説明

Fターム[4K001BA06]の内容

金属の製造又は精製 (22,607) | 原料 (3,914) | 製錬原料 (372) | 硫化物 (92)

Fターム[4K001BA06]に分類される特許

41 - 60 / 92


【課題】腐食性、磨耗性を有するスラリー液の攪拌において長期間使用でき、攪拌翼の腐食および磨耗による運転停止時間を短縮し、補修コストを低減できる耐磨耗性パドルタイプの攪拌翼を提供する。
【解決手段】攪拌反応槽内で腐食作用および磨耗作用のあるスラリー液を攪拌するパドルタイプの攪拌翼1であって、攪拌翼がチタン製翼板3で構成され、該攪拌翼表面のうちで腐食性、磨耗性が強い表面の実質的全面に、断面L型セラミックス製部材7、断面コ型セラミックス製部材又は平板形状のセラミックス製部材から選ばれるいずれかの耐磨耗性部材が固定されており、攪拌翼の端部表面が、断面L型7又は断面コ型形状のセラミックス製部材で覆われている。 (もっと読む)


【課題】実操業レベルで汎用性ある条件で、黄銅鉱や硫砒銅鉱を主体とする硫化銅鉱から銅を効率よく浸出する方法を提供すること。
【解決手段】ヨウ素イオンと、ヨウ素イオンに対して過剰量の鉄(III)イオンとを含有する硫酸溶液を浸出液として用いて硫化銅鉱から銅を浸出させることを特徴とする硫化銅鉱からの銅の浸出方法、あるいは、上記成分に加えてさらに塩化物イオン等の鉄(III)イオンを安定化することのできる水溶性配位子を含有する浸出液を用いて硫化銅鉱から銅を浸出させることを特徴とする硫化銅鉱からの銅の浸出方法。 (もっと読む)


【課題】 製造コストを抑制しつつFeの生成を抑制することができる銅の製錬方法を提供する。
【解決手段】 銅の製錬方法は、炉内にコークス材を供給することなく酸素富化空気および銅精鉱を供給する工程と、炉内で生じるスラグに銑鉄を供給する工程と、を含む。他の銅の製錬方法は、炉内に硫黄/銅の重量比が0.85〜1.15である銅精鉱および酸素富化空気を供給する工程と、炉内で生じるスラグに銑鉄を供給する工程と、を含む。他の銅の製錬方法は、炉内に酸素富化空気および銅精鉱を供給する工程と、炉内で生じるスラグに銑鉄を供給する供給工程と、炉内で生じるマット中の銅品位を64重量%〜69重量%に調整する工程と、を含む。 (もっと読む)


【課題】モリブデン鉱石等を原料とせず、フェロモリブデンを高効率、かつ安価に製造するフェロモリブデンの製造方法およびこの製造方法により製造されたフェロモリブデンを提供する。
【解決手段】モリブデン原料として二硫化モリブデンを含む廃潤滑剤、鉄原料として酸化鉄含有物質、炭素質還元剤、脱硫剤およびスラグ形成剤を混合する混合工程(S1)と、混合工程(S1)で混合した混合物を、加熱、溶解して溶解物とし、当該溶解物中に、生成したフェロモリブデンを沈殿させる溶解工程(S2)と、フェロモリブデンを沈殿させた溶解物を冷却して生成したスラグと、当該スラグ中のフェロモリブデンとを分離する分離工程(S3)と、を含み、溶解工程(S2)において、加熱温度を1400〜1600℃に制御することを特徴とする。 (もっと読む)


【課題】砒素を含む製錬中間産物から砒素を安定な形で系外へ抜き出す。
【解決手段】硫化物形態の砒素を含む非鉄製錬中間産物と、砒素と金属形態の銅とを含む非鉄製錬中間産物との、混合スラリーを、酸性領域で酸化浸出し浸出液を得る浸出工程と、当該浸出液に酸化剤を添加して、3価砒素を5価砒素へ酸化して調整液を得る液調整工程と、当該調整液中の砒素をスコロダイト結晶へ転換する結晶化工程と、を有する砒素を含む非鉄製錬中間産物の処理方法を提供する。 (もっと読む)


