説明

Fターム[4K037FH03]の内容

薄鋼板の熱処理 (55,812) | 冷延板焼鈍 (847) | 箱焼鈍(バッチ焼鈍) (88)

Fターム[4K037FH03]の下位に属するFターム

Fターム[4K037FH03]に分類される特許

1 - 20 / 87



【課題】深絞り性に優れた冷延鋼板を、高効率に生産する
【解決手段】質量%で、C:0.010%未満、Si:1.5%以下、Mn:2.0%以下、P:0.10%以下、S:0.010%以下、Al:0.0005〜0.10%、N:0.0060%以下、Ti:0.001〜0.10%およびNb:0.001〜0.10%を含有するとともに、(C/12+N/14+S/32)/(Ti/48+Nb/93)が1.4以下であり、残部Feおよび不純物からなる鋼塊または鋼片に、(Ar点−30℃)以上で圧延を完了する熱間圧延を施し、熱間圧延完了後0.5秒間以内に400℃/秒以上の平均冷却速度で750℃まで冷却し、400℃以上640℃未満で巻き取った後、酸洗し、圧下率60〜95%で冷間圧延し、750〜880℃で焼鈍する。 (もっと読む)


【課題】加工性に優れた高強度缶用鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.020%以上0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超え0.0170%以下を含有し、残部はFeおよび不可避的不純物からなる。N total−(N as AlN)(N totalとは、Nの総量であり、前記N as AlNとは、AlNとして存在するN量である)が0.0120%以上0.0160%以下であり、圧延方向の全伸びが5%以上10%未満であり、圧延方向断面において、結晶粒の展伸度が2.00以下である。 (もっと読む)


【課題】自動車分野に適用し得る冷間加工性及び焼入性に優れた中炭素鋼板とその製造方法を提供する。
【解決手段】質量%で、C:0.10〜0.80%、Si:0.01〜0.35%、Mn:0.3〜2.0%、P:0.005〜0.03%、S:0.0001〜0.01%、Al:0.005〜0.10%、及び、N:0.001〜0.01%を含有し、残部がFe及び不可避的不純物からなり、炭化物の平均炭化物径が0.4μm以下、炭化物の球状化率が90%以上で、かつ、降伏比が60%以下であって、さらに、焼入れ後に500HV以上に硬化する焼入硬化能を備えることを特徴とする冷間加工性及び焼入性に優れた中炭素鋼板。 (もっと読む)


【課題】フランジ加工性に優れる高強度缶用鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.001%以上0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超0.0170%以下を含有し、残部はFeおよび不可避的不純物からなる。N total−(N as AlN)(N totalとは、Nの総量であり、前記N as AlNとは、AlNとして存在するN量である)が0.0100%以上0.0160%以下であり、平均塑性ひずみ比:平均r値が1.0超である。熱間圧延を行い、630℃未満で巻取り、91.5%以上の圧延率で冷間圧延を行い、焼鈍し、20%以下の圧延率で二次冷間圧延を行うことで得られる。 (もっと読む)


【課題】レアメタルに頼らず、リサイクルした鉄源中のSnを利用して、一般耐久消費材への適用が可能な省合金型の熱間加工性と耐銹性に優れたフェライト系ステンレス鋼板を提供する。
【解決手段】質量%で、C:0.001〜0.3%、Si:0.01〜1.0%、Mn:0.01〜2.0%、P:0.005〜0.05%、S:0.0001〜0.01%、Cr:11.0〜13.0%、N:0.001〜0.1%、Al:0.0001〜1.0%、Sn:0.05〜1.0%、残部Fe及び不可避的不純物からなるフェライト系ステンレス鋼板において、式(2)で定義するγpが式(1)を満たすことを特徴とする。10≦γp≦65(1) γp=420C+470N+23Ni+7Mn+9Cu−11.5Cr−11.5Si−52Al−69Sn+189(2) ここで、C、N、Ni、Mn、Cu、Cr、Si、Al、及び、Snは、各元素の含有量。 (もっと読む)


