説明

Fターム[4K037EA09]の内容

薄鋼板の熱処理 (55,812) | 鋼の合金成分及び不純物 (28,900) | Ca (749)

Fターム[4K037EA09]に分類される特許

41 - 60 / 749


【課題】延性と伸びフランジ性に優れ、延性−伸びフランジ性のバランスも良好な高張力熱延鋼板の提供。
【解決手段】質量%で、C:0.08%超0.30%未満、Si:3.0%以下、Mn:1.0%以上4.0%以下、P:0.10%以下、S:0.010%以下、sol.Al:3.0%以下、N:0.010%以下を含有し、かつSi+sol.Alの合計含有量が0.8%以上3.0%以下の化学組成を有し、かつDαq≦5.0、Vαq≧50、Vγq≧3、Vαs>Vαq、Vγs>Vγq(DαqおよびVαqは、それぞれ鋼板表面から板厚の1/4深さ位置でのフェライトの平均粒径(μm)および面積率(%)、Vγqは同位置での残留オーステナイト体積率(%)、VαsおよびVγsはそれぞれ鋼板表面から100μm深さ位置でのフェライト面積率(%)および残留オーステナイト体積率(%)を表す)を満たす鋼組織を有する。 (もっと読む)


【課題】成形性とスポット溶接性に優れた高強度溶融亜鉛めっき鋼板を低コストで安定して提供する。
【解決手段】鋼板の表面に溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板である。鋼板は、C:0.02〜0.10%、Si:0.005〜0.5%、Mn:1.4〜2.5%、P:0.025%以下、S:0.010%以下、sol.Al:0.001〜0.2%、N:0.008%以下およびTi:0.15%以下を含有し、さらにCa:0.01%以下、Mg:0.01%以下およびREM:0.01%以下からなる群から選択された1種または2種以上を含有するとともに、下記式(1)〜(3)を満足する化学組成を有するとともに、面積%で、フェライト:50〜94%、ベイナイト:5〜49%ならびにマルテンサイトおよび残留オーステナイトの合計:1〜20%を含有する鋼組織を有する。溶融亜鉛めっき鋼板は、全伸び(El)と穴拡げ率(λ)との積(El×λ値):1500%以上、降伏比(YR):75%以上、引張強度(TS):490MPa以上の機械特性を有し、溶接電極先端径:6mm、加圧力:4410kN、溶接電流:9kAおよび通電時間:18サイクルの直流式抵抗スポット溶接条件で作成した抵抗スポット溶接継手の十字引張試験における十字引張力(CTS)とせん断試験におけるせん断力(TSS)との比の値である延性比(CTS/TSS)が0.55以上、抵抗スポット溶接継手の溶金部と母材とのビッカース硬さの比の値が2.0以下である抵抗スポット溶接性を有する。 (もっと読む)


【課題】980MPa級以上の強度を確保しつつ、室温での成形性および温間での成形加重低減効果を兼備する高強度鋼板およびその温間成形方法を提供する。
【解決手段】質量%で、C:0.02〜0.3%、Si:1〜3%、Mn:1.8〜3%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.008%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜85%、残留γ:3%以上、マルテンサイト+前記残留γ:10〜45%、フェライト:5〜40%の各相を含む組織を有し、前記残留オーステナイト中のC濃度(Cγ)が0.3〜1.2質量%であり、前記成分組成中のNの一部が固溶Nであり、該固溶N量が12ppm以下(0ppmを含む)である高強度鋼板。 (もっと読む)


【課題】従来よりもさらに靭性に優れる熱間プレス部材の製造方法を提供する。
【解決手段】C:0.15〜0.45%、Mn+Cr:0.5〜3.0%、さらにP:0.05%以下、S:0.03%以下、Si:0.5%以下、Ni:3%以下、Cu:1%以下、V:1%以下およびAl:1%以下の1種または2種以上を含有し、残部Fe及び不純物からなる化学組成を有する鋼材を、Ac点以上(Ac点+100℃)以下の温度域に10分間以下保持したのちに熱間プレスを施し、次いで上部臨界冷却速度以上の冷却速度でMf点まで冷却する焼入れ処理を施して引張強さを1.2GPa以上としたのちに、150℃以上200℃以下の温度域に10分間以上保持する熱処理を施すことによって、熱間プレス部材を製造する。 (もっと読む)


