説明

Fターム[4K001BA06]の内容

金属の製造又は精製 (22,607) | 原料 (3,914) | 製錬原料 (372) | 硫化物 (92)

Fターム[4K001BA06]に分類される特許

21 - 40 / 92


【課題】 含銅硫化物を硫酸を用いて浸出する湿式銅製錬プロセスにおけるプロセスで消費する硫酸および中和剤の使用量を低減できる銅の回収方法を提供する。
【解決手段】 銅と鉄を含有する硫化物から銅を分離、回収する銅の回収方法であって、以下の(1)から(3)の工程を有することを特徴とするものである。
(1)銅と鉄を含有する硫化物と、硫酸溶液とを混合したスラリーを102℃以上180℃以下の範囲の温度に維持しながら、酸素または空気を吹き込んで浸出スラリーを形成し、得られた浸出スラリーを浸出液と浸出残渣に固液分離する浸出工程。
(2)前記浸出液に、酸素または空気を吹き込みながら、浸出液の温度を230℃以上270℃以下に維持することにより脱鉄スラリーを形成し、次いで前記脱鉄スラリーを脱鉄液と鉄澱物に固液分離する脱鉄工程。
(3)前記脱鉄液を電解始液として銅の電解採取を行い、電解廃液と電着銅に分離する電解工程。 (もっと読む)


【課題】 硫化レニウムないし硫化レニウムを含有する輝水鉛鉱などを、酸化焙焼を経由することなく湿式で酸化溶解し、その溶解液を加熱濃縮及び冷却することなく、過レニウム酸アンモニウムの結晶を高収率で得る方法を提供する。
【解決手段】 硫化レニウムを含む粉末又はスラリーに水溶性の酸化剤を加えて浸出し、硫黄を含む残渣を分離した浸出液に、アンモニア水溶液又は炭酸水素アンモニウムのいずれかを添加し、同時に又はその後、アンモニア塩が飽和濃度となるように硫酸アンモニウムを添加して、過レニウム酸アンモニウムの結晶を沈澱させて回収する。 (もっと読む)


【課題】コバルト濃度の高い塩化ニッケル溶液からNi/Co比が3以下のコバルト沈殿物を得ることのできる安価な塩化ニッケル溶液の浄液方法の提供を課題とする。
【解決手段】高コバルト濃度のニッケル浸出液とニッケル電解廃液とを混合して塩化ニッケル溶液を得、該塩化ニッケル溶液を浄液するに際して、ニッケル濃度は90〜130g/L、コバルト濃度は1.0〜3.0g/Lの塩化ニッケル溶液を得、該塩化ニッケル溶液に酸化剤を加えて酸化還元電位を600〜1200mV(Ag/AgCl電極規準)とし、中和剤を用いてpHを4.0〜6.0とする。 (もっと読む)


【課題】 銅鉱石や銅精鉱などの砒素を含有する含銅物から効率よく砒素鉱物を分離して低砒素品位の銅精鉱を得る方法を提供する。
【解決手段】 砒素を含有する含銅物を粉砕した後、水を加えてスラリー化し、得られたスラリーに抑制剤、起泡剤、および捕収剤からなる浮選剤を添加すると共に空気を吹き込んで浮遊選鉱する工程において、ポリエチレンアミン類等のキレート剤を抑制剤として使用する。特に、キレート剤にトリエチレンテトラミンを使用する場合は、これを含銅物が酸化することによって生成する可溶性銅の量に対して1から10当量添加することが好ましく、浮遊選鉱を行う前のスラリーのpHを7以上8以下の範囲に調整することがより好ましい。 (もっと読む)


【課題】銅含有被処理物から銅を容易に、かつ短時間で回収することができる方法を提供すること。
【解決手段】難溶性の酸素非含有銅化合物を含む被処理物を気相酸化して、該酸素非含有銅化合物から金属銅又は酸化銅若しくは亜酸化銅を生成させる。次いで気相酸化処理後の該被処理物に硫酸又はアンモニアを含む水溶液を作用させて、銅を可溶性塩の形態となして回収する。被処理物としては、例えば鉛製錬で生じる含銅ドロス若しくはマット、銅を含む鉛鉱石又は銅を含む硫化鉛などが用いられる。酸素非含有銅化合物は、Cuと、Sn、Sb、S及びSeから選択される少なくとも1種の元素との化合物であることが好適である。 (もっと読む)


