説明

Fターム[4G075EB23]の内容

物理的、化学的プロセス及び装置 (50,066) | 装置−形状、型式 (3,726) | 管型 (853) | 曲管、不均一な径を有する管 (144) | U字管、蛇行U字管 (40)

Fターム[4G075EB23]に分類される特許

1 - 20 / 40


【課題】スラグを乱すことなく気液界面の面積を拡大するマイクロリアクタを提供する。
【解決手段】互いに気液界面又は液液界面を形成する流体試料3,4が交互に供給される供給流路10と、供給流路10を介して供給された試料3,4が交互に連続するスラグを形成するスラグ形成流路11と、スラグ形成流路11よりも幅広に形成され、光を照射することにより、試料の界面において化学反応を進行させる反応流路12と、スラグ形成流路11と反応流路12との間に介在し、一端をスラグ形成流路11と連続され、他端を反応流路12と連続され、漸次拡幅された拡幅部20と、反応流路12から連続し、反応した試料を排出する排出流路13とを有する。 (もっと読む)


【課題】筒状MEA内を流れるガスの温度を高めて分解効率をより高めることができるとともに、外部配管やこれを接続する接続部材、及びこれらの間に設けられるシール構造が熱により損傷するのを防止し、さらに製造コストを低減させることを課題とする。
【解決手段】筒状の固体電解質層1と、この固体電解質層の内周部に積層形成された第1の電極層2と、上記固体電解質層の外周部に積層形成された第2の電極層5とを有する筒状MEAを用いて構成されるガス分解装置100であって、上記筒状MEAを収容して加熱する加熱容器と、上記筒状MEAに連続して設けられるとともに上記加熱容器から突出する突出部と、上記突出部の開口端部に設けられた接続部材と、軸を上下方向に配向した姿勢で上記筒状MEAを保持する保持手段82とを備えて構成されている。 (もっと読む)


【課題】ランニングコストを抑えながら大きな処理能力を得ることができるとともに、筒状MEA内を流れるガスの温度を高めて分解効率をより高めることのできる、ガス分解素子を提供する。
【解決手段】筒状の固体電解質層1と、固体電解質層の内周部に積層形成された第1の電極層2と、外周部に積層形成された第2の電極層5とを有する筒状MEA7より構成されるガス分解素子10の、筒状MEA内にガス誘導パイプ11を設け、この一端部よりガスを導入し、第1の電極層に作用させて分解するように構成するとともに、誘導パイプ内に、流動ガスとの熱伝導を促進する加熱促進手段50を設ける。 (もっと読む)


【課題】
種々の触媒試作品の中から、数十〜数百時間の長期評価、触媒充填量を数百グラム〜キログラムオーダーに増やしたミゼットプラント評価に値するサンプルを抽出する一次スクリーニングを如何に行うための多機能型触媒評価装置に関する技術を確立する。
【解決手段】
流通反応系および循環反応系を反応中に簡単に切り替え、同じ触媒について反応形式が異なる計測を繰り返し行う。さらにまた、循環反応系には効率的な流体循環と、触媒粉などによる汚染時に洗浄が簡単に出来る逆止弁を備える。 (もっと読む)


【課題】高効率の触媒反応を可能とする信頼性の高いマイクロリアクターと、そのようなマイクロリアクターを簡便に製造する方法を提供する。
【解決手段】マイクロリアクター1を、内部に触媒Cを担持した金属製のマイクロリアクター本体2と、このマイクロリアクター本体2の少なくとも1つの面に電気絶縁層11を介して配設された発熱体14とを有するものとし、電気絶縁層11は、マイクロリアクター本体2側から軟質金属酸化物膜12と金属酸化物膜13が積層された多層構造とし、軟質金属酸化物膜12の硬度は、SAICASによる切削時の水平方向の荷重値が1〜10mN/sの範囲、垂直方向の荷重値が1〜10mN/sの範囲のものとする。 (もっと読む)


【課題】 (1)小型で、効率よく、有害ガスを除害でき、(2)低いランニングコストで稼動することができる、アンモニア分解装置を提供する。
【解決手段】 アンモニア分解装置10は、対をなす電極2,3、および該対をなす電極に挟まれる電解質1で構成されるMEAを備え、対をなす電極には、それぞれ、気体を導入するための流路11,12が設けられ、そのうち少なくとも化学成分を含む気体が導入される電極の流路に、少なくとも一つの折り返し部Tが設けられており、その折り返し部を有する流路が、連続気孔を有する金属多孔体7または8で占められていることを特徴とする。 (もっと読む)


【課題】マイクロ流路デバイスにおいて、溶液中の試料を高性能に分離分析する。
【解決手段】マイクロ流路デバイスは、複数の直線流路21と隣り合う直線流路21、21の端部を接続する湾曲流路22とを有している。湾曲流路の幅wは、直線流路の幅tよりも小さい。湾曲流路の曲率半径rは、下記式(1)で表されるaの値が下記式(2)で表される湾曲流路の形状に基づく理論段高Hの極大点におけるaの値以下になるように設定されている。(1)


