説明

Fターム[4K033HA03]の内容

電磁鋼板の製造 (7,545) | 冷延 (554) | 中間焼鈍をはさむ2回冷延 (227)

Fターム[4K033HA03]の下位に属するFターム

圧延率 (54)

Fターム[4K033HA03]に分類される特許

21 - 40 / 173


【課題】実機トランスに組上げた場合に、優れた騒音特性および鉄損特性を得ることが可能な方向性電磁鋼板を提供する。
【解決手段】二次再結晶粒の平均β角が2°以下、二次再結晶粒の粒内の平均β角変動幅が1°以上4°以下で、かつ圧延方向における表面張力が10MPa以上であり、磁束密度:1.7T、周波数:50Hzにおける磁歪λp-pの値が1.0×10-6以下で、さらに板厚tと鉄損W17/50とが、以下の式(1)を満足させる。
17/50 ≦2.1×t + 0.3 ・・・(1)
t : 板厚(mm) (もっと読む)


【課題】実機トランスに組上げた場合に、優れた鉄損特性、騒音特性を有する方向性電磁鋼板を提供する。
【解決手段】最終仕上げ焼鈍後または張力コーティング処理後に、電子ビーム照射による磁区細分化処理を行う場合に、電子ビームの出力に応じて、一点当たりの滞留時間tと点間隔Xとの関係を次の範囲に制御する。(1)ビーム出力が600W未満の場合には、0.05≦2(Da・t)1/2/X≦1.5(2)ビーム出力が600〜1200Wの場合には、0.03≦2(Da・t)1/2/X≦0.8(3)ビーム出力が1200W超の場合には、0.01≦2(Da・t)1/2/X≦0.2但し、Da:熱拡散率(22.7×10-6m2/s at 300K in Fe)、t:一点当たりの滞留時間(s)、X:点間隔(mm) (もっと読む)


【課題】冷間圧延前のCの存在形態を最適化し、二次再結晶焼鈍後に優れた磁気特性を安定して得ることができる方向性電磁鋼板の製造方法を提案する。
【解決手段】mass%で、C:0.005〜0.15%、Si:2.5〜7.0%、Mn:0.005〜0.3%、sol.Al:0.01〜0.05%、N:0.002〜0.012%、SおよびSeのうちの1種または2種を合計で0.005〜0.05%を含有する鋼素材を再加熱した後、熱間圧延し、巻取温度を760〜460℃の範囲として鋼板表面にFeを主体とする酸化物を生成させた後、酸化性雰囲気中で、800℃以上に加熱後、800℃から350〜200℃間の冷却停止温度までを平均冷却速度10〜100℃/sで冷却し、その後、冷却停止温度から冷却速度5℃/s以下で40〜200s間徐冷する熱延板焼鈍を施すことを特徴とする方向性電磁鋼板の製造方法。 (もっと読む)


【課題】特別な設備や工程を必要とすることなく、鉄損の改善を図ることができる方向性電磁鋼板の有利な製造方法を提案する。
【解決手段】C:0.01〜0.08mass%、Si:2.0〜8.0mass%およびMn:0.005〜1.0mass%を含有する鋼素材を用いる方向性電磁鋼板の製造方法において、最高到達温度1100℃以上で仕上焼鈍を施した後、均熱温度が950〜1200℃で均熱保持時間が3hr以上の追加焼鈍を施すことを特徴とする方向性電磁鋼板の製造方法。 (もっと読む)


【課題】二次再結晶後の磁気特性に優れる方向性電磁鋼板の製造方法を提案すると共に、その製造に用いる素材鋼板を提供する。
【解決手段】mass%で、C:0.02〜0.15%、Si:2.5〜4.0%、Mn:0.005〜0.3%、sol.Al:0.01〜0.05%、N:0.002〜0.012%およびS,Seの1種または2種を合計で0.05%以下含有する鋼素材を熱間圧延した後、中間焼鈍を挟む2回以上の冷間圧延し、一次再結晶焼鈍し、仕上焼鈍する方向性電磁鋼板の製造方法において、一次冷間圧延前の素材鋼板の降伏応力YS(MPa)を、鋼素材のSi含有量(mass%)との関係において下記式;
124.32×Si−12.45≦YS≦124.32×Si+127.55
を満たすよう調整した後、一次冷間圧延する方向性電磁鋼板の製造方法。 (もっと読む)


【課題】熱歪みを導入した方向性電磁鋼板を変圧器に利用した場合の騒音の問題を解消し、磁区細分化効果並びに張力付与効果を十二分に享受し得る方途について提供する。
【解決手段】コイル状に巻き取った方向性電磁鋼板に仕上げ焼鈍を施し、次いで張力絶縁被膜の形成および平坦化焼鈍を施してから、該鋼板の圧延方向と交差する向きに線状の熱歪み領域を導入する、磁区細分化処理を施すに当り、前記平坦化焼鈍後の鋼板に、母線が前記圧延方向と交差する向きとなる湾曲を与えて、該湾曲の内側面に前記熱歪み領域を導入する。 (もっと読む)


