説明

Fターム[4G077TA06]の内容

結晶、結晶のための後処理 (61,211) | CVD (1,448) | 成長工程 (330)

Fターム[4G077TA06]の下位に属するFターム

Fターム[4G077TA06]に分類される特許

1 - 20 / 39


【課題】 軸オフのウェーハを得るための従来技術において、より大きな結晶は、一般に結晶の垂線から離れて配向され、ついで軸オフの種結晶を産生するためにウェーハが配向方向に向かって切断される。垂線から離れて結晶を配向することは、結晶と同じサイズのウェーハを切断するために利用可能な有効な層厚を低減する。
【解決手段】 半導体結晶および関連する成長方法が開示される。結晶は、種結晶部分と、種結晶部分上の成長部分とを含んでいる。種結晶部分および成長部分は、実質的に直立した円筒形の炭化ケイ素の単結晶を形成する。種結晶面は、成長部分と種結晶部分との間の界面を規定し、種結晶面は、直立した円筒形の結晶の基部に実質的に平行であり、単結晶の基底平面に関して軸オフである。成長部分は、種結晶部分のポリタイプを複製し、成長部分は、少なくとも約100mmの直径を有する。 (もっと読む)


【課題】アルミニウム系III族窒化物結晶成長装置において、加熱機構に起因して発生するベース基板のそりを低減し、かつ、速い結晶成長速度を達成できるような高温度を両立できるような装置を提供する。
【解決手段】少なくともハロゲン化アルミニウムガスを含むIII族原料ガスと窒素源ガスの原料ガスをベース基板16表面に沿った流れで供給し、アルミニウム系III族窒化物層を該ベース基板表面に成長させるアルミニウム系III族窒化物製造装置において、反応部へ供給するまでの原料ガスの温度を該ガスの反応温度未満とし、かつアルミニウム系III族窒化物層が成長するベース基板表面に対向する反応部内の面に加熱面を有する第二加熱手段19を設置したことを特徴とするアルミニウム系III族窒化物製造装置である。 (もっと読む)


【課題】室温(300K)以上において正孔濃度が1.0×1015cm‐3以上で、かつ、ドーパント原子濃度が1.0×1021cm‐3以下である実用的なp型ダイヤモンド半導体デバイスとその製造方法を提供すること。
【解決手段】単結晶ダイヤモンド基板1−1の上に形成された単結晶ダイヤモンド薄膜1−2の中には、二次元の正孔または電子チャンネル1−3が形成される。基板1−1の面方位と基板1−1の結晶軸「001」方向との成す角度をαs、ダイヤモンド薄膜1−2の面方位と単結晶ダイヤモンド薄膜1−2の結晶軸「001」方向との成す角度をαd、チャンネル1−3の面方位とダイヤモンド薄膜1−2の結晶軸「001」方向との成す角度をαcとする。単結晶ダイヤモンド薄膜1−2の表面上には、ソース電極1−4、ゲート電極1−5、ドレイン電極1−6が形成される。 (もっと読む)


【課題】光デバイス若しくは素子中に、又は光デバイス若しくは素子として、使用するのに適したCVD単結晶ダイヤモンド材料を提供する。
【解決手段】低く均一な複屈折性、均一で高い屈折率、歪みの関数としての低い誘起複屈折性又は屈折率変動、低く均一な光吸収、低く均一な光散乱、高い光(レーザ)損傷閾値、高い熱伝導率、高度な平行度及び平坦度を有しながら高度の表面研磨を示す加工性、機械的強度、磨耗抵抗性、化学的不活性等の特性の少なくとも1つを示すCVD単結晶ダイヤモンド材料であって、前記CVD単結晶ダイヤモンド材料の製造方法は実質上結晶欠陥のない基板を提供するステップと、原料ガスを提供するステップと、原料ガスを解離して、分子状窒素として計算して300ppb〜5ppmの窒素を含む合成雰囲気を作るステップと、実質上結晶欠陥のない前記表面上にホモエピタキシャルダイヤモンドを成長させるステップとを含む。 (もっと読む)


