説明

Fターム[4K032AA29]の内容

鋼の加工熱処理 (38,000) | 鋼の合金成分及び不純物 (27,437) |  (1,399)

Fターム[4K032AA29]に分類される特許

161 - 180 / 1,399


【課題】400〜600℃の温間成形後の材質低下の小さい高張力厚鋼板を提供する。
【解決手段】質量%で、C:0.06〜0.10%、Si:0.03〜0.35%、Mn:1.0〜1.6%、Al:0.005〜0.060%、N:0.0040%以下、Mo:0.20〜0.50%、Nb:0.005〜0.030%、V:0.015〜0.080%を、(Mo+4.9V+5.8Nb):0.40〜0.80、および、Mo/V:4.0〜16.0を満足するように含有する組成と、鋼板表裏面から5mmの範囲の表層部を除いた領域が、面積率で80%以上のベイナイト相を主相とし、該ベイナイト相内の方位差15゜以上の大角境界で囲まれた領域の公称粒径が4〜40μmである組織を有する厚鋼板とする。この厚鋼板は、引張強さ:570MPa以上で、vTrs:−25℃以下の特性を有し、400〜600℃の範囲で温間加工しても、材質の低下が少ない。この厚鋼板は、温間で造管して容易に、降伏強さ:500〜620MPa、引張強さ:570MPa以上で、降伏比:90%以下、vTrs:−20℃以下の特性を有する円形鋼管とすることができる。 (もっと読む)


【課題】X65〜80級の強度と、靭性、耐食性、耐硫化物応力腐食割れ性に優れ、かつ溶接熱影響部の耐粒界応力腐食割れ性に優れたラインパイプ用Cr含有鋼管を提供する。
【解決手段】C:0.001〜0.015%、Si:0.05〜0.50%、Mn:0.10〜2.0%、Al:0.001〜0.10%、Cr:13%以上15%未満、Ni:2.0〜5.0%、Mo:1.5〜3.5%、V:0.001〜0.20%、N:0.015%以下を、P:11.5〜13.3かつ、P=(0.5Cr+5.0)−P:0以上を満足組成とする。これにより、溶接時に1300℃以上のフェライト単相温度域に加熱され、冷却された溶接熱影響部が、全長に対する比率で、旧フェライト粒界の50%以上がマルテンサイト相で占有された組織となり、Cr炭化物の欠乏層の形成が抑制されて、溶接熱影響部の耐粒界応力腐食割れ性が顕著に向上した鋼管となる。 (もっと読む)


【課題】Ni、Mo、Mn使用量を極力抑え、大入熱HAZ靭性に優れた、590MPa級以上の高強度鋼を提供する。
【解決手段】成分組成が、質量%で、C:0.025〜0.050%、Si:0.3%以下、Mn:1.2〜2.0%、P:0.05%以下、S:0.01%以下、Cr:1.5〜3.5%、Al:0.05%以下、Ti:0.005〜0.050%、Ni:0.5〜2.0%、N:0.0015〜0.0060%を含有し、更に、下記式(1)を満たし、残部鉄および不可避不純物からなることを特徴とする溶接熱影響部の靱性に優れた高強度鋼。
2.3≦(Mn+0.4Cr)≦2.7 ・・・(1)
なお、式中、Mn、Crは、それぞれの元素の含有量(質量%)を示す。 (もっと読む)


【課題】過度な合金元素添加を行うことなく、溶接性および低温靱性に優れる高強度鋼の製造方法を提供する。
【解決手段】質量%で、C:0.04〜0.08%、Si:0.01〜0.5%、Mn:1.0〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.005〜0.08%、Nb:0.10〜0.20%、Ti:0.005〜0.020%、を含有し、更に、Cu、Ni、B、Ca、REMの一種以上を含有し、残部Feおよび不可避的不純物からなりPcm値が0.15以上0.18以下である鋼を1100〜1300℃に再加熱後、熱間圧延を開始し、950〜1000℃の温度域での累積圧下率を70%以上として、900℃以上で圧延を終了し、圧延終了後800℃以上の温度域から冷却速度10〜50℃/sの加速冷却を開始し、600℃以下の温度で冷却を停止して以後空冷することを特徴とする溶接性および母材靱性に優れた高強度厚鋼板の製造方法。 (もっと読む)