【課題】従来の二方向性電磁鋼板とは異なる結晶方位を有しながらも、二方向性電磁鋼板としての特徴を有する新規な電磁鋼板とその製造方法を提案する。
【解決手段】mass%で、C:0.002〜0.10%、Si:1.0〜8.0%およびMn:0.005〜1.0%を含有し、さらに、Al:0.0100%以下、N:0.0050%以下、S:0.0050%以下およびSe:0.0050%以下を含有する鋼素材を熱間圧延し、必要に応じて熱延板焼鈍し、1回または中間焼鈍を挟む2回以上の冷間圧延して最終板厚の冷延板とした後、脱炭を兼ねた一次再結晶焼鈍し、その後、仕上焼鈍する一連の方向性電磁鋼板の製造方法において、上記冷間圧延における最終冷延圧下率を94%以上とすることで、結晶粒の方位が{110}<112>から20°以内である比率が結晶粒の面積率で50%以上である電磁鋼板を得る。 (もっと読む)


【課題】磁気特性に優れた方向性電磁鋼板およびその製造方法を提供する。
【解決手段】mass%で、C:0.002〜0.100%、Si:2.0〜8.0%、Mn:0.005〜1.00%、Al:0.010%以下、N:0.005%以下、S:0.005%以下、Se:0.005%以下で含有し、さらにNb:0.001〜0.015%を含み、残部はFeおよび不可避的不純物からなる成分組成を有するスラブに対して熱間圧延し、次いで、1回もしくは中間焼鈍を挟む2回以上の冷間圧延を施し再結晶焼鈍を施す。次いで、仕上焼鈍後、仕上焼鈍温度から600℃まで0.3℃/分以下の平均冷却速度で冷却する。このように製造される方向性電磁鋼板は、固溶Nb量が0.0006%以下となる。 (もっと読む)


【課題】鋼板に大きな外部応力がかかる条件下、もしくは正弦波に加えて3次以上の高調波成分を3%以上含む交流磁束密度波形による励磁された条件下で使用するのに好適な、線状溝が付与された変圧器鉄心用の方向性電磁鋼板を提供する。
【解決手段】線状溝の幅を50〜300μm、深さを10μm以上、圧延方向の間隔を2mm以上10mm以下とし、かつ該線状溝の溝側壁が溝底面と交わる部分の曲率半径を1.0μm以上とする。 (もっと読む)


【課題】数mの大きさの大型変圧器用電磁鋼板において、特に、板厚:0.220mm以下の電磁鋼板であっても、剪断加工を行った際の磁気特性劣化を低減できる鋼板を提供する。
【解決手段】電磁鋼板の成分として、質量%で、C:0.005%以下、Si:1.0〜8.0%およびMn:0.005〜1.0%を含み、かつNb、Ta、VおよびZrのうちから選んだ1種または2種以上を合計で10〜50質量ppm含有して、残部がFeおよび不可避的不純物からなり、上記Nb、Ta、VおよびZrは含有量の少なくとも10%が析出物として存在し、該析出物の直径(円相当径)を平均で0.02〜3μmとし、かつ直径:10μm以上の介在物を1mm2当たり1個未満とし、さらに該鋼板の二次再結晶粒の平均粒径が5mm以上とする。 (もっと読む)


【課題】磁区細分化を目的とした熱歪部周辺の絶縁コーティングの剥離を防止し、ビルディングファクタを増大させることなく、層間抵抗の劣化を防止した方向性電磁鋼板を提供する。
【解決手段】圧延方向に対するゴス方位粒の[001]軸のずれ角を、平均で±10°以内とし、該下地被膜に、窒素化合物がN換算で0.02g/m2以上含有し、さらに、一定長さA(μm)と、該一定長さA(μm)当たりの下地被膜と鋼板との界面の長さの合計L(μm)とを、以下の式(1)で規定される接触度Fで1.5以上とすることを特徴とする方向性電磁鋼板。
F= L/A ・・・ (1) (もっと読む)


【課題】 レーザ光を照射することにより方向性電磁鋼板の表面に溝を形成して当該方向性電磁鋼板における磁区を制御するに際し、当該溝の縁の部分に形成される溶融物の高さを低減すると共に、当該方向性電磁鋼板に対する当該レーザ光の焦点位置の変動によって生じる当該溝の深さの変動を低減する。
【解決手段】 仕上焼鈍後の方向性電磁鋼板100、又は、仕上焼鈍後に表面に絶縁皮膜が形成された方向性電磁鋼板100の表面に、噴流水柱C内に閉じ込められた状態でレーザ光Lを照射して、幅Wが5[μm]以上200[μm]以下であり、深さDが方向性電磁鋼板100の板厚の4[%]以上15[%]以下であり、長手方向が方向性電磁鋼板100の圧延方向に対し±15[°]以内の方向にある複数の溝101を、方向性電磁鋼板100の圧延方向において2[mm]以上15[mm]以下の間隔Iで形成するようにした。 (もっと読む)