【課題】従来技術と比較して、室温で十分に高いキャリア濃度を有するダイヤモンド半導体及び作製方法を提供すること。
【解決手段】ダイヤモンド基板11(図5(a))上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとし、基板温度700℃でダイヤモンド薄膜12を1ミクロン積層する(図5(b))。ダイヤモンド薄膜12にイオン注入装置を用い、不純物1(VI族又はII族元素)を打ち込む(図5(c))。その後、不純物2(III族又はV族元素)を打ち込んだが(図5(d))、注入条件は、打ち込んだ不純物がそれぞれ表面から0.5ミクロンの厚さの範囲内で、1×1017cm-3となるようにシミュレーションにより決定した。その後、2種類のイオンが注入されたダイヤモンド薄膜13をアニールすることにより(図5(e))、イオン注入された不純物の活性化を行い、ダイヤモンド半導体薄膜15を得た(図5(f))。 (もっと読む)


【課題】異種基板上に高品質半導体結晶からなる島状のGaN系半導体層を基板の湾曲を抑えて成長させることができ、しかもGaN系半導体層が極めて厚くてもクラックなどの発生を抑えることができ、大面積の半導体素子を容易に実現することができる半導体素子およびその製造方法を提供する。
【解決手段】半導体素子は、GaN系半導体と異なる物質からなる基板11と、基板11上に直接または間接的に設けられ、一つまたは複数のストライプ状の開口12aを有する成長マスク12と、成長マスク12を用いて基板11上に(0001)面方位に成長された一つまたは複数の島状のGaN系半導体層13とを有する。成長マスク12のストライプ状の開口12aはGaN系半導体層13の〈1−100〉方向に平行な方向に延在している。 (もっと読む)


【課題】従来技術と比較して、室温で十分に高いキャリア濃度を有するダイヤモンド半導体及び作製方法を提供すること。
【解決手段】ダイヤモンド基板11(図5(a))上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとし、基板温度700℃でダイヤモンド薄膜12を1ミクロン積層する(図5(b))。ダイヤモンド薄膜12にイオン注入装置を用い、不純物1(VI族又はII族元素)を打ち込む(図5(c))。その後、不純物2(III族又はV族元素)を打ち込んだが(図5(d))、注入条件は、打ち込んだ不純物がそれぞれ表面から0.5ミクロンの厚さの範囲内で、1×1017cm-3となるようにシミュレーションにより決定した。その後、2種類のイオンが注入されたダイヤモンド薄膜13をアニールすることにより(図5(e))、イオン注入された不純物の活性化を行い、ダイヤモンド半導体薄膜15を得た(図5(f))。 (もっと読む)


【課題】非配向結晶粒の成長を抑制し、配向度を高めることができる高配向ダイヤモンド膜及びその製造方法を提供する。
【解決手段】表面に複数の凹凸を有する下地ダイヤモンド層を基板上に形成し、下地ダイヤモンド層上に金属膜3(又はセラミックス膜)を形成し、下地ダイヤモンド層及び中間層を加熱して、下地ダイヤモンド層の凹部2bを金属膜4で覆い、下地ダイヤモンド層の凸部2aの一部を金属膜4から露出させる。そして、金属膜4の表面から下地ダイヤモンド層の凸部2aの一部が露出した状態で、その上に高配向ダイヤモンド層5を成長させる。 (もっと読む)


【課題】III族窒化物の結晶体の基板を製造する際における剥離バッファー層をエッチングするための時間を短縮する方法を提供する。
【解決手段】基板の製造方法は、下地基板の上にバッファー層を形成するバッファー層形成工程S1と、バッファー層の上に、バッファー層の一部を覆うマスクパターンを形成するマスクパターン形成工程S2と、バッファー層及びマスクパターンを覆うように、III族窒化物の結晶体を成長させる成長工程S5と、マスクパターンの第1のエッチャントを用いてマスクパターンを選択的にエッチングすることにより、バッファー層の第2のエッチャントを供給するための経路を形成する経路形成工程S6と、経路を介して第2のエッチャントを供給してバッファー層を選択的にエッチングすることにより、結晶体を下地基板から分離する分離工程S7とを備える。 (もっと読む)


