説明

Fターム[4K033BA02]の内容

電磁鋼板の製造 (7,545) | インヒビター (283) | Mn−S、Mn−Se (131)

Fターム[4K033BA02]に分類される特許

101 - 120 / 131


【課題】電気機器鉄心材料として使用される方向性電磁鋼板の製造方法に関し,従来困難であった,工業的に良好な皮膜と磁気特性を両立させる製造方法を提供する。
【解決手段】重量%で,C:0.02〜0.10%,Si:2.5〜4.5%,酸可溶性Al:0.010〜0.050%,N:0.003〜0.013%,S:0.015〜0.040%,Mn:0.040〜0.120%を含有し,残部がFe及び不可避的不純物からなるスラブを1250℃以上の温度で加熱し,熱延を行い,焼鈍を施し酸洗を実施後,一回または焼鈍を挟んだ二回の冷間圧延に脱炭焼鈍を施し焼鈍分離剤塗布を行い,最終仕上焼鈍を実施して製造する一方向性電磁鋼板を製造する工程において,最終仕上焼鈍でのコイル昇温速度が850〜T℃までは13℃/h以上50℃/h以下,T〜1150℃までは3℃/h以上13℃/h未満とし,さらにT=950〜1050とする。 (もっと読む)


【課題】被膜特性および磁気特性に優れた方向性電磁鋼板を提供する。
【解決手段】インヒビター成分を含有しない成分系の鋼スラブを素材として、方向性電磁鋼板を製造するに際し、
一次再結晶焼鈍後、焼鈍分離剤の塗布に先立ち、鋼板表面にSi,Cu,Sn,CoおよびNiのうちから選んだ1種または2種以上の金属含有物を該金属元素換算の合計量で0.1〜50 mg/m2の範囲で電着させ、しかるのち焼鈍分離剤を塗布する。 (もっと読む)


【課題】方向性電磁鋼板製造時における焼鈍分離剤用マグネシアの新しい評価方法を提示すると共に、この評価方法で評価した特性値を満足するマグネシアを用いることにより、被膜特性ひいては磁気特性に優れた方向性電磁鋼板を安定して得る。
【解決手段】焼鈍分離剤中のマグネシアとして、不純物のCl濃度が0.01〜0.04mass%、CaO濃度が0.25〜0.70mass%、B濃度が0.05〜0.15mass%、SO3濃度が0.05〜0.50mass%、CAA40%が50〜90秒を満足し、さらに20℃,30分の水和試験による水和量が1.5〜2.5mass%でかつ20℃,180分の水和試験による水和量が3.0〜5.0mass%である粉体を用い、
スラリーの水和温度と平均水和時間の調整により、該粉体を水でスラリー状にして塗布、乾燥させた後のマグネシアの水和量が1.0mass%以上 3.5mass%以下になるように水和させた焼鈍分離剤を、鋼板表面に塗布、乾燥する。 (もっと読む)


【課題】Crを含有しない無機物を主成分とする絶縁被膜であって、300℃以下で焼き付けた後(歪み取り焼鈍前)の耐食性ならびに歪取り焼鈍後の耐食性に優れる絶縁被膜を有する電磁鋼板を提供する。
【解決手段】ZrおよびP、ならびにMg、Caのうちの一つ以上を含有し、PがZrに対しモル比でP/Zr=0.4〜4.0であり、MgとCaの合計量がZrに対しモル比で(Mg+Ca)/Zr=0.005〜0.10である絶縁被膜を有する電磁鋼板。例えば、前記絶縁被膜は、Zr化合物として炭酸Zrアンモニウム、P化合物としてリン酸マグネシウム、Mg化合物としては水酸化Mg、Ca化合物としては水酸化Caを原料とした塗料を電磁鋼板表面に塗布焼付けし造膜して得られるものである。また、前記絶縁被膜中には、樹脂を含有することもできる。 (もっと読む)


【課題】被膜密着性、特に被膜額縁剥離性に優れる一方向性電磁鋼板の製造方法を提供する。
【解決手段】質量%で、C:0.10%以下、Si:2〜7%、Mn:0.02〜0.30%と、SおよびSeのうちから選んだ1種または2種の合計:0.001〜0.040%、酸可溶性Al:0.010〜0.065%、N:0.0030〜0.0150%、CeおよびLaのうちから選んだ1種または2種の合計が0.001〜0.1%、残部Feおよび不可避的不純物よりなる一方向性電磁鋼熱延板に焼鈍を施し、1回あるいは2回以上または中間焼鈍を挟む2回以上の冷間圧延を施して最終板厚に仕上げ、次いで脱炭焼鈍を施し、その後、鋼板表面に焼鈍分離剤を塗布、乾燥し仕上げ焼鈍を行うことにより、Ce若しくはLa、又はCeとLaの両方を0.01〜1000mg/m2含む一次被膜を形成する。 (もっと読む)