【課題】磁区細分化用の溝を形成した方向性電磁鋼板であって、局所的な絶縁コーティングの被膜剥離を低く抑えることができ、優れた耐食性および絶縁性を有する方向性電磁鋼板を提供する。
【解決手段】線状溝の底面部における絶縁コーティングの膜厚をa1(μm)、線状溝部以外の鋼板表面の絶縁コーティング膜厚をa2(μm)とするとき、これらa1およびa2が、以下の式(1)および(2)の関係を満足するように制御する。
0.3μm≦a2≦3.5μm ・・・(1)
1/a2≦2.5 ・・・(2) (もっと読む)


【課題】磁区細分化用の線状溝の形成により鉄損を低減した方向性電磁鋼板を提供する。
【解決手段】鋼板表面に、磁区細分化用の線状溝を有する方向性電磁鋼板において、該線状溝直下に、ゴス方位から10°以上の方位差で、かつ粒径が5μm以上の結晶粒が存在している線状溝の比率を20%以下とし、さらに、二次再結晶粒の平均β角を2.0°以下、かつ粒径が10mm以上の二次再結晶粒内のβ角変動幅平均値を1〜4°の範囲に制御する。 (もっと読む)


【課題】磁区細分化用の溝を形成した方向性電磁鋼板であって、実機トランスに組上げた際の鉄損を低く抑えることのできる、優れた実機鉄損特性を有する方向性電磁鋼板を提供する。
【解決手段】線状溝の底面部における絶縁コーティングの膜厚a(μm)と、線状溝部以外の鋼板表面の絶縁コーティング膜厚a(μm)と、線状溝の深さa(μm)とが、以下の式(1)および(2)を満足するように制御する。
0.3μm≦a≦3.5μm ・・・(1)
+a−a≦15μm ・・・(2) (もっと読む)


【課題】磁区細分化により鉄損を低減させる方向性電磁鋼板の製造方法において、磁区細分化をより確実に実現する手法について提供する。
【解決手段】コイル状に巻き取った方向性電磁鋼板に仕上げ焼鈍を施し、次いで平坦化焼鈍を施してから、該鋼板の圧延方向と交差する向きに電子ビームを照射する、磁区細分化処理を施すに当り、該仕上焼鈍時のコイルの内巻き部分から外巻き部分に向けて、当該鋼板部分に照射するレーザーのエネルギー密度を高めていく。 (もっと読む)


【課題】パルスレーザを表面に照射して該表面上に点列状の照射痕を形成することにより鉄損を低減させる方向性電磁鋼板の製造方法において、該鋼板を用いて作製した変圧器鉄心を励磁する際に発生する騒音を低減する方途を提供する。
【解決手段】二次再結晶焼鈍後の方向性電磁鋼板の表面に、パルス状のレーザを圧延方向と交差する方向に走査し、鋼板の表面に照射痕を交差方向に伸びる点列状に形成して磁区細分化処理を施すに当たり、照射痕相互の間隔を、従来技術のように等間隔とはせずに、変化させて不等とする。 (もっと読む)


【課題】電子ビームの照射により鋼板に歪を付与して鉄損を低下させた方向性電磁鋼板を積層して変圧器を作製した場合に、優れた低鉄損特性を得ることができる方向性電磁鋼板を提供する。
【解決手段】電子ビームの照射痕がサイン波状で、かつ該サイン波状の振幅Dと波長Lとの関係が以下の式(1)の関係を満たすことを特徴とする方向性電磁鋼板。
3π≧L/D≧π・・・(1) (もっと読む)


【課題】鉄損特性に優れる方向性電磁鋼板を有利に製造する方法を提案する。
【解決手段】質量%で、C:0.02〜0.12%、Si:2.0〜4.0%、Mn:0.02〜0.20%、sol.Al:0.01〜0.05%、N:0.004〜0.012%、Sb:0.01〜0.20s%、Cu:0.005〜0.20%、Sおよび/またはSeを0.010〜0.040%含有する鋼スラブを用いて方向性電磁鋼板を製造するに際し、MgO100質量部に対してSnOを1〜10質量部、B化合物をB換算で0.001〜1質量部含有し、かつSnOとB化合物とが、[B化合物(B換算質量部)]>0.034×10−0.119×[SnO2(質量部)]の関係を満たす焼鈍分離剤を用い、昇温過程の700〜860℃で10〜200時間保持し、H含有雰囲気下で900〜1050℃を2〜50℃/hrで加熱する最終仕上焼鈍を施す。 (もっと読む)


【課題】鉄損劣化要因を排除した磁区細分化処理が施された、低鉄損の方向性電磁鋼板を提供する。
【解決手段】鋼板表面にフォルステライト被膜を有し、該被膜中および該被膜と鋼板との界面のいずれか少なくとも一方に、Seの濃化部を有し、該濃化部の存在割合が面積率で鋼板表面10000μm当たり2%以上である方向性電磁鋼板に、電子ビーム照射による磁区細分化処理を施す。 (もっと読む)


21 - 40 / 173