説明

Fターム[4K037FJ05]の内容

薄鋼板の熱処理 (55,812) | 冷延板焼鈍の加熱条件(中間焼鈍除く) (2,529) | 加熱温度 700℃〜850℃ (951)

Fターム[4K037FJ05]に分類される特許

101 - 120 / 951


【課題】化成処理性に優れかつ塩温水浸漬試験や複合サイクル腐食試験のような過酷な腐食環境での塗装後耐食性にも優れる冷延鋼板の製造方法と、その方法で製造する冷延鋼板、ならびにその鋼板を用いた自動車部材を提供する。
【解決手段】好ましくはSiを0.5〜3.0mass%含有し、冷間圧延後、連続焼鈍した冷延鋼板を酸洗して鋼板表層のSi含有酸化物層を除去した後、さらに再酸洗することによって、鋼板表面の鉄系酸化物の表面被覆率を40%以下、より好ましくは鉄系酸化物の最大厚さを150nm以下とする。 (もっと読む)


【課題】化成処理性に優れかつ塩温水浸漬試験や複合サイクル腐食試験のような過酷な腐食環境での塗装後耐食性にも優れる冷延鋼板の製造方法と、その方法で製造する冷延鋼板、ならびにその冷延鋼板を用いた自動車部材を提供する。
【解決手段】Siを0.5〜3.0mass%含有し、冷間圧延後、連続焼鈍した冷延鋼板を、硝酸濃度が100g/L超え200g/L以下で、硝酸濃度に対する塩酸濃度の比R(HCl/HNO)が0.01〜0.25である硝酸と塩酸を混合した酸洗液を用いて酸洗することによって、連続焼鈍により生成した鋼板表層のSi含有酸化物を除去し、かつ、酸洗により生成した鋼板表面の鉄系酸化物による表面被覆率を85%以下、好ましくは、鉄系酸化物の最大厚さを200nm以下とする。 (もっと読む)


【課題】590MPa以上という高い引張強度と、プロジェクション溶接した場合における良好な溶接部強度とを兼ね備え、プロジェクション溶接が使用される自動車部品の素材として好適な抵抗溶接用冷延鋼板を提供する。
【解決手段】C:0.05〜0.20%、Si+Al:0.4〜1.6%、Mn:0.1〜3.0%、P:0.02%以下、S:0.01%以下、N:0.01%以下を含有し、残部がFeおよび不純物からなる化学組成を有し、(1)式;固溶Si濃度=TSi-OSiおよび(2)式;固溶Al濃度=TAl-OAlにより規定される鋼板表層部の固溶Si濃度および固溶Al濃度の合計が0.20質量%以上であり、鋼板表面のクラックの最大深さが5μm以下であり、かつ、幅6μm以下で深さ2μm以上のクラックの数密度が10個/50μm以下であり、引張強度590MPa以上である機械特性を有する抵抗溶接用冷延鋼板である。TSiおよびTAlは、それぞれ鋼板表面から30nm深さ位置までの鋼板表層部におけるSiおよびAlの全体の濃度(単位:質量%)であり、OSiおよびOAlは、それぞれ鋼板表層部において酸化物を形成しているSiおよびAlの濃度(単位:質量%)である。 (もっと読む)


【課題】Si、Mnを含有する鋼板を下地鋼板とし、めっき外観および耐食性に優れる溶融Al−Zn系めっき鋼板を提供する。
【解決手段】Al−Zn系めっき層中のAl含有量が20〜95mass%である。そして、前記Al−Zn系めっき層中のCa含有量が0.01〜10mass%である。または、CaおよびMgの合計含有量が0.01〜10mass%である。さらに、Al−Zn系めっき層の直下の、下地鋼板表面から100μm以内の鋼板表層部には、Fe、Si、Mn、Al、P、B、Nb、Ti、Cr、Mo、Cu、Niのうちから選ばれる少なくとも1種の酸化物が合計で片面あたり0.06〜1.0g/m存在する。 (もっと読む)


