説明

Fターム[4G077KA09]の内容

結晶、結晶のための後処理 (61,211) | 圧力を加えるもの(例;水熱法) (360) | 成長条件(温度、圧力等) (65)

Fターム[4G077KA09]に分類される特許

41 - 60 / 65


【課題】特定元素の硫化物又は複合硫化物の微粉末を含む微粒子コンポジットを得ることを目的とする。
【解決手段】モリブデン(Mo)、ロジウム(Rh)、ルテニウム(Ru)、レニウム(Re)から選択される元素を含む化合物の1種以上と、硫黄(S)を含む化合物とから、混合液を作製する工程と、該混合液を水熱反応又はソルボサーマル反応させる工程とを含む、モリブデン(Mo)、ロジウム(Rh)、ルテニウム(Ru)、レニウム(Re)から選択される1種以上の元素の硫化物又は複合硫化物の微粉末を含む微粒子コンポジットの製造方法、及び得られた、モリブデン(Mo)、ロジウム(Rh)、ルテニウム(Ru)、レニウム(Re)から選択される1種以上の元素の硫化物又は複合硫化物の微粉末を含む微粒子コンポジット。 (もっと読む)


露出した{10−10}m面および露出した(000−1)窒素極性c面を有する多面体形状の窒化ガリウム結晶であって、露出した(000−1)窒素極性c面の表面積は10mmより大きく、露出した{10−10}m面の全表面積は(000−1)窒素極性c面の表面積の半分より大きいことを特徴とする窒化ガリウム結晶を提供する。GaNバルク結晶は、従来用いられているより高い温度と温度差で行う安熱法により、上方領域および下方領域をもつ高圧容器を有する耐圧窯を用いて成長された。高圧容器の下方領域の温度は550℃以上であり、高圧容器の上方領域の温度は500℃以上に設定され、下方領域および上方領域の間の温度差は30℃以上に保持される。c軸に沿って最長寸法を有し、露出した大面積のm面を有するGaN種結晶が用いられる。
(もっと読む)


【課題】 圧電体や蛍光体等として有用なペロブスカイト酸化物において結晶の方位を揃えて結合した単結晶を得ることのできる技術を提供する。
【解決手段】 一般式MTiO3:Xで表されるペロブスカイト酸化物(Mは、Ba、Ca、SrもしくはPb、またはそれらの混合系を表し、Xは、存在するときは、PrまたはEuを表す)の単結晶を製造する方法であって、(1)上記酸化物MTiO3:Xのナノ結晶粒子、または(2)Tiのアルコキシド、上記金属Mのアルコキシド、水酸化物、ハロゲン化物、ジケトネートもしくは硝酸塩、および、Xが存在するときは、Xのアルコキシドから成る混合物を、水およびアルコールを含む媒質に分散させて70°〜200℃の温度下に水熱処理する工程を含む方法。ナノメートルサイズの結晶がエピタキシャル結合しているペロブスカイト酸化物単結晶が得られる。 (もっと読む)


【課題】ガリウム含有窒化物結晶の単結晶、その製造方法及び装置を提供する。
【解決手段】ガリウム含有窒化物結晶を製造するアンモノ塩基性方法において、オートクレーブ1内の溶解領域13を低温領域としてフィードストック16を配置し、結晶化領域14を高温領域として種結晶17を配置する。これにより、ガリウム含有窒化物を超臨界窒素含有溶媒中にアルカリ金属含有成分の存在下に少なくとも1つの種結晶17上に結晶させる。 (もっと読む)


【課題】原料や種結晶としてリチウムガレートを用いることなく、水熱合成法によってリチウムガレート単結晶を得るリチウムガレート単結晶の製造方法、及びこの方法によって得られるリチウムガレート単結晶を提供する。
【解決手段】水酸化リチウム及び/又は炭酸リチウムを含んだアルカリ溶媒の存在下で、酸化ガリウム多結晶を原料にして、水熱合成法によりリチウムガレート単結晶を得るリチウムガレート単結晶の製造方法、及びこの方法によって得られたリチウムガレート単結晶である。 (もっと読む)


【課題】一度の育成過程で、サイズの異なる複数種の人工水晶を同時に製造可能な人工水晶の製造装置、かかる人工水晶の製造装置を用いた人工水晶の製造方法、およびかかる人工水晶の製造方法を用いて製造されたサイズの異なる複数種の人工水晶を提供すること。
【解決手段】本発明の人工水晶の製造装置1は、溶解液5、水晶原料11および種水晶12を収納するチャンバー2と、加熱手段9とを有している。また、チャンバー2内には、第1のバッフル板3とこの第1のバッフル板3より上方に第2のバッフル板4とが、それぞれチャンバー2内の空間を仕切るように設けられている。これにより、チャンバー2内には、各空間21、22、23が画成されている。そして、第2の空間22と第3の空間23との間に過飽和度差を設けることにより、各空間22、23にそれぞれ収納された種水晶の成長速度を互いに異ならせることができる。 (もっと読む)