【課題】鉄損特性に優れた方向性電磁鋼板およびその製造方法を提供する。
【解決手段】一次再結晶焼鈍後二次再結晶焼鈍前に、もしくは二次再結晶焼鈍後純化焼鈍前に、Fe酸化物、Mo酸化物、Mn酸化物、Sn酸化物、W酸化物、Ga酸化物、Ge酸化物、Cu酸化物、Cr酸化物、Sb酸化物のうちの少なくとも1種以上を、鋼板に線状および/または点列状に塗布する。引き続き行われる二次再結晶焼鈍もしくは純化焼鈍は、焼鈍温度1050℃以上で行う。例えば、このような処理を行うことで、鋼板表面に、圧延方向に対して60〜90°の角度を有する方向に、SiOおよびFeとSiとの複合酸化物からなる線状および/または点列状の侵入部を有することとなり、磁区細分化効果が得られる。 (もっと読む)


【課題】従来から方向性珪素鋼板の製造はその製造の冶金学的必要性から、分塊圧延もしくは連続鋳造によって得られたスラブの高温加熱(1350℃以上)が不可欠の要因であり、これが工業的には大きな難点であって、改善すべき多くの問題点を有していた。
【解決手段】本発明は連続鋳造−熱間圧延連続設備により中肉厚バーを鋳造し、該バーがAlNを固溶した状態を保持する1200℃を超える温度間に熱延仕上圧延入口に到達せしめ、該ばーを熱間圧延し、急冷することにより微細なAlNを析出させ、すなわち、これらバーの高温加熱を全く行うことなく高磁束密度方向性珪素鋼板を効率的に安価に製造する方法を提供する。 (もっと読む)


【課題】二次再結晶焼鈍時にインヒビター強度を板幅方向で均一にして、磁束密度の高い方向性電磁鋼板を安定的に製造できる方法を提供する。
【解決手段】質量%で、C:0.10%以下、Si:2.5〜7.0%、Mn:0.01〜0.30%、Cu:0.01〜0.40%、S:0.001〜0.050%、酸可溶性Al:0.005〜0.060%、N:0.002〜0.015%を含有し、残部Feおよび不可避的不純物からなるスラブから一連の工程によって方向性電磁鋼板を製造するにあたり、熱間圧延工程における仕上圧延出側の板幅方向エッジからの距離で10〜30mmの間における鋼板温度を900〜1100℃とし、かつ、熱延板焼鈍を2段の熱処理サイクルで行い、その一次均熱の鋼板温度を1000〜1150℃とし、さらに、その二次均熱の鋼板温度を850〜950℃とするとともに二次均熱温度の保持時間を10〜300秒とする。 (もっと読む)


【課題】歪取焼鈍後に鉄損が劣化せず、変圧器鉄心として加工した後も低鉄損特性を得ることが可能な低鉄損方向性電磁鋼板を提案する。
【解決手段】本発明の方向性電磁鋼板は、圧延方向と略直交する向きに複数の溝を有しており、さらに、各溝の間には、板厚減少部が点在して形成され、前記板厚減少部における板厚減少量の合計が、前記板厚減少部が形成される前の鋼板に対する重量減少率で0.01〜0.05%である。例えば、板厚減少部として、45μmφで、深さ25μmで、重量減少率が0.03%の凹部を各溝の間に導入する。この板厚減少部を各線状溝の間に設けることで反磁界が形成され、反磁界が形成されることで、圧延方向以外に磁束が流れる場合の鉄損上昇を抑制することが可能となる。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1350℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍において、脱炭処理を施して焼鈍後の表面粒組織においてラメラ間隔を制御するとともに、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは50〜250℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、脱炭焼鈍の昇温過程の急速加熱領域を、誘導加熱が利用できる温度に低下させる。
【解決手段】珪素鋼素材を、1350℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃以上、さらに好ましくは50〜250℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、冷間圧延をタンデム圧延機で行ってパス間時効を省略しても、それを行った場合と同等の磁気特性を得ること。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施すことにより方向性電磁鋼板を製造する際、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、冷間圧延をタンデム圧延機で行い、さらに、鋼板を脱炭焼鈍する際の昇温過程における加熱を、鋼板温度が550℃から720℃にある間を40℃/秒以上、好ましくは50℃/秒以上、さらに好ましくは75〜125℃/秒の加熱速度となる条件で行う。 (もっと読む)


【課題】方向性電磁鋼板の製造において、通常の設備を用いて、脱炭焼鈍後の一次再結晶粒組織中の{411}方位粒の存在する比率を高くできる方法を提供する。
【解決手段】珪素鋼素材を、1280℃以下の温度で加熱した後に熱間圧延し、熱延板を焼鈍し、次いで冷間圧延を施して最終板厚の鋼板とし、その鋼板を脱炭焼鈍した後、窒化処理し、焼鈍分離剤を塗布して仕上げ焼鈍を施す方向性電磁鋼板の製造方法において、熱延板焼鈍を、1000〜1150℃の所定の温度まで加熱して再結晶させた後、それより温度の低い850〜1100℃で焼鈍する工程で行い、焼鈍後の粒組織においてラメラ間隔を20μm以上に制御する。 (もっと読む)