【課題】980MPa級以上の強度を確保しつつ、より延性に優れた高強度鋼板を提供する。
【解決手段】質量%で、C:0.05〜0.3%、Si:1〜3%、Mn:0.5〜3%、P:0.1%以下(0%を含む)、S:0.01%以下(0%を含む)、Al:0.001〜0.1%、N :0.002〜0.03%を含み、残部が鉄および不純物からなる成分組成を有し、全組織に対する面積率で、ベイニティック・フェライト:50〜90%、残留オーステナイト(γ):3%以上、マルテンサイト+上記γ:10〜50%、フェライト:40%以下(0%を含む)を含む組織を有し、上記γは、そのC濃度(Cγ)が0.5〜1.2質量%であり、このγのうち、マルテンサイトに囲まれたものが0.3%以上存在する高強度鋼板。 (もっと読む)


【課題】化成処理性に優れた高強度冷延鋼板を提供する。
【解決手段】質量%で、Si:1.5%以上、Mn:2.0%以上を含有する高強度冷延鋼板であって、鋼板表面から深さ0.5μmまでの領域におけるSi量の平均値が3.0%以下(0%を含まない)で、且つ鋼板表面からの深さが0.5μm位置におけるMn量が、前記鋼板のMn量の70%以下(0%を含まない)である高強度冷延鋼板。 (もっと読む)


【課題】本発明者らは、TRIP鋼の成分及び製造条件を最適化し、鋼板の組織を制御することによって0.2%耐力、強度、延性に優れた鋼板の製造に成功した。
【解決手段】C: 0.10%以上、0.5%以下
Mn: 1.0%以上、4.0%以下
Si: 0.8%以上、4.0%以下
Ti: 0.01%以上、0.4以下
P: 0.015%以下、
S: 0.05%以下、
N: 0.005%以下
を含有し、残部を鉄及び不可避不純物からなり、鋼板組織として、面積率で焼戻しマルテンサイトを10〜60%、フェライトを5〜50%、ベイナイトを5〜30%、残留オーステナイトを5〜30%含有し、更に、パーライト及びマルテンサイトを合計で0〜20%含有し得ることを特徴とする成形性の優れた鋼板。 (もっと読む)


【課題】440MPa以上590MPa未満の引張強度を有し、加工性の観点から均一伸びに優れ、外板品質の観点から降伏伸びが抑制され、めっき性も良好な高強度溶融亜鉛めっき鋼板とその製造方法を提供すること。
【解決手段】C:0.06%以上0.20%以下、Si:0.50%未満、Mn:0.5%以上2.0%未満、P:0.05%以下、S:0.02%以下、Al:0.60%以上2.00%以下、N:0.004%未満、Cr:0.10%以上0.40%以下、B:0.003%以下(0%を含む)を含有し、0.8≦Mneq≦2.0かつMneq+1.3[%Al]≧2.8を満足し、フェライトを母相として第二相体積分率が15%以下であり、第二相が体積分率3%以上のマルテンサイトと体積分率3%以上の残留オーステナイトを有し、パーライトおよびベイナイトの合計体積分率がマルテンサイトおよび残留オーステナイトの体積分率以下である。 (もっと読む)


【課題】引張強さが440MPa以上、平均r値が1.20以上で焼付硬化量が40MPa以上の深絞り性と焼付硬化性に優れる高強度冷延鋼板を提供する。
【解決手段】mass%で、C:0.010〜0.06%、Si:0.5%超1.5%以下、Mn:1.0〜3.0%、Nb:0.010〜0.090%、Ti:0.015〜0.15%を含有し、かつ(Nb/93)/(C/12)<0.20および固溶C量が0.005〜0.025%を満たす成分組成の鋼素材を熱間圧延し、冷間圧延した後、700〜800℃の温度を平均昇温速度3℃/s未満として800〜900℃の温度に加熱し、均熱後、上記均熱温度から500℃以下の冷却停止温度まで5℃/s以上で冷却する焼鈍を施し、面積率で70%以上のフェライト相と3%以上のマルテンサイト相を含む組織からなる冷延鋼板を得る。 (もっと読む)


【課題】特に温間成形を施すことにより、高い延性を示すことで優れたプレス成形性を有しながら、成形後には強度の上昇を示すことで高い部材強度を達成する温間成形用薄鋼板等を提供する。
【解決手段】本発明の温間成形用薄鋼板は、質量%で、C:0.04〜0.2%、Si:0.5〜2.5%、Mn:1.5〜3.5%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織が、面積率で、ポリゴナルフェライト相を30%以上、マルテンサイト相を20%以上および残留オーステナイト相を3%未満含有する。 (もっと読む)