【課題】強度、衝撃特性、耐食性に優れる溶体化熱処理を省略した安価で使用エネルギーが少なく環境面でも優れた合金元素節減型二相ステンレス熱延鋼材を得ること。
【解決手段】質量%で、C:0.03%以下、Si:0.05〜1.0%、Mn:0.5〜7.0%、P:0.05%以下、S:0.010%以下、Ni:0.1〜5.0%、Cr:18.0〜25.0%、N:0.05〜0.30%、Al:0.001〜0.05%、を含有し、残部がFeおよび不可避的不純物よりなり、熱間圧延中におけるクロム窒化物の析出に関する指標となるクロム窒化物析出温度TNが960℃以下であって、溶体化熱処理を施した熱延鋼材よりも降伏強度が50MPa以上高い、熱間圧延ままの溶体化熱処理を省略した合金元素節減型二相ステンレス熱延鋼材。 (もっと読む)


【課題】表面疵のない美麗な橋梁用鋼板を製造する。
【解決手段】Si、及び、Nbを含有するスラブを加熱した後、熱間圧延を施して橋梁用鋼板を製造する製造方法において、加熱炉で前記スラブを加熱する際、下記式(1)で定義する過加熱度DOHを、1.1以下に制御することを特徴とする橋梁用鋼板の製造方法。
過加熱度DOH=∫t1t2f(t)dt/{(1170)・(t2−t1)}・・・(1)
f(t):スラブ表面の温度上昇曲線、t1:スラブ表面の温度が1170℃に達した時間、t2:スラブを加熱炉から抽出した時間 (もっと読む)


【課題】強度をいっそう向上させ、かつ切削性を保持した非調質熱間鍛造鋼を製造する方法を提供する。
【解決手段】微細V炭化物を析出させたフェライト−パーライト組織の高強度非調質熱間鍛造鋼の製造方法であって、C:0.30〜0.60質量%、Si:0.50質量%以下、Mn:0.10〜0.60質量%、V:0.20〜0.80質量%、S:0.05質量%以下、P:0.05質量%以下、N:0.0100質量%以下を含有し、残部がFeおよび不可避的不純物からなる鋼を、熱間鍛造後に、熱間鍛造の終了温度から700℃以下550℃以上における温度まで2.0℃/s以上で急速冷却し、20〜100sec経過するまで冷却速度が0℃/s以上2.0℃/s未満となるように、かつ温度を500℃以上に保持または冷却し、400℃以下の温度まで2.0℃/s以上で再び急速冷却することを特徴とする。 (もっと読む)


【課題】耐食性を有し、耐水素脆化特性に優れた1200MPa以上の強度を有する高強度亜鉛めっきボルトの製造方法を提供する。
【解決手段】質量%で、C:0.70〜1.10%、Si:0.05〜2.00%、Mn:0.20〜2.00%を含有し、P:0.020%以下、S:0.020%以下、N:0.0150%に制限し、Al:0.005〜0.100%、Ti:0.002〜0.100%、Nb:0.002〜0.100%のうち何れか1種又は2種以上を含有し、残部がFe及び不可避不純物からなる成分の鋼材を熱間圧延後、30℃/s以上の冷却速度で550〜700℃の温度範囲に冷却し、該温度範囲で30〜300sの間保持し、次に室温まで冷却した後、摩擦係数を0.1以下として伸線加工を行った後、ボルト形状に成形し、電気亜鉛めっき又は溶融亜鉛めっきを施す耐水素脆化特性に優れた高強度亜鉛めっきボルトの製造方法を採用する。 (もっと読む)


【課題】建築構造部材向け角形鋼管用素材として好適な、厚肉熱延鋼板を提供する。
【解決手段】質量%で、C:0.07〜0.18%、Mn:0.3〜1.5%、Al:0.01〜0.06%、N:0.006%以下を含む組成を有する鋼素材を1100〜1300℃に加熱したのち、粗圧延終了温度:950〜1150℃とする粗圧延を施したのち、圧延開始温度:1100〜850℃、圧延終了温度:900〜750℃とする仕上圧延を施し、ついで、表面温度で冷却停止温度を550℃以上とする一次冷却と、3〜15s間空冷する二次冷却と、板厚中央部温度で平均冷却速度が4〜15℃/sとなる冷却速度で冷却する三次冷却とからなる三段階の冷却で、冷却開始から板厚中央部温度で650℃に到着するまでの時間が35s以内となる冷却を施し、500〜650℃で巻取る。 (もっと読む)


【課題】厳しい腐食環境下において、優れた長期耐食性を示す船舶用鋼材、およびこのような船舶用鋼材を用いて構成した各種構造物を提供する。
【解決手段】本発明の船舶用鋼材は、C:0.04〜0.30%、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.010〜0.040%、S:0.011〜0.025%%、Al:0.010〜0.10%、Cu:0.10〜1.0%、Cr:0.01〜0.3%、およびN:0.0030〜0.010%を夫々含有し、残部が鉄および不可避的不純物からなり、且つSの含有量[S]とNの含有量[N]の比([S]/[N])が1.50〜6.0である。 (もっと読む)