(2)


但し、u:湾曲流路22における溶液の流路通過速度、γ:湾曲流路22内に存在する基材による分子拡散阻害因子、D:溶液の分子拡散係数 (もっと読む)


【課題】微小空間を用いた精密なマイクロ化学装置での均一な大きさの微小粒子生成や、反応溶液の均一な送液を、長期間に渡り、連続、繰り返し可能とするための微小流路構造体を用いたマイクロ化学装置および微粒子製造方法を提供する。
【解決手段】2以上の流体を導入する流体導入口と、2以上の流体が交わり、流体の化学処理あるいは微粒子や気泡を生成する微小流路を有し、化学処理を行った流体あるいは生成した微粒子を含有する流体を排出する流体排出口を有する微小流路構造体を用い、微小流路構造体に2以上の流体を供給するための手段と、微小流路構造体で流体に対し化学処理を行って生成した生成物、あるいは流体により生成した微粒子を回収するための手段と、微小流路構造体の少なくとも排出側に圧力計測手段1Cを備えたマイクロ化学装置、その洗浄方法及び微粒子製造方法を用いる。 (もっと読む)


本発明は、1つのプレート面に反応管(21)が収容されている溝状の凹部(22)を有するプレートボディ(1)を備えており、前記反応管は前記プレートボディ(1)の外面に接続端部(16)を有するマイクロリアクタに関する。さらに本発明は反応管、リアクタを製造するためのキットならびに化学反応を引き起こすためのそれらの使用に関する。
(もっと読む)


【課題】流動触媒を用いた反応後に連続的に触媒を回収可能な触媒の回収方法、及び、マイクロリアクタを提供すること。
【解決手段】触媒を含む反応液を微小流路内で送液する反応工程、該反応液に触媒分離液を合流させて、触媒粒子を成長させる成長工程、及び、成長した触媒粒子を回収する回収工程、を含むことを特徴とする触媒の回収方法。触媒及び前記触媒と反応する対象物を含む反応液を送液する第一の微小流路と、前記反応液と、触媒分離液とを送液する第二の微小流路と、前記第二の微小流路から、成長した触媒粒子を回収する回収流路とを有することを特徴とするマイクロリアクタ。 (もっと読む)


【課題】外部への熱の影響が抑制されて安全性が高いとともに高効率の触媒反応が可能なマイクロリアクターを提供する。
【解決手段】マイクロリアクター1を、筐体2と、この筐体内の真空密閉キャビティ3内に配設されたマイクロリアクター本体4と、マイクロリアクター本体の少なくとも1つの面に位置する発熱体7とを備えるものとし、発熱体7は、筐体2を貫通するリードピン11を介して外部電源と接続可能であるとともに、このリードピン11と発熱体7を温度ヒューズ12を介して接続する。 (もっと読む)


反応チャンバー中の温度を制御するための装置が開示される。装置は:ハウジングの内部容積内に排置された反応チャンバーを保持するよう寸法取りされたハウジング、およびハウジングの内部に排置される第1の温度制御嚢を含む嚢アセンブリを含み、第1の温度制御嚢は温度制御流体を受容するよう構成され、且つ温度制御流体を受容した後に反応チャンバーの外面の少なくとも一部と接触する柔軟性、熱伝導性表面を含む。嚢熱循環器、温度制御嚢アセンブリおよび反応チャンバーにおいて熱循環を生成するための方法も開示される。
(もっと読む)


【課題】
目的は、多層流れにおける両端部分の混合性能を向上させ、流体成分を高速に混合させることができる反応収率の高い反応器を提供することにある。
【解決手段】
物質Aを含む流体1と、物質Bを含む流体2とを交互に配置した多層流を合流部3を経て反応流路4に流入させ、反応流路4の下流には曲がり管6が設置され、曲がり管6によって曲がる方向は流れの多層化方向と直角方向であり、反応流路4入口から曲がり管6入口までの距離8は、2流体の混合時間と流体の断面平均流速を乗じて算出される混合距離未満となるように構成した。 (もっと読む)


磁性マイクロビーズ(MM)上での小型の結合アッセイを実施するためのマイクロ流体チップ装置(MCD)およびその使用を記載する。MCDは、PCRを含み、小型のアフィニティー捕捉による転写分析(TRAC)アッセイを行うのに特に有用である。MCDは、シール可能な液体接続部を備えた少なくとも1つの反応チャンバーを含み、各チャンバーに少なくとも1つの流体ピラーフィルタを含む。流体ピラーフィルタはロッドからなり、MMが通過できる空間を有する。シール可能な液体接続部は、反応チャンバーに液体を供給し、そこで気泡が除かれる。液体流は、磁気ロッドを用いて操作されるMMと接触する。液体接続部は、液体を交換する間、ピラーフィルタの後方にまたはチャンバー内にMMをトラップすることを可能にする。 (もっと読む)