【課題】980MPa級以上の強度を確保しつつ、室温での成形性および温間での成形加重低減効果を兼備する高強度鋼板およびその温間成形方法を提供する。
【解決手段】質量%で、C:0.02〜0.3%、Si:1〜3%、Mn:1.8〜3%、P:0.1%以下、S:0.01%以下、Al:0.001〜0.1%、N:0.002〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜85%、残留γ:3%以上、マルテンサイト+前記残留γ:10〜45%、フェライト:5〜40%の各相を含む組織を有し、前記残留オーステナイト中のC濃度(Cγ)が0.3〜1.2質量%であり、前記成分組成中のNの一部または全部が固溶Nであり、該固溶N量が30〜100ppmである高強度鋼板。 (もっと読む)


【課題】シーム溶接性に優れた引張強度が1180MPa以上の高強度鋼板を提供する。
【解決手段】鋼板の化学成分が、C:0.12〜0.40%、Si:0.5%以下(0%を含む)、Mn:1.5%以下(0%を含まない)、Al:0.15%以下(0%を含まない)、N:0.01%以下(0%を含まない)、P:0.02%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Ti:0.2%以下(0%を含まない)、およびB:0.01%以下(0%を含まない)を満たし、残部が鉄および不可避不純物からなると共に、Ceq1(=C+Mn/5+Si/13)が0.50%以下であり、鋼組織がマルテンサイト単一組織であり、かつ引張強度が1180MPa以上であることを特徴とするシーム溶接性に優れた高強度鋼板。 (もっと読む)


【課題】加工性に優れた引張強度440MPa以上の高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。
【解決手段】組織として、面積率が60%以上のフェライト相と、面積率が20〜30%のパーライト相と、面積率が1〜5%のベイナイト相を有し、前記フェライト相の粒内に存在するセメンタイト相の面積率が5%以下である。製造するにあたっては、連続溶融亜鉛めっき処理では、10℃/s以上の平均加熱速度で650℃以上の温度域まで加熱し、700〜(Ac3−5)℃の温度で10秒以上保持し、次いで、10〜200℃/sの平均冷却速度で300〜500℃の温度域まで冷却し、該300〜500℃の温度域で30〜300秒保持したのち、溶融亜鉛めっき処理する。 (もっと読む)


【課題】加工性に優れた引張強度440MPa以上の高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。
【解決手段】組織として、面積率が50%以上で、平均粒径が15μm以下のフェライト相と、面積率が10〜30%で平均粒径が10μm以下のパーライト相と、面積率が3〜10%で平均粒径が5μm以下のベイナイト相を有し、前記フェライト相の粒内に存在するセメンタイト相の面積率が10%以下である。製造するにあたっては、連続溶融亜鉛めっき処理では、10℃/s以上の平均加熱速度で650℃以上の温度域まで加熱し、(Ac3+5)℃以上の温度で10秒以上保持し、次いで、10〜200℃/sの平均冷却速度で300℃以下の温度域まで冷却し、該300℃以下の温度域で30〜300秒保持したのち、溶融亜鉛めっき処理する。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、Ar3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃未満の温度域で巻取り、得られた熱延鋼板に300℃以上の温度域に加熱する熱延板焼鈍を施した後、冷間圧延し、次いで(Ac3点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相で第二相に残留オーステナイトを含む金属組織を持つ冷延鋼板を製造する。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、最終1パスの圧下量が15%超でAr3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃超の温度域で巻取り、得られた熱延鋼板に冷間圧延を施し、次いで(Ac3点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相、第二相に残留オーステナイトを含む金属組織の冷延鋼板を製造する。 (もっと読む)