【課題】亜鉛・鉛製錬の焼結工程で使用するドワイトロイド型の上吹き式焼結機の火格子上に、鉱層を形成するため、ホッパーを通じて原料を装入する方法において、火格子の側壁であるサイドウォ−ルの内壁と鉱層の隙間からの焼結用空気の吹抜けを防止する上吹き式焼結機への原料装入方法を提供する。
【解決手段】ホッパーを通じて原料を装入する方法において、下記(1)又は(2)の少なくとも一つの手段を採用する。(1)前記火格子の進行方向のホッパー面下部に設置された鉱層ダンパー10の下部両端部を、火格子の巾に対して5〜10%に当たる長さだけ、斜め35〜55°の角度に切断し、かつ、ホッパーのサイド鉄板11を、該鉱層ダンパー10の下部両端部に設けた切断部分の上端の高さで切断する。(2)前記火格子のサイドウォール9のテラス部9aの高さを、サイドウォール9の最上部からサイドウォール高さの10〜50%分を低下させる。 (もっと読む)


【課題】非鉄製錬中間産物に含まれる砒素の処理、特に硫化物形態の砒素の処理において、溶出基準(環境庁告示13号準拠)を満足し、且つ、濾過性に優れ且つ安定なスコロダイトを、再現性良く、煩雑な操作なしに簡便に生成する方法を提供する。
【解決手段】
砒素を含む非鉄製錬中間産物から、弱酸性領域で砒素を浸出する浸出工程と、当該浸出液に酸化剤を添加して、3価砒素を5価砒素へ酸化する液調整工程と、当該調整液中の砒素をスコロダイト結晶へ転換する結晶化工程とによりスコロダイトを製造する。 (もっと読む)


【課題】ドワイトロイド型の上吹き焼結機で、硫化亜鉛及び硫化鉛を含有する硫化物原料とともに、酸化亜鉛及び酸化鉛を含有する酸化物原料を含む装入原料を焼結する方法において、酸化物原料を増処理する際に、必要な発熱量を確保することにより、焼結塊の生成において良好な生産性と残留するカドミウム等の品質を向上することができる酸化物原料を含む硫化物原料の焼結方法を提供する。
【解決手段】前記装入原料として、前記硫化物原料と前記酸化物原料を混合工程で混合解砕に付し、次いで造粒工程に付して製造したペレットを用いる際に、該装入原料に、粒径が5〜20mmであって、該酸化物原料の装入量に対し1〜5質量%に当たる粒状コークスを添加することを特徴とする。 (もっと読む)


【課題】銅原料を塩素浸出する工程、得られた塩化物水溶液を還元する工程、溶媒抽出方法により銅を分離する工程、及び銅イオンを電解採取する工程を含む湿式銅製錬法に用いる、抽出段と逆抽出段からなる溶媒抽出方法において、逆抽出段において、抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と銅電解陰極廃液からなる水相を接触混合して銅を逆抽出することにより形成される抽出剤中の残留銅濃度を極力させることができる溶媒抽出方法を提供する。
【解決手段】前記抽出段において、還元後の塩化物水溶液とトリブチルフォスフェイトを含む抽出剤を接触混合し、次いで前記逆抽出段において、該抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と前記銅電解陰極廃液からなる水相を接触混合して銅を逆抽出する際に、逆抽出後の水相の酸化還元電位(銀/塩化銀電極基準)を300〜400mVになるように制御することを特徴とする。 (もっと読む)


【課題】 自溶炉の点検孔に配置するジャケット構造体の水漏れトラブルを未然に防止し、バーナ近傍の鋳付き除去を容易とすると共に、寿命が長く、且つランニングコスト削減に寄与することが可能な自溶炉の点検孔用水冷ジャケット構造体を提供する。
【解決手段】 自溶炉1の精鉱バーナ7付近に設置される炉内及び精鉱バーナ7を点検及び清掃するための自溶炉1の点検孔用水冷ジャケット構造体10であって、冷却水を流通させるための水路となる冷却管21、22、23、24を内部に鋳込んで形成されたジャケット板11、12、13、14を複数組み合わせることにより筒状体とし、自溶炉1の熱負荷に応じて各ジャケット板11、12、13、14の冷却水系統に、単独或いは複数の系統から冷却水を流すことにより、冷却能力及び冷却水の使用量を調節することを可能としたことを特徴とする。 (もっと読む)