【課題】高品質で、しかも均質なCVDダイヤモンド膜を効率よく、経済速度で製造する方法を提供する。
【解決手段】一桁ナノダイヤモンド粒子凝膠体を、ビーズミリングを行なって水性コロイドを作成し、水を除いてフレーク状とした後、非水系分散媒に再分散させて一桁ナノダイヤモンド粒子の非水系分散媒中コロイドを製造し、前記一桁ナノダイヤモンド粒子の非水系分散媒中コロイドを、インクジェットプリント原理を利用したパターニング装置を用いて、一桁ナノダイヤモンド粒子が一平方糎当たり2×1011以上の密度となるように基板上に種付けしたあと、真空加熱乾燥法又はマイクロ波照射により、非水系分散媒を除去し、続いて、一桁ナノダイヤモンド粒子を種として、CVD法により基板上にダイヤモンド膜を製造する。 (もっと読む)


【課題】連続運転不要な気相合成法により得られる、高品質で大面積のダイヤモンド多結晶基板及びその製造方法を提供する。
【解決手段】ダイヤモンドと異なる成膜用種基板を用意し、気相合成法により厚さ500μm未満のダイヤモンド多結晶を成膜した後、ダイヤモンド多結晶と種基板を分離してダイヤモンド多結晶自立板とし、ダイヤモンド多結晶自立板上に、さらに気相合成法によりダイヤモンド多結晶を追加成長して、板厚500μm以上のダイヤモンド多結晶基板とすることにより、基板両面研磨後、波長400nmの光透過率が35%以上であるダイヤモンド多結晶基板が得られる。 (もっと読む)


【課題】危険性を低減し、かつ低温で効率よく窒素を供給できるIII−V族化合物半導体の結晶成長方法、発光デバイスの製造方法および電子デバイスの製造方法を提供する。
【解決手段】III−V族化合物半導体102の結晶成長方法は、以下の工程を備えている。まず、窒素の原料としてモノメチルアミンおよびモノエチルアミンの少なくともいずれか一方を含むガスが準備される。そして、ガスを用いて気相成長法によりIII−V族化合物半導体102が成長される。 (もっと読む)


【課題】シード層の結晶欠陥を低減し、良質なSiC基板を製造する。
【解決手段】本発明の半導体基板の製造方法は、絶縁層20上にSiC層30を備えた半導体基板1の製造方法である。支持基板10上に絶縁層20とSi層50とが順次形成されてなるベース基板100のSi層50に、絶縁層20を露出させる溝部40を形成し、溝部40によってSi層50を複数の島状のSi部55に区画するSi部区画工程と、Si部55を炭化して島状のシード部65を形成し、シード部65からなるシード層60を形成するシード層形成工程と、シード部65をエピタキシャル成長させて島状のSiC部35を形成し、SiC部35からなるSiC層30を形成するSiC層形成工程と、を有する。 (もっと読む)


【課題】薄膜化をするための加工をする際に発生するクラックを抑制し、かつ厚みの大きい窒化ガリウム結晶を成長させることのできる、窒化ガリウム結晶の成長方法、窒化ガリウム結晶基板、エピウエハ、エピウエハの製造方法を提供する。
【解決手段】窒化ガリウム結晶の成長方法は、キャリアガスと、窒化ガリウムの原料と、ドーパントとしてのシリコンを含むガスとを用いて、ハイドライド気相成長(HVPE)法により下地基板上に窒化ガリウム結晶を成長させる窒化ガリウム結晶の成長方法である。窒化ガリウム結晶の成長時におけるキャリアガスの露点が−60℃以下であることを特徴としている。 (もっと読む)