【課題】500MPa以上の引張強さを有する高張力熱延鋼板で、伸び、伸びフランジ性、強度−伸び−伸びフランジ性バランスに優れた高張力熱延鋼板を提供する。
【解決手段】質量%で、(x)C:0.03〜0.20%、Si:0.01〜1.5%、Mn:1.0%以下、P:0.08%以下、S:0.005%以下、Al:0.01〜0.08%、N:0.001〜0.005%、Ti、Nb、Vの1種又は2種以上を合計で0.02〜1.0%、を少なくとも含み、残部がFe及び不可避的不純物からなる成分組成と、(y)強度が大きく異なる2種類のフェライト相からなる複合組織を有し、(y1)強度が低い軟質フェライト相の粒径が15μm以下であり、かつ、(y2)軟質フェライト相の結晶粒の60%以上の結晶粒が、他の軟質フェライト相の結晶粒と接していないことを特徴とする高張力熱延鋼板。 (もっと読む)


【課題】高強度高加工性缶用鋼板およびその製造方法を提供する。
【解決手段】C:0.001%以上0.080%以下、Si:0.003%以上0.100%以下、Mn:0.10%以上0.80%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0050%以上0.0150%以下、B:0.0002%以上0.0050%以下を含有し、残部はFeおよび不可避的不純物からなる。圧延方向断面において、結晶粒の展伸度が5.0以上である結晶粒を面積率にして0.01〜1.00%含む。このような缶用鋼板は、スラブ再加熱温度を1200℃以上とし、熱間圧延後650℃未満の温度で巻き取り、一次冷間圧延を行い、引き続き、均熱温度680〜760℃、均熱時間10〜20秒で連続焼鈍を行い、20%以下の圧延率で二次冷間圧延を行うことで得られる。 (もっと読む)


【課題】引張強度が1180MPa以上であって、加工性と低温脆性に優れた高強度鋼板、及びその製造方法を提供する。
【解決手段】本発明の高強度鋼板は、C:0.10〜0.30%、Si:1.40〜3.0%、Mn:0.5〜3.0%、P:0.1%以下、S:0.05%以下、Al:0.005〜0.20%、N:0.01%以下、O:0.01%以下、を含有し、残部Feおよび不可避的不純物からなり、かつ、鋼板の板厚1/4位置について、走査型電子顕微鏡で組織を観察したとき、全組織に対するフェライトの体積率は5〜35%、ベイニティックフェライトおよび/または焼戻しマルテンサイトの体積率は60%以上であり、光学顕微鏡で組織を観察したとき、全組織に対するフレッシュマルテンサイトと残留オーステナイトの混合組織(MA組織)の体積率は6%以下(0%を含まない)であるとともに、X線回折法で残留オーステナイトを測定したとき、全組織に対する残留オーステナイトの体積率は5%以上である。 (もっと読む)


【課題】 高価な元素を含有させることなく、伸びと穴広げ性が優れる高強度熱延鋼板およびその製造方法を提供する。
【解決手段】 質量%で、C:0.03〜0.10%、Mn:0.5〜2.5%、P:0.04%以下、S:0.01%以下、N:0.01%以下を含み、かつSiとAlの添加量の合計が:0.1〜2.5%であり、残部がFe及び不可避的不純物からなり、金属組織が面積率80%以上のフェライトと3〜15%のマルテンサイトを含み、パーライトが3%未満である混合組織であり、板厚の1/4厚における円相当直径3μm以上のマルテンサイト個数密度が5個/10000μm以下であり、さらにR/D>1.0[R:平均マルテンサイト間隔(μm)、D:マルテンサイト平均直径(μm)]を満たすことを特徴とする伸びと穴広げ性に優れた高強度熱延鋼板。 (もっと読む)