【課題】 銅と鉄を含む含銅鉄硫化物から銅を分離回収する際に、浸出から電解採取までの全工程で消費する硫酸の量を低減すると共に、抽出及び逆抽出工程での中和剤の使用をなくし、大幅なコスト低減が可能な方法を提供する。
【解決手段】 含銅鉄硫化物を硫酸溶液で浸出し、浸出液を有機抽出剤と混合して銅を抽出した後、得られた抽出有機から銅を逆抽出し、逆抽出後液から銅を電解採取する各工程を含み、上記浸出工程での温度を102℃以上112℃以下の範囲に維持すると共に、上記抽出工程での有機抽出剤として5−アルキルサリチルアルドキシムを主成分とし且つアルコール類又はフェノール類の含有量が5重量%未満のアルドキシム型抽出剤を用いる。 (もっと読む)


【課題】炉の精錬運転を監視し且つ最適化するための方法。
【解決手段】システムは炉の中で精錬すべき材料のサンプルを処理し、その鉱物学的特性を査定する処理手段を含む。システムは、鉱物学的特性を受け取るため、処理手段と協働する運転パラメータ査定手段を更に含む。運転パラメータ査定手段は、炉の運転に対応する運転パラメータを鉱物学的特性に基づき査定する。システムは、鉱物学的特性と運転パラメータをそれぞれ受け取るため、処理手段と運転パラメータ査定手段と協働する精錬パラメータ査定手段も含む。精錬パラメータ査定手段は、鉱物学的特性と運転パラメータに基づき精錬パラメータを査定する。精錬パラメータはその後、炉の精錬運転を最適化するため炉に給送される。 (もっと読む)


【課題】経済性に優れた金属回収方法を提供することを課題とする。
【解決手段】次の工程を経て金属を回収する。
(1)鉄還元細菌により3価鉄イオンを2価鉄イオンに還元し、該2価鉄イオンにより、目的金属と鉄イオンを含み被処理物と浸出液との混合物である浸出スラリを生成する浸出工程。
(2)浸出スラリを、目的金属含有浸出液と、残渣とに固液分離する固液分離工程。
(3)吸着剤に目的金属含有浸出液中の目的金属を吸着させるとともに、鉄イオン含有浸出液を得る吸着分離工程。
(4)目的金属を吸着した吸着剤に溶離液を通液し目的金属を含む目的金属濃縮溶液を得る溶離工程。
(5)目的金属濃縮溶液から目的金属を回収する金属回収工程。
(6)吸着分離工程において得た鉄イオン含有浸出液を浸出工程における浸出液の一部として再利用する浸出液再利用工程。 (もっと読む)


【課題】本発明は一般的に、加圧浸出および直接電解採取を使用して金属含有鉱石、濃縮物またはその他の金属含有物質から銅および/またはその他の金属バリューを回収する方法を提供すること。
【解決手段】より具体的には、本発明は浸出、溶媒/溶液抽出および電解採取作業と組み合わせて加圧浸出および直接電解採取を使用して、黄銅鉱含有鉱石から銅を回収する、実質的に酸が自生するプロセスに関する。供給流は、黄銅鉱、輝銅鉱、斑銅鉱、銅藍、方輝銅鉱および硫砒銅鉱のうちの少なくとも一つ、またはこれらの混合物もしくは組み合わせを含み得る。 (もっと読む)


本発明は、浮遊溶解炉の反応シャフトの熱平衡制御方法、および反応ガスおよび微粉状固形物を浮遊溶解炉の反応シャフトに供給する精鉱バーナに関するものである。本方法では、吸熱性材料(16)を、精鉱バーナ(4)を使用して供給し、粉末状固形物(6)および反応ガス(5)から成る混合物の一部を構成することで、粉末状固形物(6)、反応ガス(5)、および吸熱性材料(16)を含有する混合物を反応シャフト(2)内に形成する。精鉱バーナ(4)は、吸熱性材料(16)を添加して混合物の一部を形成させる冷却剤供給器(15)を含み、混合物は、供給パイプの開口部(8)から放出される微粉状固形物(6)と、環状放出口(14)から放出される反応ガス(5)とから成る。 (もっと読む)