【課題】レアメタルに頼らず、リサイクルした鉄源中のSnを利用して、一般耐久消費材への適用が可能な省合金型の熱間加工性と耐銹性に優れたフェライト系ステンレス鋼板を提供する。
【解決手段】質量%で、C:0.001〜0.3%、Si:0.01〜1.0%、Mn:0.01〜2.0%、P:0.005〜0.05%、S:0.0001〜0.02%、Cr:13.0超〜22.0%、N:0.001〜0.1%、Al:0.0001〜1.0%、Sn:0.05〜1.0%、残部Fe及び不可避的不純物からなるフェライト系ステンレス鋼板において、式(2)で定義するγpが式(1)を満たすことを特徴とする。5≦γp≦55(1)γp=420C+470N+23Ni+7Mn+9Cu−11.5Cr−11.5Si−52Al−57.5Sn+189(2) ここで、C、N、Ni、Mn、Cu、Cr、Si、Al、及び、Snは、各元素の含有量。 (もっと読む)


【課題】0.20〜0.50質量%のCを含有し、板厚方向に均質で、優れた加工性を有する軟質な高炭素薄鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.20〜0.50%、Si:1.0%以下、Mn:2.0%以下、P:0.03%以下、S:0.02%以下、sol.Al:0.08%以下、N:0.02%以下を含有し、残部がFeおよび不可避的不純物からなる化学組成と、フェライトとセメンタイトからなるミクロ組織とを有し、鋼板の表面から板厚1/4位置までの領域における前記フェライトの平均粒径dsと鋼板の板厚1/4位置から板厚中心までの領域における前記フェライトの平均粒径dcがそれぞれ20〜40μmであり、かつ0.80≦ds/dc≦1.20を満足し、前記セメンタイトの平均粒径が1.0μm以上、球状化率が90%以上であり、粒数比で90%以上のセメンタイトがフェライト粒内に存在することを特徴とする軟質な高炭素薄鋼板。 (もっと読む)


【課題】低歪振幅域、高周波数域において制振性に優れると共に、延性にも富むFe−Cr−Al−Mn系合金からなる制振材の製造方法を提供する。
【解決手段】鉄合金は、3.0〜8.0重量%のクロムと、0.4〜1.0重量%のアルミニウムと、アルミニウムに対する重量比(マンガン/アルミニウム)が0.75〜1.5のマンガンとを含み、残部が鉄及び不可避的不純物からなる。そのうえで、鋳塊を得る造塊工程と、1200〜1300℃に加熱した状態で熱間圧延し、その仕上げ温度を800℃以上とする熱間圧延工程と、熱間圧延工程後に鉄合金の再結晶温度以上に加熱した後に徐冷する焼鈍工程とを経て製造される。熱間圧延工程では、1パス当たりの圧下率を25〜40%とし、最終的な合計圧下率を80〜90%とする。 (もっと読む)


【課題】加工性に優れ、かつ低いカーボンポテンシャルでの浸炭焼入れにおいて表層部で高い焼入れ硬さが得られるボロン鋼の鋼板を提供する。
【解決手段】C:0.10〜0.50質量%、Si:0.50質量%以下、Mn:0.20〜1.8質量%、Cr:0.20〜2.0質量%、P:0.02質量%以下、S:0.02質量%以下、Ti:0.01〜0.20質量%、Al:0.002〜0.10質量%、B:0.0005〜0.0050質量%、残部がFeおよび不可避的不純物であり、炭化物がフェライト中に分散しており、その炭化物間の平均距離が0.8μm以上であり、下記式(1)で定義されるX値が40以下であり、下記式(2)で定義されるY値が30以上であり、かつ硬さが150HV以下である加工性に優れた浸炭用鋼板。
X=30C+30Si+20Mn+5Cr+150S+80Ti−1.5炭化物間平均距離・・・(1)
Y=5C+22Mn+32Cr・・・(2) (もっと読む)


【課題】熱処理前においては優れた加工性を有し、熱処理後においては高い強度と優れた靭性とを有する熱処理用鋼材を提供する。
【解決手段】質量%で、C:0.35%超0.6%以下、Si:0.5%以下、Mn:0.5%以上1.5%以下、P:0.03%以下、S:0.01%以下、sol.Al:0.1%以下、N:0.01%以下、B:0.005%以下およびTi:0.1%以下を含有し、残部Feおよび不純物からなる化学組成を有し、フェライトと炭化物と介在物とからなるとともに、前記フェライトの平均線分長が5μm以上であって、粗大炭化物比率が0.5以上の場合には実効球状化率が0.6以上0.85以下であり、粗大炭化物比率が0.5未満の場合には実効球状化率が0.7以上0.91以下である鋼組織を有する。 (もっと読む)