【課題】降雨や外部環境によって発生する騒音が建物の内部に伝わるのを軽減させる、遮音性に優れた建造物屋根及び外壁用パネルを提供。
【解決手段】
炭素0.001〜0.20重量%、シリコン0.01〜3.0重量%、マンガン5.0〜18.0未満重量%、クロム0.01〜20.0重量%、アルミニウム0.001〜0.1重量%、残部鉄を含んでなる鋼であって、積層欠陥エネルギー(SFE(mJ/m)を20(mJ/m)以下の条件を満たす化学組成になるように溶製し、所定の熱処理条件、冷却条件及び冷間加工条件を満たす製造方法によってε−Ms相が5〜80体積%となるようにする。 (もっと読む)


【課題】本発明はSiを含有する高強度鋼板について、めっき性に優れた溶融亜鉛めっきおよび合金化溶融亜鉛めっきを施す製造方法を提供する。
【解決手段】質量%で、C:0.05〜0.40%、Si:0.2〜3.0%、Mn:0.1〜2.5%を含有し、残部がFeと不可避的不純物からなる鋼板表面に、Al:0.01〜1%を含有し、残部がZnと不可避的不純物からなる溶融Znめっきを行なう製造方法であって、前記鋼板を非酸化性雰囲気で焼鈍後、溶融亜鉛めっき浴に浸漬直前に、該鋼板を圧下率が0.1%以上1%以下の範囲で圧延することを特徴とする高強度溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法。 (もっと読む)


【課題】化合物系太陽電池用基板としてのステンレス鋼に要求される特性を見出し、必要かつ十分な特性を有する太陽電池基板用クロム含有フェライト系鋼板を得る。
【解決手段】本発明に係る太陽電池基板用クロム含有フェライト系鋼板は、C:0.03mass%以下、N:0.03mass%以下、C+N:0.05mass%以下、Si:0.2mass%以上3.0mass%以下、Mn:0.8mass%以下、P:0.04mass%以下、S:0.02mass%以下、Cr:5mass%以上、10.5mass%未満、Ni:1.0mass%以下、Al:0.01mass%以上0.05mass以下、Ti:4×(C+N)mass%以上0.40mass%以下を含有し、残部がFeおよび不可避的不純物からなり、かつ表面の平均粗さRaが0.03μm以下であることを特徴とするものである。 (もっと読む)


【課題】特に温間成形を施すことにより、高い延性を示すことで優れたプレス成形性を有しながら、成形後には強度の上昇を示すことで高い部材強度を達成する温間成形用薄鋼板等を提供する。
【解決手段】本発明の温間成形用薄鋼板は、質量%で、C:0.1〜0.3%、Si:0.5〜2.5%、Mn:1.5〜3.5%、P:0.001〜0.05%、S:0.0001〜0.01%、Al:0.001〜0.1%、N:0.0005〜0.01%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼組織が、面積率で、ポリゴナルフェライト相を40%以上、ベイナイト相を5%以上および残留オーステナイト相を3%以上含有する。 (もっと読む)


【課題】TS≧440MPaで、平均r値≧1.2、λ≧80%を有する深絞り性および伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法を提案する。
【解決手段】質量%で、C:0.010%以上0.06%以下、Si:0.5%超1.5%以下、Mn:1.0%以上3.0%以下、P:0.005%以上0.1%以下、S:0.01%以下、sol.Al:0.005%以上0.5%以下、N:0.01%以下、Nb:0.010%以上0.090%以下、Ti:0.015%以上0.15%以下を含有し、鋼中のNbおよびCの含有量が(Nb/93)/(C/12)<0.20の関係、及び0.005≦C≦0.025を満足し、面積率で70%以上のフェライトと面積率で3%以上のマルテンサイトを有する。C=C−(12/93)Nb−(12/48){Ti−(48/14)N}で、C、Nb、Ti、Nは、鋼中のC、Nb、Ti、Nの含有量である。 (もっと読む)