本発明は、タルクを含有する採掘された鉱石または採掘された鉱石の精鉱からニッケル含有硫化物を分離する方法を開示する。この方法は、採掘された鉱石または採掘された鉱石の精鉱のスラリーを少なくとも1つの浮選ステージおよび少なくとも1つの精選回路で処理することを含む。この方法はさらに、本明細書で述べるように、スラリー中の粒子を順に再粉砕することを含む。
(もっと読む)


【課題】 塩素浸出反応における酸化還元電位の変動幅を従来よりも小さくし、塩素ガスの利用率の低下や硫黄酸化率の上昇を招くことなく、金属元素の高い浸出率を得ることが可能な酸化還元電位の制御方法を提供する。
【解決手段】 非鉄金属硫化物等のニッケル原料の塩素浸出操作において、塩素浸出槽内の酸化還元電位を所定の時間周期毎に測定し、設定値と測定値との差により塩素流量調節弁の開度を調整する際に、上記時間周期のうち少なくとも一部の酸化還元電位の測定時には、上記設定値と測定値との差による塩素流量調節弁の開度変更量に、前回周期の測定値との差による塩素ガス流量調節弁の開度変更量を加えて補正し、得られた開度変更量に従って塩素ガス流量調節弁の開度を調整する。 (もっと読む)


【課題】中和剤やその他の特殊な薬剤を用いずに、ろ過性がよく、銅をほとんど含まない鉄澱物を作ることが可能な湿式銅精錬法を提供する。
【解決手段】銅硫化鉱物を含む銅原料を塩素浸出して、浸出生成液を得る塩素浸出工程、得られた浸出生成液を還元して、還元生成液を得る銅イオン還元処理工程、得られた還元生成液から、銅を電解採取または溶媒抽出する銅分離採取工程、および、浸出生成液、還元生成液、溶媒抽出残液または電解尾液から鉄を分離除去する工程を含む湿式銅精錬法において、塩化第一鉄と塩化第一銅もしくは塩化第二銅を含む、前記浸出生成液、還元生成液、溶媒抽出残液または電解尾液のpHを0〜2.5に、温度を60〜95℃にそれぞれ保持し、大気圧下で、該液に酸素を含むエアを吹き込むことにより、塩化第一鉄の一部をゲーサイトとして沈殿させる。 (もっと読む)


【課題】 主として珪酸鉱からなる溶剤及び銅鉱石原料を製錬炉に装入する銅製錬所の操業方法において、銅品位が低下した場合でも銅を増産できるようにする。
【解決手段】 溶剤を処理・搬送する第1の系統では、該溶剤を粉砕するボールミル内に熱風を吹込むことにより該溶剤を乾燥し、次に粉砕・乾燥された溶剤を製錬炉直前のまで搬送する。銅鉱石原料を処理・搬送する第2の系統においては、該原料をドライヤーで乾燥し、次に、前記製錬炉直前まで搬送する。溶剤の処理・搬送系統と銅鉱石原料の処理・搬送系統を分離する。 (もっと読む)


粉状の精鉱混合物および反応ガスを、自溶炉の反応シャフト(1)に供給するための精鉱バーナー。精鉱バーナーは、精鉱混合物を反応シャフト(1)に供給し、開口部(3)が反応シャフトに開口する供給パイプ(2)と、供給パイプ(2)の内側に同軸に配設され、開口部から反応シャフト(1)の内側へ延び、分散ガスを周囲を流れる精鉱混合物へと案内する分散装置(4)とを含む。反応ガスを反応シャフト(1)に供給するために、ガス供給装置(5)は、反応シャフトの外側に配設され、同心円状に供給パイプ(2)を囲む環状放出口(7)を介して反応シャフト(1)に開口して、放出口から放出される反応ガスと供給パイプの中央部から放出される粉状固体とを混合させる反応ガス室(6)を含み、精鉱混合物を分散ガスによって側部に案内する。反応ガス室(6)は乱流室として構成され、反応ガスを反応ガス室の接線方向に案内する流入路(9)が反応ガス室の接線方向に開口する。流入路(9)には、反応ガス流の断面積を調整する調整部材(11)が配設される。
(もっと読む)


