ鉄塩と酸化剤とを加え、当該調整液中の砒素をスコロダイト結晶へ転換する結晶化工程とを行い、さらに、当該結晶化工程において、当該調整液へ鉄塩を添加し、第1の酸化剤を添加する第1の結晶化工程と、第1の結晶化工程で得られた調整液へ、第1の酸化剤より強い酸化力を有する第2の酸化剤を添加する第2の結晶化工程とを行う。 (もっと読む)


【課題】本発明は、カルシウム化合物や固体炭素の添加及び熱処理を組み合わせることで、かつて無い分離効率を出すことが可能なプロセスを提供する塩化揮発法によるレアメタルの分離精製方法である。
【解決手段】第一工程は原料へカルシウム化合物を添加し、不活性雰囲気下で加熱処理する熱処理工程、第二工程は前記カルシウム処理試料を塩素気流中で加熱し、タングステン、ニオブ、ニッケル、コバルトの揮発分離を行い、タンタル、クロム、チタンの高濃度固体化合物を作製する塩化揮発処理工程、第三工程は前記高濃度固体化合物に対して固体炭素を混合し、塩素雰囲気下で加熱して含有レアメタルであるタンタル、クロム及びチタンなどを揮発分離する塩化揮発処理工程、第四工程は原料粉体もしくは高濃度固体化合物から分離した金属塩化物を冷却区間の温度調整により沈積させ、各元素の単体分離を行う分離濃縮工程である。 (もっと読む)


溶融アルカリ金属メタレート相分離の生成物を、金属原料から精製された金属へ処理することができる。金属原料には、天然鉱石、再生利用された金属、金属合金、不純な金属貯蔵、リサイクル材料などがある。本方法は、高価値金属または金属酸化物を金属原料から生成または溶離するとき、プロセス媒体または溶媒として溶融アルカリ金属メタレートを使用する。ケイ酸塩ガラス分離相使用したガラス化方法を、そのまま調合することができ、またはシリカガラス相にわたって分布している微粒子相とともに調合することができ、そして連続ガラス相の内部に封じ込め、そして固定することができる。アルカリ金属タングステン酸塩からタングステン金属を得ることができる。再利用されたタングステンスクラップ、タングステン炭化物スクラップ、タングステン酸化物を一般的に含む低品位タングステン鉱石または多様な酸化状態における他の形態を含む多様なタングステン原料から、概して、きれいに分けられたタングステン金属粉を得ることができる。 (もっと読む)


1 - 20 / 28