【課題】フランジ加工性に優れる高強度缶用鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.001%以上0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超0.0170%以下を含有し、残部はFeおよび不可避的不純物からなる。N total−(N as AlN)(N totalとは、Nの総量であり、前記N as AlNとは、AlNとして存在するN量である)が0.0100%以上0.0160%以下であり、平均塑性ひずみ比:平均r値が1.0超である。熱間圧延を行い、630℃未満で巻取り、91.5%以上の圧延率で冷間圧延を行い、焼鈍し、20%以下の圧延率で二次冷間圧延を行うことで得られる。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、Ar3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃未満の温度域で巻取って得た熱延鋼板に300℃以上の温度域に加熱する熱延板焼鈍を施した後、冷間圧延し、次いで(Ac3点−40℃)以上の温度域で均熱処理した後、500℃以下300℃以上の温度域まで冷却し(その際、好ましくは10.0℃/s未満の冷却速度で50℃以上冷却し)、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相で第二相に残留オーステナイトおよびポリゴナルフェライトを含む金属組織を持つ冷延鋼板を製造する。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板の実現。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、場合によりさらに適量のTi、Nb、V、Cr、Mo、B、Ca、Mg、REMおよびBiの1種又は2種以上を含有し、主相が低温変態生成相で第二相に残留オーステナイトおよびポリゴナルフェライトを含む金属組織を備え、前記残留オーステナイトは体積率が4.0%超25.0%未満、平均粒径0.80μm未満であり、前記残留オーステナイトの内、粒径1.2μm以上の残留オーステナイト粒の数密度が3.0×10−2個/μm2以下、前記ポリゴナルフェライトは体積率が2.0%超27.0%未満、平均粒径5.0μm未満である。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れ、引張強度が750 MPa以上の高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.10%超0.25%未満、Si:0.50%超2.0%未満、Mn:1.50%超3.0%以下、P:0.050%未満、S:0.010%以下、sol. Al:0.50%以下およびN:0.010%以下である化学組成を有するスラブに、最終1パスの圧下量が15%超で(Ar3点+30℃)以上かつ810℃以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.6秒以内に720℃以下まで冷却し、400℃超の温度域で巻取るか、400℃以下の温度域で巻取って300℃以上Ac1点未満で焼鈍を施す。得られた熱延鋼板を冷間圧延後、(Ac3点−40℃)以上で均熱し、550℃以下300℃以上まで冷却し、30秒以上保持して焼鈍し、溶融めっきを施し、主相が低温変態生成相で第二相に残留オーステナイトを含む金属組織を鋼板が有する溶融めっき冷延鋼板を製造する。 (もっと読む)


【課題】電気伝導性に優れた固体高分子型燃料電池セパレータ用ステンレス鋼、その製造方法、および固体高分子型燃料電池セパレータを提供する。
【解決手段】質量%で、C:0.001〜0.10%、Si:0.001〜1.0%、Mn:0.001〜1.2%、Al:0.001〜0.5%、Cr:15.0〜35.0%、N:0.001〜0.10%を含有し、残部がFeおよび不可避的不純物からなり、表面の酸化皮膜の厚さが20〜600nmであることを特徴とするステンレス鋼及びこの鋼板を、冷間圧延後または冷間圧延材焼鈍後に、水素濃度が30容積%以上であり残部が不活性ガス及び不可避的不純物からなり、露点が−40〜0℃である雰囲気下で、温度が800〜1200℃の熱処理を行なうことで製造する方法。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下を含有し、場合によりさらに、適量のTi、Nb、V、Cr、Mo、B、Ca、Mg、REMおよびBiの1種又は2種以上を含有し、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有し、方位差15゜以上の粒界で囲まれたbccまたはbct構造を有する粒の平均粒径が6.0μm以下であり、さらに金属組織中に存在する鉄炭化物の平均数密度が1.0×10-1個/m2以上である熱延鋼板に、冷間圧延を施し、得られた冷延鋼板に(Ac点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持して焼鈍を行う。 (もっと読む)


41 - 60 / 749