【課題】船舶の甲板上という過酷な大気腐食環境で良好な耐食性を発揮すると共に、船舶上部構造物に要求される機械特性、溶接性、熱間加工性等を具備する船舶上部構造物用耐食鋼材を提供する。
【解決手段】C:0.01〜0.30%(質量%の意味、以下同じ)、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.005〜0.04%、S:0.0005〜0.01%、Al:0.005〜0.10%、Cu:0.10〜5.0%、Ni:0.10〜5.0%、Cr:0.010〜0.4%、Ti:0.005〜0.06%、およびN:0.0030〜0.008%を満たし、残部が鉄および不可避不純物からなり、かつ、Tiの含有量[Ti]とNの含有量[N]の比([Ti]/[N])が1.5以上17.0以下であることを特徴とする船舶上部構造物用耐食鋼材。 (もっと読む)


【課題】孔型ロールを用いて高強度の素管を高加工度で冷間圧延するピルガー圧延において、孔型ロールの工具寿命を長寿命化することが可能な高強度管の製造方法を提供する。
【解決手段】1対の孔型ロールと、その孔型ロールの間にマンドレルを備えたピルガー圧延により、引張降伏応力が700MPa以上の素管を、断面減少率が70%以上で冷間圧延する高強度管の製造方法であって、HRCで57〜61の硬度を有する低合金高速度鋼からなる孔型ロールを用いることを特徴とする。低合金高速度鋼は、質量%で、C:0.50〜0.75%、Si:0.02〜2.00%、Mn:0.1〜3.0%、P:0.05%以下、S:0.01%以下、Cr:5.0〜6.0%、Mo:1.5〜4.0%、W:0.5〜2.0%、V:0.70〜1.25%およびAl:0.1%以下を含有し、残部がFeおよび不純物からなる化学組成を有するのが好ましい。 (もっと読む)


【課題】特別な設計および施工を行うことなく溶接部の疲労き裂発生特性を改善できかつ疲労き裂が母材部に進入したときには母材部で疲労き裂進展抵抗特性を発揮する溶接継手を提供する。
【解決手段】質量%で、C:0.01〜0.10%、Si:0.04〜0.60%、Mn:0.50〜2.00%、P:0.025%以下、S:0.020%以下、Al:0.003〜0.060%、Ti:0.001〜0.100%、N:0.0020〜0.0120%、Mo:0.04〜0.50%を含有し、残部はFeと不純物からなる化学組成を有し、硬質部の素地とこの素地中に分散した軟質部からなる複合組織を有し、硬質部と軟質部の硬度差がビッカース硬度で150以上である母材を溶接してなる溶接継手であって、
溶接熱影響部の硬度が、母材、溶接金属の各々の硬度と下記の不等式(1)の関係を満たすと共に、溶接熱影響部における[回転曲げ疲労強度/引張強度]の比が0.45以上であることを特徴とする溶接継手。
{Min(母材硬度、溶接金属硬度)}×1.5≧(HAZ硬度の最大値) ・・・式(1)ただし、Min(母材硬度、溶接金属硬度)とは、母材の硬度および溶接金属の硬度のうちの低い方の値を意味する。HAZ硬度の最大値とは、溶接熱影響部における硬度の最大値を意味する。 (もっと読む)


【課題】船舶のバラストタンク等の厳しい海水腐食環境下においても、優れた塗装耐食性を発揮して、補修塗装までの期間の延長が可能で、しかも補修塗装の作業を軽減することができる船舶用耐食鋼材を提供する。
【解決手段】鋼材成分として、とくにW:0.01〜0.5mass%およびMo:0.02〜0.5mass%のうちから選んだ1種または2種ならびにSn:0.001〜0.2mass%を含有させ、さらに鋼中に円相当直径で10〜50nmのTiN粒子を5×107個/cm2以上存在させると共に、次式(1)′式で示すACP値を0.50以下、かつ次式(2)′で示すWI値を0.50以下に制御する。
ACP={1−(0.8×W+0.5×Mo)0.3}×{1−Sn0.3} --- (1)′
WI=C+Mn/6+Mo/5+V/5+W/10+Sn/2 --- (2)′ (もっと読む)


【課題】熱延コイルを展開して通板するラインにおいて材料割れの問題が安定して防止できるに足る靱性・延性を有する、厚ゲージのNb含有フェライト系ステンレス鋼熱延コイルを提供する。
【解決手段】硬さが190HV以下、25℃におけるシャルピー衝撃値が20J/cm2以上に調整されている板厚5.0〜10.0mmのNb含有フェライト系ステンレス鋼熱延コイル。この熱延コイルは、スラブを仕上圧延温度890℃以上で熱間圧延して板厚5.0〜10.0mmとしたのち、巻取前に水冷して巻取温度400℃以下で巻取ってコイルとし、巻取終了時から30分以内にコイルを水中に浸漬し、当該水中で15分以上保持する手法によって製造できる。 (もっと読む)