【課題】化学蒸着法における原料ガスの供給に用いるノズルに、原料ガスの吹き付けが金属ストリップの幅方向に均等となる構造を与える。
【解決手段】化学蒸着を行う処理炉内に導入された金属ストリップに向けて、原料ガスを吹き付けるノズルにおける、該原料ガスの供給側から原料ガスの吐出側へ延びる配管は、供給側から吐出側へ向かって順次2経路に分かれる分枝を少なくとも2段で繰り返し、最終段分枝の経路末端に吐出口を設け、各段の分枝後の経路におけるコンダクタンスを2経路相互で等しくする。 (もっと読む)


【課題】本発明は、主にトランス等の鉄芯として使用される充分析出窒化型の高磁束密度方向性電磁鋼板の製造方法を提供する。
【解決手段】熱間圧延板焼鈍条件を有効酸可溶性Al(AlNR)で規定される熱間圧延鋼帯の焼鈍条件を下記上限、下限の温度での一段化することにより整粒性を改善して、磁束密度を高位に確保して高Siの特徴を発揮させた充分析出窒化型の高磁束密度方向性電磁鋼板の製造方法。
Tmax.(℃)=15/22×AlNR+1000:(<1120℃)
Tmin.(℃)=15/22×AlNR+900:(≧925℃)
ここで、AlNR(ppm)=酸可溶性Al−27/14(N−14/48Ti) (もっと読む)


【課題】磁気特性とグラス被膜特性に優れた方向性電磁鋼板の製造方法とその製造方法で使用する焼鈍分離剤用MgOを提供する。
【解決手段】焼鈍分離剤を塗布した後、高温仕上げ焼鈍する方向性電磁鋼板の製造方法において、焼鈍分離剤として用いるMgOのゼータ電位の絶対値が20mV以上で、20℃の40%クエン酸活性度が100〜200で、かつ、平均粒径が1.5〜4.5μmで粒度分布の標準偏差が4以上である焼鈍分離剤を、冷間圧延方向性電磁鋼板に塗布し、高温仕上げ焼鈍する。 (もっと読む)


【課題】磁歪振動が抑制され騒音低減効果をもたらす磁歪特性に優れる方向性電磁鋼板を提供する。
【解決手段】まず、方向性電磁鋼板の表面にフォルステライトを主体とする無機鉱物質被膜を、さらにその上層には、平均密度が3.1g/cm3以上で平均硬度が15GPa以上の被膜を有することとする。例えば、上記上層被膜はコロイダルシリカとアルミナゾルを種々の割合で混合し、この混合物をフォルステライト被膜のある鋼板に900℃から1050℃の温度範囲で焼き付けることで形成される。 (もっと読む)


【課題】コイル全長にわたって均一かつ良好な磁気特性を有する方向性電磁鋼板を提供する。
【解決手段】Siを1.0〜5.Omass%含有する方向性電磁鋼板の製造に際し、焼鈍分離剤の主剤として、少なくとも50%のマグネシアを含有し、かつ微量含有物として下記の組成になる複合酸化物を、マグネシア:100質量部に対して1〜10質量部含有するものを用いる。
(M+a,M2+b,M3+c)AOx
但し、2≦a+2b+3c≦6, 0≦a≦6, 0≦b≦3, 0≦c≦2
4≦x≦6
+ :Li,Na,K、 M2+:Mg,Ca,Sr,Ba,Cr,Co,Mn,Zn,Fe、
3+:Fe,Al,Cr,Mn、 A:Si,Zr,Mo,W (もっと読む)


【課題】コイル全長にわたって均一かつ良好な磁気特性を有する方向性電磁鋼板を提供する。
【解決手段】Si含有量が1.0〜5.0mass%の、フォルステライト質下地被膜の表面にガラス質の無機コーティングをそなえる方向性電磁鋼板コイルにおいて、コイル幅方向端部における地鉄部のTi,Mo,W,Ta,V,NbおよびZr濃度を合計で150ppm以下、コイル幅方向端部での被膜を含めたC濃度を30ppm以下で抑制し、かつコイル幅方向端部の幅方向中央部に対する被膜を含めたC濃度の差を20ppm以内に制限することにより、コイル全幅にわたり歪取焼鈍前後の鉄損の比率を1.2以下とする。 (もっと読む)


【課題】歪取焼鈍後においても鉄損が劣化することなしに、安定して低い鉄損が得られる方向性電磁鋼板の製造方法について提案する。
【解決手段】方向性電磁鋼板用の溶鋼を出発素材として、熱間圧延、冷間圧延、一次再結晶焼鈍および仕上焼鈍の一連の工程を経て方向性電磁鋼板を製造するに当り、最終冷間圧延後の鋼板表面に、エッチング処理を施して所定の条件を満足する線状溝を形成した後、その後の一次再結晶焼鈍は、鋼板温度が500℃以上750℃以下の温度域における加熱速度を、線状溝以外の部分に比べて線状溝部分で速くする。 (もっと読む)


101 - 120 / 131