【課題】 耐リジング性と深絞り性が良好なフェライト系ステンレス鋼板とその製造方法等であって、生産性がよくコスト面でも有利なものを提供する。
【解決手段】 1)少なくとも最終3段において圧下率が25%を超え粗圧延温度が1000℃以上1100℃以下である粗圧延を行い、2)さらに、少なくとも最終3段において圧下率が25%を超え仕上温度が700℃以上850℃以下である仕上圧延を行って熱延鋼板を製造し、3)その後、当該熱延鋼板に対して熱延焼鈍、冷間圧延および冷延焼鈍を行う。 (もっと読む)


【課題】深絞り性に優れた冷延鋼板を、高効率に生産する方法を提供する。
【解決手段】質量%で、C:0.010%未満、Si:1.5%以下、Mn:2.0%以下、P:0.10%以下、S:0.010%以下、Al:0.0005〜0.10%、N:0.0060%以下、Ti:0.001〜0.10%およびNb:0.001〜0.10%を含有するとともに、(C/12+N/14+S/32)/(Ti/48+Nb/93)が1.4以下であり、残部Feおよび不純物からなる鋼塊または鋼片に、(Ar3点−30℃)以上で圧延を完了する熱間圧延を施し、熱間圧延完了後0.5秒間以内に400℃/秒以上の平均冷却速度で750℃まで冷却し、400℃以上640℃未満で巻き取った後、酸洗し、圧下率60〜95%で冷間圧延し、750〜880℃で焼鈍する。 (もっと読む)


【課題】 Cを0.30質量%以上0.65質量%以下含有する中炭素鋼板において、材質の軟質化と高周波焼入れ性の向上を図る。
【解決手段】 質量%で、C:0.30〜0.65%、Si:0.05〜0.4%、Mn:0.2〜2.0%、P:0.005〜0.03%、S:0.0001〜0.006%、Al:0.005〜0.10%、及び、N:0.001〜0.01%を含有し、残部がFe及び不可避的不純物からなり、かつ、ビッカース硬度が160HV以下でフェライト粒径が10μm以上であることを特徴とする高周波焼入れ性に優れた軟質中炭素鋼板。 (もっと読む)


【課題】深絞り性に優れた冷延鋼板を生産性よく工業的に容易な方法で製造する。
【解決手段】質量%で、C:0.010%未満、Si:1.5%以下、Mn:2.0%以下、P:0.10%以下、S:0.010%以下、Al:0.0005〜0.10%、N:0.0060%以下、Ti:0.001〜0.10%およびNb:0.001〜0.10%を含有し、(C/12+N/14+S/32)/(Ti/48+Nb/93)≦1.4を満足する化学組成を有する鋼塊または鋼片に、最終パスの1つ前および2つ前の2パスの合計圧下率を45%未満かつ最終パスの圧下率を25%超とし、(Ar点−30℃)以上かつ880℃以上で圧延を完了する多パスの熱間圧延を施し、前記熱間圧延完了後0.5秒間以内に400℃/秒以上の平均冷却速度で820℃まで冷却し、400℃以上700℃未満の温度域で巻き取って熱延鋼板とし、この熱延鋼板に酸洗後、圧下率:60〜95%の冷間圧延を施し、得られた冷延鋼板に700〜910℃の温度域で焼鈍を施す。 (もっと読む)


【課題】TRIP鋼板の特徴である優れた延性を損なうことなく、引張強度が1180MPa以上の超高強度域において、耐水素脆化性が著しく高められた超高強度薄鋼板を提供する。
【解決手段】本発明の超高強度鋼板は、C:0.10〜0.25%、Si:1.0〜3.0%、Mn:1.0〜3.5%、P:0.010%以下、S:0.002%以下、または0.004%以上0.01%以下、Al:1.5%以下、Cr:0.003〜2.0%、残部:鉄及び不可避不純物であり、Mn量を[Mn]、S量を[S]としたとき、[Mn]×1000[S]が2.2以下、または12.5以上25以下を満足すると共に、全組織に対する面積率で、残留オーステナイトを1%以上含有し、前記残留オーステナイト結晶粒は、平均軸比(長軸/短軸)が5以上、平均短軸長さが1μm以下、前記留オーステナイト結晶粒間の最隣接距離が1μm以下を満足し、且つ、引張強度が1180MPa以上である。 (もっと読む)