【課題】本発明は、簡単な工程により、安価でストレスフリーなGaN系窒化物半導体の作製方法を提供することを課題とする。
【解決手段】基板を準備する工程と、該基板上にGaNドット及びNHCl層を形成する工程と、GaNドット及びNHCl層上に低温GaNバッファ層を形成する工程、低温GaNバッファ層上にGaN系窒化物半導体層を形成する工程と、基板温度を常温に戻すことによりGaN系窒化物半導体層を基板より自然剥離させる工程とを含む、GaN系窒化物半導体自立基板の作製方法である。 (もっと読む)


【課題】表面状態や断面形状が良好なIII族窒化物半導体の厚膜結晶を成長させることができる下地基板を提供する。
【解決手段】第1結晶成長面110と第1結晶成長面110と同じ方向に面している第2結晶成長面109を有する下地基板112であって、第1結晶成長面110の周縁の50%以上または全周縁に下向きの段差を介して第2結晶成長面109が連接している。ここで、第1結晶成長面110は円形とし、第2結晶成長面109は環状であり、第1結晶成長面110と同心とする。 (もっと読む)


【課題】SiC基板上に形成した金属窒化層を利用して、転位密度の低い優れた発光特性をもったGaN半導体などのIII族窒化物半導体を、従来の製造方法に比べて、より少ない工程で製造する方法を提供する。
【解決手段】SiC基板1の(0001)Si面上に金属層を部分的に設け、金属層および金属層の間に露出するSiC基板1の(0001)Si面を窒化することにより、金属窒化物層2とSiN面4を形成し、金属窒化物層2にIII族窒化物半導体3をエピタキシャル成長させ、SiN面4上に横方向成長させる。 (もっと読む)


【課題】SiC基板上に形成した金属窒化層を利用して、転位密度の低い優れた発光特性をもったGaN半導体などのIII族窒化物半導体を製造する方法を提供する。
【解決手段】SiC基板の(0001)Si面上に金属層を設け、金属層を窒化することにより、金属窒化物層を形成し、金属窒化物層にIII族窒化物半導体を形成させる。化学処理などにより金属層を溶解し、SiC基板から分離した多様な半導体構造体を得る。金属層としては、Cr層を用いる。 (もっと読む)


【課題】下地基板の上にマスクを設けその上にGaNをHVPE成長させマスク端部から立ち上がるファセットを維持しながら成長させると、マスクの部分は欠陥集合領域Hとなりファセット成長した部分は単結晶低転位領域となるが、欠陥集合領域Hが多結晶だったり方位が傾斜した単結晶だったりする。そこで、クラックの生じない自立GaN基板を提供する。
【解決手段】初め低温で成長させマスク63上に多結晶微粒子70を生成し高温でエピタキシャル成長させ露出部69だけに窒化ガリウム薄膜64が成長するようにし、マスク63の端から傾斜して伸びるファセット66を充分に広くなるようにし、ファセット66から方位反転した爪状の突起68がマスク63の上方へ伸びるようにする。突起68が伸び合体し、その上に成長する部分は方位反転結晶の欠陥集合領域Hとなる。熱膨張率異方性の違いがなくクラックが発生しない基板を与えることができる。 (もっと読む)


【課題】本発明は、ウェーハの周縁部まで均一に成膜することが可能な熱CVD方法および熱CVD装置を提供する。
【解決手段】熱CVD方法において、ウェーハw上に成膜を行うための反応室11内を、所定の圧力に制御し、所定の圧力に制御された反応室11に、上部より反応ガスを導入し、反応ガスをシャワーヘッド17において断熱膨張させることにより、反応ガスのガス流を加速させ、回転させながら加熱したウェーハw上に、加速された反応ガスのガス流を供給して、成膜を行う。 (もっと読む)


1 - 20 / 39