【課題】構造材料用セラミックス及び固体電解質として利用可能な高温処理を必要としない高結晶性かつ平均粒子径が10nm以下の正方晶安定化ジルコニア微粒子を提供する。
【解決手段】基本構造が一般式(1−x)ZrO・xY(式中のxは0.02〜0.1の数であり、YはSc,Y,Ybのいずれかを含む希土類金属である。)で表される安定化ジルコニア微粒子、及び、イットリウムなどの希土類金属イオンとジルコニウムイオンとの混合水溶液をアルカリ水溶液でpH8以上に調整し、亜臨界ないし超臨界状態の水を媒体として、300−400℃で短時間水熱反応させることにより製造してなる、一次粒子径が10nm以下であり、その粒子は残存水酸基が少なく、凝集のない、結晶化度が高い安定化ジルコニア微粒子。 (もっと読む)


【課題】窒化ガリウム単結晶を簡単な操作で迅速に製造することができる方法を提供する。
【解決手段】シード、窒素元素を含有する溶媒、およびハロゲン化ガリウムペンタアンモニエート(ここでいうハロゲンは塩素、臭素または沃素である)を入れたオートクレーブ内の温度および圧力を、溶媒が超臨界状態及び/又は亜臨界状態となるように制御してシードの表面にアモノサーマル的に窒化ガリウムを結晶成長させる。オートクレーブ内にさらに鉱化剤を入れる。 (もっと読む)


【課題】大きな塊状単結晶が収率良く、安価かつ安定的に得られる周期表13族元素の窒化物の塊状単結晶の製造方法を提供する。
【解決手段】アンモニアを溶媒とするアモノサーマル法による結晶成長を行う方法において、出発原料として、相対的に平均粒径の異なる2種の結晶を使用し、種結晶を配置した育成部および/または出発原料を供給した原料充填部に超音波を印可しながら結晶成長を行う。また、反応容器内の結晶成長時の温度差にともなって生じる溶媒の対流の集束点近傍に、析出物捕集ネットを設ける、輸送流中の微結晶あるいは析出物を捕捉するとともに、この捕集ネット上に選択的に微結晶を析出させる。 (もっと読む)


【課題】大口径のC面を有する窒化物半導体や、m軸方向に厚い窒化物半導体を効率よく簡便に製造することができる実用的な製造方法を提供する。
【解決手段】六方晶系の結晶構造を有するシード10、窒素元素を含有する溶媒、周期表13族金属元素を含む原料物質9、及び鉱化剤を入れたオートクレーブ3内の温度および圧力を、溶媒が超臨界状態及び/又は亜臨界状態となるように制御してシード10の表面にアモノサーマル的に窒化物半導体を結晶成長させる工程を含む窒化物半導体の製造方法において、シード10上のm軸方向の結晶成長速度をシード10上のc軸方向の結晶成長速度の1.5倍以上にする。 (もっと読む)


超臨界アンモニアと窒素の混合ガス中でIII族窒化物結晶を成長させる方法と、この方法で成長されたIII族結晶。III族窒化物結晶は、超臨界アンモニア中の反応容器の中で、多結晶のIII族窒化物、非晶質III族窒化物、III族金属、またはこれらの混合物である原材料または栄養剤と、III族窒化物単結晶である種結晶を用いて成長される。高品質III族窒化物結晶を成長させるために、結晶化温度は550℃以上に設定される。理論計算によれば、この温度でのNH3分解はかなり大きいことが示される。しかしながら、NH3分解は反応容器をNH3で充填した後に更なるN2圧力を加えることによって回避できる。
(もっと読む)


AlN、InGaN、AlGaInN、InGaNおよびAlGaNInNの1つから選択される窒化物結晶および結晶組成物を成長させる方法が提供される。この組成物は、単一の核から成長し、直径が少なくとも1mmであり、横歪みおよび傾斜境界がなく、約10cm−2未満の転位密度を有する真の単結晶を含む。 (もっと読む)


【課題】混合比、ガス圧力および温度を制御してIII族窒化物結晶を結晶成長する結晶成長装置を提供する。
【解決手段】圧力/温度相関図PT1〜PT3は、金属Naと金属Gaとの量比を示す混合比r=0.4,0.7,0.95にそれぞれ対応して決定される。圧力/温度相関図PT1〜PT3は、GaN結晶を溶解する領域(領域REG11,REG21,REG31)と、GaN結晶を種結晶から結晶成長する領域(領域REG12,REG22,REG32)と、柱状形状のGaN結晶を結晶成長させる領域(領域REG13,REG23,REG33)と、板状形状のGaN結晶を結晶成長させる領域(領域REG14,REG24,REG34)とを含む。混合比rが複数の混合比の範囲で決定され、その決定された混合比に応じた圧力/温度相関図に含まれる所望の圧力および温度を用いてGAN結晶が結晶成長される。 (もっと読む)