【課題】 最終焼鈍条件を適正化することにより被削性が改善され、機械部品,自動車部品等の素材として有用な中・高炭素鋼板を製造する。
【解決手段】 C:0.45〜1.5%,Si:1.0%以下,Mn:0.1〜2.0%,S:0.02%以下,P:0.03%以下,Al:0.005〜0.20%を含むとともに,更にNi:2.5%以下,Cr:2.0%以下,Mo:1.0%以下から選ばれた一種又は二種以上を含む鋼材を熱延し、酸洗後又は酸洗・冷延後に最終焼鈍する。均熱温度Ta:(A1点+20℃)〜(A1点+80℃),均熱時間t:5〜40時間,冷却速度R:5〜60℃/時,式(A)のX値がX≧0となる条件下で最終焼鈍することにより、被削性の向上に有効な球状セメンタイト+パーライトの混合組織が得られる。
X=R−(4.81×105)/{(t2/3+20)×(Ta−A1)}3/2 ・・・・(A) (もっと読む)


【課題】鋼板へのスケール密着性に優れ,かつ靭性を向上させた熱間プレス鋼材を製造するのに好適な熱間プレス用鋼板及びその製造方法を提供する。
【解決手段】 質量%で,C:0.05〜0.5%,Si:0.02%以上0.5%未満,Mn:0.5〜5.0%,P:0.5%以下,S:0.03%以下,Al:0.002%以上0.5%未満,N:0.01%以下及びCr:0.02〜2.0%以下を含有し,残部がFe及び不純物からなる化学組成を有するとともに,下記式(1)および(2)を満足する濃度分布を有することを特徴とする熱処理用鋼板。
(Si+Al+Cr)s/(Si+Al+Cr)b≧1.2 (1)
Mnmax/Mnmin≦1.6 (2)
ここで,(Si+Al+Cr)sは鋼板表面から200nm深さ位置までの表層部におけるSi,Al及びCrの合計質量濃度を,(Si+Al+Cr)bは鋼板表面から板厚の1/4深さ位置におけるSi,Al及びCrの合計質量濃度を,Mnmaxは鋼板断面の板厚方向におけるMn濃度の最大値を,Mnminは鋼板断面の板厚方向におけるMn濃度の最小値を,それぞれ示す。 (もっと読む)


本発明は、超低炭素鋼ストリップ又はシートを製造する方法であって、‐取鍋処理を含んでなる製鋼工程で、重量で、・最大0.003%の炭素、・最大0.004%の窒素、・最大0.20%のリン、・最大0.020%の硫黄、・及び残部鉄及び不可避不純物を含んでなる真空脱ガスされた鋼溶融物を製造すること、‐その際、該溶融物の該取鍋処理の最後における該溶融物の狙いの酸素含有量は、該溶融物の実際の酸素含有量を測定した後、好適な形態にある適量のアルミニウムを該溶融物に添加して酸素を結合することにより得られ、その際、該取鍋処理の最後における該溶融物の狙いの酸素活性又は溶解酸素含有量は、最大80ppmである、‐こうして製造された該鋼を連続式鋳造法で鋳造し、スラブ又はストリップを形成することを含んでなり、‐該方法が、最大0.002%の酸可溶性アルミニウム及び最大0.004%のケイ素及び最大120ppmの総酸素含有量を含んでなる超低炭素鋼のスラブ、ストリップ又はシートを与える、方法に関する。
(もっと読む)


【課題】Cを0.65質量%以上0.85質量%以下含有する高炭素鋼板において、材質の軟質化と打抜き性の向上(特に、打抜きカエリの抑制)を図る。
【解決手段】質量%で、C:0.65〜0.85%、Si:0.05〜0.4%、Mn:0.5〜2.0%、P:0.005〜0.03%、S:0.0001〜0.006%、Al:0.005〜0.10%、及びN:0.0010〜0.01%を含有し、残部がFe及び不可避的不純物からなり、(i)硬さが170HV以下であり、かつ、(ii)最終冷延前の組織の板厚断面にて、0.5μm2以下の炭化物の面積が、炭化物の総面積の15%以内であることを特徴とする打抜きカエリの小さい軟質高炭素鋼板。 (もっと読む)


1 - 20 / 87