【課題】より効率的に流体への磁気処理効果を高めることができる流体磁気処理装置を提供する。
【解決手段】一端に流体入口12及び他端に流体出口14を有する筒状容器10と、該筒状容器内に軸線に沿って配置された複数の磁石20と、該複数の磁石における、隣り合う磁石の対向する磁極間に流路60を形成すべく前記磁石を保持する保持手段(30、40)を備える。側面視において筒状容器内に矩形パルス状に流路が形成される。 (もっと読む)


【課題】燃料電池の周辺機器として使用されるマイクロリアクタにおいて、マイクロ流路の壁面に配置された触媒の剥離を防止できる反応器およびその製造方法を提供する。
【解決手段】反応器1は、一面で開口した箱体3と、箱体3の開口を閉塞する底板4と、箱体3及び底板4によって形成された内部空間に収容され、その内部空間を仕切る複数の仕切板11〜17と、仕切板11〜17の両面に形成された複数の凹部71に配置された触媒7と、を備える。 (もっと読む)


【課題】 既存のマイクロガス吸収装置では、気体と液体を同じ方向(並流)に流すことはできるが、互いに逆方向(向流)に流すことは困難である。そのため既存のマイクロ装置では、気液の接触部を長く取っても、一理論平衡段の抽出効果しか期待できないという欠点がある。
【解決手段】 本発明では、中空糸膜の内側をガス、外側を液が流れる気泡塔を考案した。気液の流れを分断することにより、細管内で気液を向流に流すことが可能になった。気液の接触は、ガスが流れている中空糸膜の内側で行なわれるが、液は中空糸膜の内と外を自由に行き来できるので、吸収された物質も液本体の中に溶け込んでいくことが出来る。
さらに装置をU字型にして液のホールドアップを一定に保ちながら、溢れた液が流出できるような構造にした。このことにより、液のホールドアップを一定に保つための制御バルブ等を、液の出口部に設置する必要がなくなった。 (もっと読む)


2種類以上の不混和液を接触させる方法であって、0.2から15ミリメートルの範囲の特徴的な断面直径[11]を有する反応体通路[26]であって、その長手方向に沿って、順番に、反応体の進入のための2つ以上の入口[A,BまたはA,B1]、その中を通る流体においてある程度の混合を誘発する形状または構造を有することにより特徴付けられる最初のミキサ通路部分[38]、少なくとも0.1ミリリットルの容積および略滑らかで連続した形状または構造を有することにより特徴付けられる最初の滞留時間通路部分[40]および各々の直後に対応するそれぞれの追加の滞留時間通路部分[46]が続いている1つ以上の追加のミキサ通路部分[44]を有する反応体通路[26]を備えた一体型熱加減微細構造流体装置[10]を提供し、2種類以上の不混和液を反応体通路に流動させる各工程を有してなり、2種類以上の不混和液が、これらの2種類以上の不混和液の全ての流れが最初のミキサ通路部分[38]を流動するように2つ以上の入口[A,BまたはA,B1]に流される方法が開示されている。この方法を行える一体型装置[10]も開示されている。
(もっと読む)


【課題】直接通電デバイスを提供する。
【解決手段】金属細管の両端に交流電圧を印加して、細管自身に流れる電流によるジュール熱を利用して細管内部を流通する流体を加熱する直接通電方式の加熱デバイスにおいて、電圧を印加する電極が上記金属細管の上流部、中間部、及び下流部の3ヶ所に設置されており、中間電極部に高圧電圧を、上流電極部及び下流電極部にコモン電圧(0ボルト)を印加する方式とすることにより漏電対策機能を付したことを特徴とする直接通電加熱デバイス。
【効果】本発明の直接通電加熱デバイスにより、従来材では対応が困難であった漏電の問題と熱膨張の問題を確実に解消することができる。 (もっと読む)


【課題】高効率の触媒反応を可能とする信頼性の高いマイクロリアクターと、このマイクロリアクターを簡便に製造することができる製造方法を提供する。
【解決手段】マイクロリアクターを、1組の金属基板が接合された接合体と、この1組の金属基板の少なくとも一方の基板の接合面に形成された微細溝部で構成されたトンネル状流路と、このトンネル状流路に連通している原料導入口およびガス排出口と、トンネル状流路に形成された触媒担持層と、この触媒担持層に担持された触媒と、接合体の少なくとも1つの面にセラミックス絶縁層を介して配設された発熱体とを備えるものとし、セラミックス絶縁層を備える接合体の表面の中心線平均粗さ(Ra)を0.05〜0.10μmの範囲、10点平均粗さ(Rz)を0.4μm以下とする。 (もっと読む)


1 - 20 / 40