本発明は、浮遊溶解炉の反応シャフトに燃料ガスを供給する方法、および反応ガスおよび微細固形物を浮遊溶解炉の反応シャフトに供給する精鉱バーナに関するものである。本方法では、燃料ガス(16)を、精鉱バーナ(4)を使用して供給し、微粉状固形物(6)および反応ガス(5)から成る混合物の一部を形成することで、微粉状固形物(6)、反応ガス(5)、および燃料ガス(16)を含有する混合物を反応シャフト(2)内に形成する。精鉱バーナ(4)は、燃料ガス(16)を添加して微細固形物(6)と反応ガス(5)から成る混合物の一部を形成する燃料ガス供給器(15)を含む。 (もっと読む)


本発明は、浮遊溶解炉の使用方法、浮遊溶解炉および精鉱バーナ(4)に関する。精鉱バーナ(4)は、第1のガス(5)を反応シャフト(2)に供給する第1のガス供給装置(12)、および第2のガス(16)を反応シャフト(2)に供給する第2のガス供給装置(18)を含んでいる。第1のガス供給装置(12)は、供給パイプ(7)の開口部(8)と同心状に配設された第1の環状放出口(14)を備え、第1の環状放出口(14)は供給パイプ(7)を取り囲んでいる。第2のガス供給装置(18)は、供給パイプ(7)の開口部(8)と同心状に配設された第2の環状放出口(17)を備え、第2の環状放出口(17)は、供給パイプ(7)開口部(14)を取り囲んでいる。 (もっと読む)


【課題】 貴金属を含む鉄ニッケル合金を、特殊な設備を使わずに既存の銅製錬設備を活用して貴金属成分を効率よく回収し、湿式方法により不純物の少ないニッケルを回収する方法を提供することを目的とする。
【解決手段】貴金属を含有する鉄及びニッケルの硫化物を主成分とする金属硫化物を鉄及びニッケルに対して1倍当量以上2.0倍当量以下の硫酸を使い大気圧下で鉄およびニッケルを選択浸出して分離し、浸出残渣に銅硫化物とともに貴金属を濃縮する貴金属含有金属硫化物からの有価物回収方法。 (もっと読む)


【課題】 従来通り取扱い可能な板状の電気銅を含銅鉄物から効率よく作製する。
【解決手段】 含銅鉄物11からの銅の回収方法であって、塩化物を含有する塩酸酸性の浸出始液10に含銅鉄物11と酸化剤12を添加して浸出液13と浸出残渣14とを得る浸出工程1と、浸出液13に還元剤20を添加して浸出液13中の鉄イオンを還元する還元工程2と、還元工程2で得た還元液23に酸化剤30を添加し、脱鉄液32と鉄澱物31を得る脱鉄工程3と、有機溶媒からなる抽出剤40に脱鉄液32を混合し、脱鉄液32中の銅イオンを抽出して抽出有機41と抽残液42とを得、次に硫酸酸性溶液44に抽出有機41を混合し、逆抽出して逆抽出液45と逆抽出後有機46を得る溶媒抽出工程4と、逆抽出液45を電解採取し、電気銅50と電解廃液51を得る電解採取工程5とからなる。 (もっと読む)


【課題】硫化亜鉛精鉱から亜鉛と鉛を効率的に得る亜鉛と鉛の同時製錬方法、および、この方法に適した亜鉛鉛同時製錬設備を提供する。
【解決手段】亜鉛と鉛とを同時製錬する方法であって、亜鉛硫化物と鉛とを含有する原料を熔解して、酸化亜鉛を含有するスラグMS、硫化鉛を含有するマットMM、鉛メタルPbの3層を有する熔融物Mを形成し、熔融物MのスラグMSを、マットMM、鉛メタルPbと分離して銅メタルの存在下でスラグフューミングする。製錬を行う設備に精鉱を焼結する設備が不要となり、設備の面積当りの生産性を高くすることができ、熱エネルギーの利用効率を高くすることができる。さらに、還元度の高い条件で亜鉛を還元でき、亜鉛の回収率を高くでき、しかも、回収された亜鉛の純度も高くすることができる。 (もっと読む)