【課題】結晶性が良好な窒化物単結晶を速い速度で成長させる方法を提供する。
【解決手段】シード、窒素元素を含有する溶媒、周期表13族金属元素を含む原料物質、および前記溶媒の1.5〜15mol%の量の鉱化剤を入れたオートクレーブ内の温度および圧力を、前記溶媒が超臨界状態および/または亜臨界状態となるように制御して前記シードの表面にアモノサーマル法により窒化物単結晶を成長させる。 (もっと読む)


【課題】NaとGaのフラックス法において原料窒素ガスを十分に加熱する。
【解決手段】いずれも高温高圧に適応する反応容器100と外部容器200の開閉可能な二重密閉容器を用い、外部容器内に配置した加熱装置31a、31b及び31cで反応容器100を加熱する。反応容器100には窒素供給管10と排出管11とが接続されており、図示しない制御装置により反応容器100内部が例えば100気圧となるように調整しながら窒素の給排気が行われる。ここで、窒素供給管10から供給される窒素は、反応容器100外周を螺旋状に進む被加熱部10aを通過する際に十分な時間を経過するので、加熱装置31a、31b及び31cにより反応容器100と同程度の温度まで加熱されることとなる。こうして、反応容器100内部のNaとGaのフラックス表面に、十分に加熱されたのちに窒素を供給することが可能となる。 (もっと読む)


【課題】フラックス法における外部容器の雰囲気の内部容器内への拡散防止。
【解決手段】高温に適応し、耐圧性を有しない反応容器100と、高温高圧に適応する外部容器200の開閉可能な二重容器を用い、外部容器内に配置した加熱装置31a、31b及び31cで反応容器100を加熱する。反応容器100には窒素供給管10と排出管11とが接続されている。窒素供給管10にはバルブ10vが接続され、その他端は高圧の窒素タンクに接続されている。排出管11にはトラップ11tが接続されており、任意の方法で冷却することにより、ナトリウム蒸気とガリウム蒸気を凝結させて排気から除去する。また、トラップ11tには2次供給管11’が接続されており、ナトリウム蒸気とガリウム蒸気を除去した排気は外部容器200に供給される。一方、外部容器200には排出管21が接続され、バルブ21vを介して図示しない排気ポンプに接続されている。 (もっと読む)


耐圧釜を用いて超臨界アンモニアの中で窒化ガリウム(GaN)結晶を成長する方法を開示する。大表面積のGaN結晶が作られるが、それはカルシウム、マグネシウム、またはバナジウム、または1%未満のインジウムを含み得る。
(もっと読む)


【課題】粒子径が20nm以下の無機微粒子からなる高屈折率材料を提供する。
【解決手段】下記一般式;
(1−x)TiO・xMTiO
(式中、MはCa、Sr、Baから選ばれる原子を表し、xは0.1〜0.9の数である)で表されることを特徴とする酸化チタン・チタン酸アルカリ土類複合微粒子、及びアルカリ土類金属イオンとチタニアゾルとを、超臨界又は亜臨界状態の水中にて水熱反応させることからなる、一次粒子径が20nm以下であり、酸化チタンの光触媒活性を抑制した、高結晶性酸化チタン・チタン酸アルカリ土類複合微粒子の製造方法。
【効果】光学用ポリマーとの複合化によりポリマーの透明性を低下させることなく高屈折率光学材料を製造し、提供することができる。 (もっと読む)


【課題】溶媒の熱対流による原料の舞い上がりを防止し、粉体の原料を用いた場合であっても高品質な結晶を製造でき且つ原料効率の高い結晶製造方法および結晶製造装置を提供する。
【解決手段】反応容器中で、(1)超臨界状態および/または亜臨界状態の溶媒、並びに、(2)原料を用い、結晶を成長させる結晶製造方法であって、前記反応容器は前記原料を充填する原料充填部としてるつぼを備え、且つ、前記るつぼへの原料の充填量がh≧D/2(hはるつぼの上端から充填した原料上面までの距離、Dはるつぼの内直径)を満たす、或いは、前記るつぼが一つ以上の開口部を有する蓋を有することを特徴とする結晶製造方法およびこれに用いられる結晶製造装置。 (もっと読む)


【課題】良質な人工水晶を高い歩留まりで効率よく製造し得る人工水晶の製造装置、かかる人工水晶の製造装置を用いて人工水晶を製造する人工水晶の製造方法、およびかかる人工水晶の製造方法を用いて製造された人工水晶を提供すること。
【解決手段】人工水晶の製造装置1は、水熱温度差法により人工水晶を製造するための装置である。人工水晶の製造装置1は、溶解液5、水晶原料11および種水晶12を収納するチャンバー2と、このチャンバー2を加熱する加熱手段9とを有している。また、チャンバー2内には、対流制御板3とこの対流制御板3より上方にフィルタ部材4とが、それぞれチャンバー2内の空間を仕切るように設けられている。これにより、チャンバー2内には、対流制御板3より下方の第1の空間21と、対流制御板3とフィルタ部材4との間の第2の空間22と、フィルタ部材4より上方の第3の空間23とが画成されている。 (もっと読む)


41 - 60 / 65