【課題】溶接部の疲労き裂発生特性を改善できかつ母材部で疲労き裂進展抵抗特性を発揮することができ、また、高塩化物環境における耐食性も良好な溶接継手を提供する。
【解決手段】質量%で、C:0.01〜0.10%、Si:0.04〜0.60%、Mn:0.50〜2.00%、P:0.025%以下、S:0.020%以下、Al:0.003〜0.060%、Ti:0.001〜0.100%、Sn:0.03〜0.50%、N:0.0020〜0.0120%を含有し、残部はFeと不純物からなる化学組成を有し、硬質部の素地とこの素地中に分散した軟質部からなる複合組織を有し、硬質部と軟質部の硬度差がビッカース硬度で150以上である母材を溶接してなる溶接継手であって、溶接熱影響部の硬度が、母材、溶接金属の各々の硬度と特定の関係式を満たすと共に、溶接熱影響部の加工硬化係数の値が0.12以下であることを特徴とする溶接継手。 (もっと読む)


【課題】 耐海水用途向けに使用される部材、特にシャフト類、バルブ、フランジ、配管類、計測機器等に使用される靭性、耐食性に優れた二相系ステンレス鋼の製造方法を提供する。
【解決手段】 1000〜1300℃の温度域で鍛造または圧延後、冷却速度5℃/min以下で徐冷した後、固溶化熱処理温度950〜1125℃で均熱後、急冷することを特徴とする靭性、耐食性に優れた二相系ステンレス鋼の製造方法。 (もっと読む)


【課題】熱延コイルを展開して通板するラインにおいて材料割れの問題が安定して防止できるに足る靱性・延性を有する、厚ゲージのTi含有フェライト系ステンレス鋼熱延コイルを提供する。
【解決手段】硬さが180HV以下、25℃におけるシャルピー衝撃値が20J/cm2以上に調整されている板厚5.0〜12.0mmのTi含有フェライト系ステンレス鋼熱延コイル。この熱延コイルは、スラブを熱間圧延して板厚5.0〜12.0mmとしたのち巻取温度570℃以上で巻取ってコイルとし、巻取終了時から5分以上経過後で、かつコイル最外周の表面温度が550℃以上である時にコイルを水中に浸漬し、当該水中で15分以上保持する手法によって製造できる。 (もっと読む)


【課題】浸炭又は浸炭窒化時に発生するオーステナイト結晶粒粗大化を抑制することが可能で、良好な冷間鍛造性を有して軟化焼鈍省略可能な表面硬化用熱間加工鋼材の提供。
【解決手段】C:0.10〜0.30%、Si≦0.50%、Mn:0.15〜1.5%、P≦0.04%、S:0.005〜0.07%、Cr:0.7〜3.0%、Al:0.01〜0.05%、N:0.0035〜0.010%、Ti:0.005〜0.10%、Nb:0.02〜0.07%、B:0.0005〜0.0050%及びH≦0.00004%を含有し、残部がFe及び不純物からなり、鋼中Nbの内でNb(C、N)として析出しているNbの割合が85%以上、直径100nm以上のNb(C、N)の個数密度が5個/100μm2以下、フェライト結晶粒度の標準偏差が0.15以下である表面硬化用熱間加工鋼材。Mo≦0.50%及びV≦0.20%の1種以上を含んでもよい。 (もっと読む)


【課題】YS:655MPa以上でかつ優れた耐炭酸ガス腐食性および耐硫化物応力腐食割れ性を兼備する油井用高強度マルテンサイト系ステンレス継目無鋼管を提供する。
【解決手段】質量%で、C:0.01%以下、Si:0.5%以下、Mn:0.1〜2.0%、P:0.03%以下、S:0.005%以下、Cr:14.0〜15.5%、Ni:5.5〜7.0%、Mo:2.0〜3.5%、Cu:0.3〜3.5%、V:0.20%以下、Al:0.05%以下、N:0.06%以下を含む組成を有し、焼入れ焼戻処理を施して、降伏強さ:655〜862MPaと降伏比:0.90以上の引張特性を有する鋼管とする。降伏強さを油井用として所定の強度を確保したうえで、降伏比を0.90以上とすることにより、低引張強さの鋼管となり、耐炭酸ガス腐食性および耐硫化物応力腐食割れ性等の耐食性が向上する。 (もっと読む)


161 - 180 / 1,399