【課題】金属保持物質から銅を回収する効果的且つ効率的な方法を提供すること。
【解決手段】銅溶媒/溶液抽出技法又は装置を使用することなく浸出溶液から高品質のカソード銅を生成するための、銅含有鉱石、濃縮物、又はその他の銅保持物質から銅を回収するシステム又はプロセス。銅含有鉱石から銅を回収するプロセスは、一般的に、粉砕した銅含有鉱石、濃縮物、又はその他の銅保持物質を含有する供給流(101)を提供する工程、供給流を浸出して銅含有溶液を生成する工程(1030)、銅含有溶液を一つ以上の物理的又は化学的コンディショニング工程でコンディショニングする工程、及び銅含有溶液を電解抽出の前に溶媒/溶液抽出に付すことなく、多電解抽出段階(1070、1080)で銅含有溶液から銅を直接電解抽出する工程を含む。 (もっと読む)


【課題】 硫化銅鉱石や銅精鉱などの硫化物中に硫化物として存在する硫黄(硫化物硫黄)を、酸化されて硫酸塩として存在する硫黄(硫酸塩硫黄)と区別して、選択的に定量分析する方法を提供する。
【解決手段】 反応容器1に入れた銅精鉱などの硫化物に、その硫化物を形成する金属よりも卑な金属と、塩化第一スズなどの金属塩と、酸溶液とを添加し、得られたスラリーを撹拌する。金属と酸の反応で生成した水素により、硫化物中の硫化物硫黄から硫化水素を発生させ、発生した硫化水素ガスを吸収容器4、4に導き、吸収液に吸収してICP発光分光分析法により測定する。 (もっと読む)


【課題】ISP法における上吹き焼結機を用いた焼結塊の生産工程において、失火トラブルを無くし、かつ点火用バーナーに使用する燃料の原単位を低減させる、点火バーナーの原料点火方法を提供する。
【解決手段】ISP法による焼鉱生産で使用される上吹き式焼結機に装入された原料に点火用バーナーを用いて点火する原料点火方法であって、前記点火用バーナーは気体・気体混焼方式バーナーで、前記点火バーナーの燃料とされる気体は、LPG、LCVガスの2種の気体から少なくとも1種を選択することを特徴とする上吹き式焼結機の原料点火方法。 (もっと読む)


【課題】硫化銅鉱物を含む銅原料、特に黄鉄鉱を多く含有し、かつ硫化銅鉱物の含有が少ない低品位銅原料から、加圧容器中で酸素ガスを送入しつつ銅を浸出する方法において、該銅原料中のイオウの酸化を最小限に抑制しながら、銅を高収率で浸出する方法を提供する。
【解決手段】加圧容器中で酸素ガスを送入しつつ硫化銅鉱物を含む銅原料から銅を浸出する方法であって、加圧容器中に、銅原料と硫酸水溶液からなるスラリーを形成し、かつ該容器内の温度を102〜112℃に維持しながら、該容器内の圧力が、その温度での平衡気相分圧に0.5〜2MPaを昇圧した値になるように、送入する酸素ガスを調節することを特徴とする。 (もっと読む)


【課題】湿式硫化反応により得られる混合硫化物よりニッケルを塩素浸出する方法において、塩素ガスの揮散を防止し、及び浸出残渣中の元素状イオウの酸化と融着を抑制しながら、該混合硫化物からニッケル及びコバルトを高い浸出率で回収する塩素浸出方法を提供する。
【解決手段】湿式硫化反応により得られる共沈澱したコバルトを含みNiSを主成分とする混合硫化物よりニッケルを塩素浸出する方法において、前記混合硫化物と塩化物水溶液からなる浸出液を含むスラリーに塩素ガスを吹き込み、該混合硫化物からニッケル及びコバルトを浸出する際、混合硫化物の粒度を特定の範囲とし、浸出液のCu濃度を10〜60g/Lに調整するとともに、塩素ガスの吹き込み量を調整して浸出時の酸化還元電位(Ag/AgCl電極基準)を480〜550mVに、pHを1.0〜−1.0に制御することを特徴とする。 (もっと読む)


21 - 40 / 92