【課題】ニッケル酸化鉱の湿式製錬法により製造されたニッケル硫化物の塩素浸出に際し、ニッケル及びコバルトの浸出率を向上させることができるニッケル硫化物の塩素浸出方法を提供する。
【解決手段】ニッケル酸化鉱の湿式製錬法により製造したニッケル硫化物を原料として、銅イオンを含む塩化物水溶液中で塩素浸出する方法であって、下記の工程(1)〜(4)を含むことを特徴とする。
工程(1):前記ニッケル硫化物を、塩化物水溶液中にレパルプして得られたスラリーに塩酸を添加し、pHを0.4〜0.6に調整する。
工程(2):工程(1)で得られたスラリーに、銅イオンの共存下に塩素ガスを吹き込む。
工程(3):工程(2)で得られたスラリーに、空気を吹き込む。
工程(4):工程(3)で得られたスラリーを固液分離して、ニッケルを含む浸出液と浸出残渣を得る。 (もっと読む)


【課題】非鉄製錬中間産物からスコロダイトの結晶を生成させる砒素の処理方法において、生成するスコロダイトの結晶の濾過性、安定性を損なうことなく、結晶化工程の所要時間の短縮を可能とする方法を提供する。
【解決手段】非鉄製錬中間産物から砒素を浸出し浸出液を得る浸出工程と、当該浸出液に含まれる3価砒素を5価砒素へ酸化し、調整液を得る液調整工程と、当該調整液へ鉄塩と酸化剤とを加え、当該調整液中の砒素をスコロダイト結晶へ転換する結晶化工程とを行い、さらに、当該結晶化工程において、当該調整液へ鉄塩を添加し、第1の酸化剤を添加する第1の結晶化工程と、第1の結晶化工程で得られた調整液へ、第1の酸化剤より強い酸化力を有する第2の酸化剤を添加する第2の結晶化工程とを行う。 (もっと読む)


【課題】非鉄製錬中間産物等に含まれる砒素を結晶質のスコロダイトへ、80℃以下の反応温度で効率よく変換する砒素の処理方法を提供する。
【解決手段】5価の砒素溶液に2価の鉄塩を共存させ、そこへ酸化剤を加えてスコロダイトを生成させる際、前記5価の砒素溶液に、予め種晶を添加しておく。 (もっと読む)


【課題】非撹拌表面バイオリアクターを用いて、不要化合物を除去するために固形物質をバイオ処理する方法を提供する。
【解決手段】多数の粗基質の表面を、バイオ処理する固形物質でコーティングして、多数のコーティング化粗基質を形成させる。粗基質は、約0.3cmより大きい粒子サイズを有するものであり、バイオ処理する固形物質は、約250μm未満の粒子サイズを有するものである。次いで、リアクターの間隙空間体積は約25%以上であるかまたはそれに等しいように、ヒープ中へ多数のコーティング化粗基質を積み重ねるか、またはタンク内へ多数のコーティング化粗基質を入れることにより、非撹拌表面リアクターを形成させる。リアクターに、固形物質中の不要化合物を分解する能力のある微生物を接種し、次いで、固形物質中の不要物質が所望濃度まで分解されるまでその固形物質を表面バイオリアクターにてバイオ処理する。この方法は、汚染土のバイオ再生、石炭の脱硫、および難処理性硫化鉱石および精鉱のバイオ酸化に有用である。 (もっと読む)


本発明は、亜鉛及び鉛の硫化濃縮物を金属源として使用する純金属インジウムの新規製造方法を提供する。本方法は酸化亜鉛焼成物の中性浸出残渣からWaelz工程により生成される酸化亜鉛から開始する。亜鉛焼成物の中性浸出の中性アンダーフロー(又は残渣)の弱浸出のオーバーフロー(又は上澄み)もまた、より低い割合でインジウムを含有し、インジウム回収のグローバルな工程の一部となり得るか、又はなり得ない。新たな技術は、下記の段階:a)インジウム前濃縮物の生成;b)還元浸出において得られるインジウムセメント生成物の少なくとも1回の弱浸出及び少なくとも1回の強浸出を備える、インジウムセメントの生成;c)インジウム溶液の生成;d)有機溶媒によるインジウムの抽出;e)インジウムのセメンテーション;f)金属の融合、精製、及びインゴット化;g)99.995%を超える高純度の生成物を得るためのインジウムの電解;を備える。 (もっと読む)


41 - 60 / 92