【課題】 化成処理性に優れた高Si含有高張力鋼板の製造方法を提供する。
【解決手段】質量%で、C:0.03%以上0.20%以下、Si:0.5%以上1.8%以下、Mn:1.5%以上3.5%以下、P:0.01%以上0.04%以下、S:0.001%以上0.01%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼板に、冷間圧延および連続焼鈍を施して高張力鋼板を製造するに際し、前記連続焼鈍後の鋼板の表面に研削量0.5g/m2以上1.0 g/m2未満のブラシ研削を施し、次いで濃度が1.0%超3.0%未満の塩酸を用いた塩酸酸洗を施す。 (もっと読む)


【課題】本発明は自動車の外板材等に使用されている冷間圧延鋼板及びこれを利用した溶融メッキ鋼板及び冷間圧延鋼板の製造方法に関するものである。
【解決手段】本発明は焼付硬化性、常温耐時効性及び耐2次加工脆性に優れた高強度冷間圧延鋼板及びその製造方法を提供することに、その目的がある。
本発明はTiを微量添加し、Al及びMoを同時に添加し、また製造条件の制御と共に、焼鈍後に結晶粒のサイズを微細化させる方法により鋼中の固溶元素を適切に制御することによりASTM No.9以上の焼鈍後の結晶粒のサイズ、30MPa以上の焼付硬化量(BH)及び30MPa以下のAI値を有する焼付硬化性に優れた高強度冷延鋼板及びこれを利用した溶融メッキ鋼板及び冷間圧延鋼板の製造方法をその旨としている。本発明によると、焼付硬化性、常温耐時効性及び耐2次加工脆性に優れた高強度冷間圧延鋼板及び溶融メッキ鋼板が提供されることができる。 (もっと読む)


【課題】打抜き穴加工での疲労特性に優れた引張強度590MPa以上の高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。
【解決手段】組織として、平均粒径が15μm以下で面積率が60%以上のフェライト相と、面積率が5〜40%のマルテンサイト相を有し、亜鉛めっき層直下の下地鋼板表面から鋼板側深さ方向100μm以内の鋼板表層部に生成したFe、Si、Mn、Al、P、Nb、Tiの中から選ばれる一種以上の酸化物が、片面あたり0.060g/m2未満である。製造するにあたっては、連続式溶融亜鉛めっき処理では、700〜900℃の温度で均熱し、700℃以上の温度域での雰囲気の露点を-40℃以下とする。 (もっと読む)


【課題】伸びフランジ性に優れた高強度冷延鋼板を提供する。
【解決手段】mass%で、C:0.050〜0.090%、Mn:1.5〜2.0%、Ti:0.005〜0.050%、Nb:0.020〜0.080%を含む組成の鋼素材に、熱延工程、冷延工程と焼鈍工程を施す。ここで、焼鈍工程を、最高到達温度:800〜900℃とし二段階の加熱と二段階の冷却とを有する工程とする。二段階の加熱は、平均昇温速度:0.5〜5.0℃/sで、(最高到達温度−(10〜50℃)の温度域まで加熱する第一段の加熱と、該温度域から最高到達温度までの昇温時間を30〜150sとする第二段の加熱とからなる。また、二段階の冷却は、最高到達温度から、10〜40℃/sの冷却速度で冷却する第一段の冷却と、第一段の冷却速度の0.2〜0.8の冷却速度で400〜500℃の温度域まで、総冷却時間の0.2〜0.8の冷却時間で冷却する第二段の冷却とからなる。冷却終了後、第二段の冷却の停止温度域で100〜1000s滞留させる。これにより、適正な組織分率の、フェライトとベイナイトとマルテンサイトと残留γからなる組織とすることができ、伸びフランジ性に優れた高強度冷延鋼板となる。 (もっと読む)


【課題】プレス成形性、耐二次加工脆性ならびに表面性状に優れた、引張強度が340MPa以上の高張力冷延鋼板とその製造方法を提供する。
【解決手段】C:0.0005%以上0.010%未満、Si:0.10%未満、Mn:0.4%以上2.5%以下、P:0.02%超0.06%以下、S:0.01%未満、sol.Al:0.15%以下、N:0.005%未満、Ti:0.020%未満、Nb:0.20%以下を含有し、必要によりTi:0.020%未満を含有し、かつTi、Nbが式(1):(93/12)×C+0.037≦Nb、および式(2):Ti≦(48/14)×N+0.012%を満足し、残部Feおよび不純物から成る化学組成を有し、FeNbP系化合物の平均数密度が5.0×10個/mm以下とする。 (もっと読む)


101 - 120 / 951